Line data Source code
1 : /*
2 : *
3 : * Copyright (c) 2020-2024 Project CHIP Authors
4 : * Copyright (c) 2013-2017 Nest Labs, Inc.
5 : * All rights reserved.
6 : *
7 : * Licensed under the Apache License, Version 2.0 (the "License");
8 : * you may not use this file except in compliance with the License.
9 : * You may obtain a copy of the License at
10 : *
11 : * http://www.apache.org/licenses/LICENSE-2.0
12 : *
13 : * Unless required by applicable law or agreed to in writing, software
14 : * distributed under the License is distributed on an "AS IS" BASIS,
15 : * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 : * See the License for the specific language governing permissions and
17 : * limitations under the License.
18 : */
19 :
20 : /**
21 : * @file
22 : * Implementation of CHIP Device Controller, a common class
23 : * that implements discovery, pairing and provisioning of CHIP
24 : * devices.
25 : *
26 : */
27 :
28 : // module header, comes first
29 : #include <controller/CHIPDeviceController.h>
30 :
31 : #include <app-common/zap-generated/ids/Attributes.h>
32 : #include <app-common/zap-generated/ids/Clusters.h>
33 :
34 : #include <app/InteractionModelEngine.h>
35 : #include <app/OperationalSessionSetup.h>
36 : #include <app/server/Dnssd.h>
37 : #include <controller/CurrentFabricRemover.h>
38 : #include <controller/InvokeInteraction.h>
39 : #include <controller/WriteInteraction.h>
40 : #include <credentials/CHIPCert.h>
41 : #include <credentials/DeviceAttestationCredsProvider.h>
42 : #include <crypto/CHIPCryptoPAL.h>
43 : #include <lib/core/CHIPCore.h>
44 : #include <lib/core/CHIPEncoding.h>
45 : #include <lib/core/CHIPSafeCasts.h>
46 : #include <lib/core/ErrorStr.h>
47 : #include <lib/core/NodeId.h>
48 : #include <lib/support/Base64.h>
49 : #include <lib/support/CHIPArgParser.hpp>
50 : #include <lib/support/CHIPMem.h>
51 : #include <lib/support/CodeUtils.h>
52 : #include <lib/support/PersistentStorageMacros.h>
53 : #include <lib/support/SafeInt.h>
54 : #include <lib/support/ScopedBuffer.h>
55 : #include <lib/support/ThreadOperationalDataset.h>
56 : #include <lib/support/TimeUtils.h>
57 : #include <lib/support/logging/CHIPLogging.h>
58 : #include <messaging/ExchangeContext.h>
59 : #include <platform/LockTracker.h>
60 : #include <protocols/secure_channel/MessageCounterManager.h>
61 : #include <setup_payload/QRCodeSetupPayloadParser.h>
62 : #include <tracing/macros.h>
63 : #include <tracing/metric_event.h>
64 :
65 : #if CONFIG_NETWORK_LAYER_BLE
66 : #include <ble/Ble.h>
67 : #include <transport/raw/BLE.h>
68 : #endif
69 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
70 : #include <transport/raw/WiFiPAF.h>
71 : #endif
72 :
73 : #include <algorithm>
74 : #include <array>
75 : #include <errno.h>
76 : #include <inttypes.h>
77 : #include <limits>
78 : #include <memory>
79 : #include <stdint.h>
80 : #include <stdlib.h>
81 : #include <string>
82 : #include <time.h>
83 :
84 : using namespace chip::app;
85 : using namespace chip::app::Clusters;
86 : using namespace chip::Inet;
87 : using namespace chip::System;
88 : using namespace chip::Transport;
89 : using namespace chip::Credentials;
90 : using namespace chip::Crypto;
91 : using namespace chip::Tracing;
92 :
93 : namespace chip {
94 : namespace Controller {
95 :
96 : using namespace chip::Encoding;
97 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
98 : using namespace chip::Protocols::UserDirectedCommissioning;
99 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
100 :
101 88 : DeviceController::DeviceController()
102 : {
103 8 : mState = State::NotInitialized;
104 8 : }
105 :
106 0 : CHIP_ERROR DeviceController::Init(ControllerInitParams params)
107 : {
108 0 : assertChipStackLockedByCurrentThread();
109 :
110 0 : VerifyOrReturnError(mState == State::NotInitialized, CHIP_ERROR_INCORRECT_STATE);
111 0 : VerifyOrReturnError(params.systemState != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
112 :
113 0 : VerifyOrReturnError(params.systemState->SystemLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
114 0 : VerifyOrReturnError(params.systemState->UDPEndPointManager() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
115 :
116 : #if CONFIG_NETWORK_LAYER_BLE
117 0 : VerifyOrReturnError(params.systemState->BleLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
118 : #endif
119 :
120 0 : VerifyOrReturnError(params.systemState->TransportMgr() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
121 :
122 0 : ReturnErrorOnFailure(mDNSResolver.Init(params.systemState->UDPEndPointManager()));
123 0 : mDNSResolver.SetDiscoveryDelegate(this);
124 0 : RegisterDeviceDiscoveryDelegate(params.deviceDiscoveryDelegate);
125 :
126 0 : mVendorId = params.controllerVendorId;
127 0 : if (params.operationalKeypair != nullptr || !params.controllerNOC.empty() || !params.controllerRCAC.empty())
128 : {
129 0 : ReturnErrorOnFailure(InitControllerNOCChain(params));
130 : }
131 0 : else if (params.fabricIndex.HasValue())
132 : {
133 0 : VerifyOrReturnError(params.systemState->Fabrics()->FabricCount() > 0, CHIP_ERROR_INVALID_ARGUMENT);
134 0 : if (params.systemState->Fabrics()->FindFabricWithIndex(params.fabricIndex.Value()) != nullptr)
135 : {
136 0 : mFabricIndex = params.fabricIndex.Value();
137 : }
138 : else
139 : {
140 0 : ChipLogError(Controller, "There is no fabric corresponding to the given fabricIndex");
141 0 : return CHIP_ERROR_INVALID_ARGUMENT;
142 : }
143 : }
144 :
145 0 : mSystemState = params.systemState->Retain();
146 0 : mState = State::Initialized;
147 :
148 0 : mRemoveFromFabricTableOnShutdown = params.removeFromFabricTableOnShutdown;
149 0 : mDeleteFromFabricTableOnShutdown = params.deleteFromFabricTableOnShutdown;
150 :
151 0 : if (GetFabricIndex() != kUndefinedFabricIndex)
152 : {
153 0 : ChipLogProgress(Controller,
154 : "Joined the fabric at index %d. Fabric ID is 0x" ChipLogFormatX64
155 : " (Compressed Fabric ID: " ChipLogFormatX64 ")",
156 : GetFabricIndex(), ChipLogValueX64(GetFabricId()), ChipLogValueX64(GetCompressedFabricId()));
157 : }
158 :
159 0 : return CHIP_NO_ERROR;
160 : }
161 :
162 0 : CHIP_ERROR DeviceController::InitControllerNOCChain(const ControllerInitParams & params)
163 : {
164 0 : FabricInfo newFabric;
165 0 : constexpr uint32_t chipCertAllocatedLen = kMaxCHIPCertLength;
166 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> rcacBuf;
167 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> icacBuf;
168 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> nocBuf;
169 0 : Credentials::P256PublicKeySpan rootPublicKeySpan;
170 : FabricId fabricId;
171 : NodeId nodeId;
172 0 : bool hasExternallyOwnedKeypair = false;
173 0 : Crypto::P256Keypair * externalOperationalKeypair = nullptr;
174 0 : VendorId newFabricVendorId = params.controllerVendorId;
175 :
176 : // There are three possibilities here in terms of what happens with our
177 : // operational key:
178 : // 1) We have an externally owned operational keypair.
179 : // 2) We have an operational keypair that the fabric table should clone via
180 : // serialize/deserialize.
181 : // 3) We have no keypair at all, and the fabric table has been initialized
182 : // with a key store.
183 0 : if (params.operationalKeypair != nullptr)
184 : {
185 0 : hasExternallyOwnedKeypair = params.hasExternallyOwnedOperationalKeypair;
186 0 : externalOperationalKeypair = params.operationalKeypair;
187 : }
188 :
189 0 : VerifyOrReturnError(rcacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
190 0 : VerifyOrReturnError(icacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
191 0 : VerifyOrReturnError(nocBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
192 :
193 0 : MutableByteSpan rcacSpan(rcacBuf.Get(), chipCertAllocatedLen);
194 :
195 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerRCAC, rcacSpan));
196 0 : ReturnErrorOnFailure(Credentials::ExtractPublicKeyFromChipCert(rcacSpan, rootPublicKeySpan));
197 0 : Crypto::P256PublicKey rootPublicKey{ rootPublicKeySpan };
198 :
199 0 : MutableByteSpan icacSpan;
200 0 : if (params.controllerICAC.empty())
201 : {
202 0 : ChipLogProgress(Controller, "Intermediate CA is not needed");
203 : }
204 : else
205 : {
206 0 : icacSpan = MutableByteSpan(icacBuf.Get(), chipCertAllocatedLen);
207 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerICAC, icacSpan));
208 : }
209 :
210 0 : MutableByteSpan nocSpan = MutableByteSpan(nocBuf.Get(), chipCertAllocatedLen);
211 :
212 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerNOC, nocSpan));
213 0 : ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(nocSpan, &nodeId, &fabricId));
214 :
215 0 : auto * fabricTable = params.systemState->Fabrics();
216 0 : const FabricInfo * fabricInfo = nullptr;
217 :
218 : //
219 : // When multiple controllers are permitted on the same fabric, we need to find fabrics with
220 : // nodeId as an extra discriminant since we can have multiple FabricInfo objects that all
221 : // collide on the same fabric. Not doing so may result in a match with an existing FabricInfo
222 : // instance that matches the fabric in the provided NOC but is associated with a different NodeId
223 : // that is already in use by another active controller instance. That will effectively cause it
224 : // to change its identity inadvertently, which is not acceptable.
225 : //
226 : // TODO: Figure out how to clean up unreclaimed FabricInfos restored from persistent
227 : // storage that are not in use by active DeviceController instances. Also, figure out
228 : // how to reclaim FabricInfo slots when a DeviceController instance is deleted.
229 : //
230 0 : if (params.permitMultiControllerFabrics)
231 : {
232 0 : fabricInfo = fabricTable->FindIdentity(rootPublicKey, fabricId, nodeId);
233 : }
234 : else
235 : {
236 0 : fabricInfo = fabricTable->FindFabric(rootPublicKey, fabricId);
237 : }
238 :
239 0 : bool fabricFoundInTable = (fabricInfo != nullptr);
240 :
241 0 : FabricIndex fabricIndex = fabricFoundInTable ? fabricInfo->GetFabricIndex() : kUndefinedFabricIndex;
242 :
243 0 : CHIP_ERROR err = CHIP_NO_ERROR;
244 :
245 0 : auto advertiseOperational =
246 0 : params.enableServerInteractions ? FabricTable::AdvertiseIdentity::Yes : FabricTable::AdvertiseIdentity::No;
247 :
248 : //
249 : // We permit colliding fabrics when multiple controllers are present on the same logical fabric
250 : // since each controller is associated with a unique FabricInfo 'identity' object and consequently,
251 : // a unique FabricIndex.
252 : //
253 : // This sets a flag that will be cleared automatically when the fabric is committed/reverted later
254 : // in this function.
255 : //
256 0 : if (params.permitMultiControllerFabrics)
257 : {
258 0 : fabricTable->PermitCollidingFabrics();
259 : }
260 :
261 : // We have 4 cases to handle legacy usage of direct operational key injection
262 0 : if (externalOperationalKeypair)
263 : {
264 : // Cases 1 and 2: Injected operational keys
265 :
266 : // CASE 1: Fabric update with injected key
267 0 : if (fabricFoundInTable)
268 : {
269 0 : err = fabricTable->UpdatePendingFabricWithProvidedOpKey(fabricIndex, nocSpan, icacSpan, externalOperationalKeypair,
270 : hasExternallyOwnedKeypair, advertiseOperational);
271 : }
272 : else
273 : // CASE 2: New fabric with injected key
274 : {
275 0 : err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
276 0 : if (err == CHIP_NO_ERROR)
277 : {
278 0 : err = fabricTable->AddNewPendingFabricWithProvidedOpKey(nocSpan, icacSpan, newFabricVendorId,
279 : externalOperationalKeypair, hasExternallyOwnedKeypair,
280 : &fabricIndex, advertiseOperational);
281 : }
282 : }
283 : }
284 : else
285 : {
286 : // Cases 3 and 4: OperationalKeystore has the keys
287 :
288 : // CASE 3: Fabric update with operational keystore
289 0 : if (fabricFoundInTable)
290 : {
291 0 : VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(fabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
292 :
293 0 : err = fabricTable->UpdatePendingFabricWithOperationalKeystore(fabricIndex, nocSpan, icacSpan, advertiseOperational);
294 : }
295 : else
296 : // CASE 4: New fabric with operational keystore
297 : {
298 0 : err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
299 0 : if (err == CHIP_NO_ERROR)
300 : {
301 0 : err = fabricTable->AddNewPendingFabricWithOperationalKeystore(nocSpan, icacSpan, newFabricVendorId, &fabricIndex,
302 : advertiseOperational);
303 : }
304 :
305 0 : if (err == CHIP_NO_ERROR)
306 : {
307 : // Now that we know our planned fabric index, verify that the
308 : // keystore has a key for it.
309 0 : if (!fabricTable->HasOperationalKeyForFabric(fabricIndex))
310 : {
311 0 : err = CHIP_ERROR_KEY_NOT_FOUND;
312 : }
313 : }
314 : }
315 : }
316 :
317 : // Commit after setup, error-out on failure.
318 0 : if (err == CHIP_NO_ERROR)
319 : {
320 : // No need to revert on error: CommitPendingFabricData reverts internally on *any* error.
321 0 : err = fabricTable->CommitPendingFabricData();
322 : }
323 : else
324 : {
325 0 : fabricTable->RevertPendingFabricData();
326 : }
327 :
328 0 : ReturnErrorOnFailure(err);
329 0 : VerifyOrReturnError(fabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
330 :
331 0 : mFabricIndex = fabricIndex;
332 0 : mAdvertiseIdentity = advertiseOperational;
333 0 : return CHIP_NO_ERROR;
334 0 : }
335 :
336 0 : CHIP_ERROR DeviceController::UpdateControllerNOCChain(const ByteSpan & noc, const ByteSpan & icac,
337 : Crypto::P256Keypair * operationalKeypair,
338 : bool operationalKeypairExternalOwned)
339 : {
340 0 : VerifyOrReturnError(mFabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
341 0 : VerifyOrReturnError(mSystemState != nullptr, CHIP_ERROR_INTERNAL);
342 0 : FabricTable * fabricTable = mSystemState->Fabrics();
343 0 : CHIP_ERROR err = CHIP_NO_ERROR;
344 : FabricId fabricId;
345 : NodeId nodeId;
346 0 : CATValues oldCats;
347 0 : CATValues newCats;
348 0 : ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(noc, &nodeId, &fabricId));
349 0 : ReturnErrorOnFailure(fabricTable->FetchCATs(mFabricIndex, oldCats));
350 0 : ReturnErrorOnFailure(ExtractCATsFromOpCert(noc, newCats));
351 :
352 0 : bool needCloseSession = true;
353 0 : if (GetFabricInfo()->GetNodeId() == nodeId && oldCats == newCats)
354 : {
355 0 : needCloseSession = false;
356 : }
357 :
358 0 : if (operationalKeypair != nullptr)
359 : {
360 0 : err = fabricTable->UpdatePendingFabricWithProvidedOpKey(mFabricIndex, noc, icac, operationalKeypair,
361 : operationalKeypairExternalOwned, mAdvertiseIdentity);
362 : }
363 : else
364 : {
365 0 : VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(mFabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
366 0 : err = fabricTable->UpdatePendingFabricWithOperationalKeystore(mFabricIndex, noc, icac, mAdvertiseIdentity);
367 : }
368 :
369 0 : if (err == CHIP_NO_ERROR)
370 : {
371 0 : err = fabricTable->CommitPendingFabricData();
372 : }
373 : else
374 : {
375 0 : fabricTable->RevertPendingFabricData();
376 : }
377 :
378 0 : ReturnErrorOnFailure(err);
379 0 : if (needCloseSession)
380 : {
381 : // If the node id or CATs have changed, our existing CASE sessions are no longer valid,
382 : // because the other side will think anything coming over those sessions comes from our
383 : // old node ID, and the new CATs might not satisfy the ACL requirements of the other side.
384 0 : mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
385 : }
386 0 : ChipLogProgress(Controller, "Controller NOC chain has updated");
387 0 : return CHIP_NO_ERROR;
388 : }
389 :
390 0 : void DeviceController::Shutdown()
391 : {
392 0 : assertChipStackLockedByCurrentThread();
393 :
394 0 : VerifyOrReturn(mState != State::NotInitialized);
395 :
396 : // If our state is initialialized it means mSystemState is valid,
397 : // and we can use it below before we release our reference to it.
398 0 : ChipLogDetail(Controller, "Shutting down the controller");
399 0 : mState = State::NotInitialized;
400 :
401 0 : if (mFabricIndex != kUndefinedFabricIndex)
402 : {
403 : // Shut down any subscription clients for this fabric.
404 0 : app::InteractionModelEngine::GetInstance()->ShutdownSubscriptions(mFabricIndex);
405 :
406 : // Shut down any ongoing CASE session activity we have. We're going to
407 : // assume that all sessions for our fabric belong to us here.
408 0 : mSystemState->CASESessionMgr()->ReleaseSessionsForFabric(mFabricIndex);
409 :
410 : // Shut down any bdx transfers we're acting as the server for.
411 0 : mSystemState->BDXTransferServer()->AbortTransfersForFabric(mFabricIndex);
412 :
413 : // TODO: The CASE session manager does not shut down existing CASE
414 : // sessions. It just shuts down any ongoing CASE session establishment
415 : // we're in the middle of as initiator. Maybe it should shut down
416 : // existing sessions too?
417 0 : mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
418 :
419 0 : if (mDeleteFromFabricTableOnShutdown)
420 : {
421 0 : mSystemState->Fabrics()->Delete(mFabricIndex);
422 : }
423 0 : else if (mRemoveFromFabricTableOnShutdown)
424 : {
425 0 : mSystemState->Fabrics()->Forget(mFabricIndex);
426 : }
427 : }
428 :
429 0 : mSystemState->Release();
430 0 : mSystemState = nullptr;
431 :
432 0 : mDNSResolver.Shutdown();
433 0 : mDeviceDiscoveryDelegate = nullptr;
434 : }
435 :
436 0 : CHIP_ERROR DeviceController::GetPeerAddressAndPort(NodeId peerId, Inet::IPAddress & addr, uint16_t & port)
437 : {
438 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
439 0 : Transport::PeerAddress peerAddr;
440 0 : ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(peerId), peerAddr));
441 0 : addr = peerAddr.GetIPAddress();
442 0 : port = peerAddr.GetPort();
443 0 : return CHIP_NO_ERROR;
444 : }
445 :
446 0 : CHIP_ERROR DeviceController::GetPeerAddress(NodeId nodeId, Transport::PeerAddress & addr)
447 : {
448 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
449 0 : ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(nodeId), addr));
450 :
451 0 : return CHIP_NO_ERROR;
452 : }
453 :
454 0 : CHIP_ERROR DeviceController::ComputePASEVerifier(uint32_t iterations, uint32_t setupPincode, const ByteSpan & salt,
455 : Spake2pVerifier & outVerifier)
456 : {
457 0 : ReturnErrorOnFailure(PASESession::GeneratePASEVerifier(outVerifier, iterations, salt, /* useRandomPIN= */ false, setupPincode));
458 :
459 0 : return CHIP_NO_ERROR;
460 : }
461 :
462 0 : ControllerDeviceInitParams DeviceController::GetControllerDeviceInitParams()
463 : {
464 : return ControllerDeviceInitParams{
465 0 : .sessionManager = mSystemState->SessionMgr(),
466 0 : .exchangeMgr = mSystemState->ExchangeMgr(),
467 0 : };
468 : }
469 :
470 0 : DeviceCommissioner::DeviceCommissioner() :
471 0 : mOnDeviceConnectedCallback(OnDeviceConnectedFn, this), mOnDeviceConnectionFailureCallback(OnDeviceConnectionFailureFn, this),
472 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
473 0 : mOnDeviceConnectionRetryCallback(OnDeviceConnectionRetryFn, this),
474 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
475 0 : mDeviceAttestationInformationVerificationCallback(OnDeviceAttestationInformationVerification, this),
476 0 : mDeviceNOCChainCallback(OnDeviceNOCChainGeneration, this), mSetUpCodePairer(this)
477 0 : {}
478 :
479 0 : CHIP_ERROR DeviceCommissioner::Init(CommissionerInitParams params)
480 : {
481 0 : VerifyOrReturnError(params.operationalCredentialsDelegate != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
482 0 : mOperationalCredentialsDelegate = params.operationalCredentialsDelegate;
483 0 : ReturnErrorOnFailure(DeviceController::Init(params));
484 :
485 0 : mPairingDelegate = params.pairingDelegate;
486 :
487 : // Configure device attestation validation
488 0 : mDeviceAttestationVerifier = params.deviceAttestationVerifier;
489 0 : if (mDeviceAttestationVerifier == nullptr)
490 : {
491 0 : mDeviceAttestationVerifier = Credentials::GetDeviceAttestationVerifier();
492 0 : if (mDeviceAttestationVerifier == nullptr)
493 : {
494 0 : ChipLogError(Controller,
495 : "Missing DeviceAttestationVerifier configuration at DeviceCommissioner init and none set with "
496 : "Credentials::SetDeviceAttestationVerifier()!");
497 0 : return CHIP_ERROR_INVALID_ARGUMENT;
498 : }
499 :
500 : // We fell back on a default from singleton accessor.
501 0 : ChipLogProgress(Controller,
502 : "*** Missing DeviceAttestationVerifier configuration at DeviceCommissioner init: using global default, "
503 : "consider passing one in CommissionerInitParams.");
504 : }
505 :
506 0 : if (params.defaultCommissioner != nullptr)
507 : {
508 0 : mDefaultCommissioner = params.defaultCommissioner;
509 : }
510 : else
511 : {
512 0 : mDefaultCommissioner = &mAutoCommissioner;
513 : }
514 :
515 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
516 : mUdcTransportMgr = chip::Platform::New<UdcTransportMgr>();
517 : ReturnErrorOnFailure(mUdcTransportMgr->Init(Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
518 : .SetAddressType(Inet::IPAddressType::kIPv6)
519 : .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
520 : #if INET_CONFIG_ENABLE_IPV4
521 : ,
522 : Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
523 : .SetAddressType(Inet::IPAddressType::kIPv4)
524 : .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
525 : #endif // INET_CONFIG_ENABLE_IPV4
526 : ));
527 :
528 : mUdcServer = chip::Platform::New<UserDirectedCommissioningServer>();
529 : mUdcTransportMgr->SetSessionManager(mUdcServer);
530 : mUdcServer->SetTransportManager(mUdcTransportMgr);
531 :
532 : mUdcServer->SetInstanceNameResolver(this);
533 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
534 :
535 0 : mSetUpCodePairer.SetSystemLayer(mSystemState->SystemLayer());
536 : #if CONFIG_NETWORK_LAYER_BLE
537 0 : mSetUpCodePairer.SetBleLayer(mSystemState->BleLayer());
538 : #endif // CONFIG_NETWORK_LAYER_BLE
539 :
540 0 : return CHIP_NO_ERROR;
541 : }
542 :
543 0 : void DeviceCommissioner::Shutdown()
544 : {
545 0 : VerifyOrReturn(mState != State::NotInitialized);
546 :
547 0 : ChipLogDetail(Controller, "Shutting down the commissioner");
548 :
549 0 : mSetUpCodePairer.StopPairing();
550 :
551 : // Check to see if pairing in progress before shutting down
552 0 : CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
553 0 : if (device != nullptr && device->IsSessionSetupInProgress())
554 : {
555 0 : ChipLogDetail(Controller, "Setup in progress, stopping setup before shutting down");
556 0 : OnSessionEstablishmentError(CHIP_ERROR_CONNECTION_ABORTED);
557 : }
558 :
559 0 : CancelCommissioningInteractions();
560 :
561 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
562 : if (mUdcTransportMgr != nullptr)
563 : {
564 : chip::Platform::Delete(mUdcTransportMgr);
565 : mUdcTransportMgr = nullptr;
566 : }
567 : if (mUdcServer != nullptr)
568 : {
569 : mUdcServer->SetInstanceNameResolver(nullptr);
570 : chip::Platform::Delete(mUdcServer);
571 : mUdcServer = nullptr;
572 : }
573 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
574 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
575 0 : WiFiPAF::WiFiPAFLayer::GetWiFiPAFLayer().Shutdown(
576 0 : [](uint32_t id, WiFiPAF::WiFiPafRole role) { DeviceLayer::ConnectivityMgr().WiFiPAFShutdown(id, role); });
577 : #endif
578 :
579 : // Release everything from the commissionee device pool here.
580 : // Make sure to use ReleaseCommissioneeDevice so we don't keep dangling
581 : // pointers to the device objects.
582 0 : mCommissioneeDevicePool.ForEachActiveObject([this](auto * commissioneeDevice) {
583 0 : ReleaseCommissioneeDevice(commissioneeDevice);
584 0 : return Loop::Continue;
585 : });
586 :
587 0 : DeviceController::Shutdown();
588 : }
589 :
590 0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(NodeId id)
591 : {
592 : MATTER_TRACE_SCOPE("FindCommissioneeDevice", "DeviceCommissioner");
593 0 : CommissioneeDeviceProxy * foundDevice = nullptr;
594 0 : mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
595 0 : if (deviceProxy->GetDeviceId() == id)
596 : {
597 0 : foundDevice = deviceProxy;
598 0 : return Loop::Break;
599 : }
600 0 : return Loop::Continue;
601 : });
602 :
603 0 : return foundDevice;
604 : }
605 :
606 0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(const Transport::PeerAddress & peerAddress)
607 : {
608 0 : CommissioneeDeviceProxy * foundDevice = nullptr;
609 0 : mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
610 0 : if (deviceProxy->GetPeerAddress() == peerAddress)
611 : {
612 0 : foundDevice = deviceProxy;
613 0 : return Loop::Break;
614 : }
615 0 : return Loop::Continue;
616 : });
617 :
618 0 : return foundDevice;
619 : }
620 :
621 0 : void DeviceCommissioner::ReleaseCommissioneeDevice(CommissioneeDeviceProxy * device)
622 : {
623 : #if CONFIG_NETWORK_LAYER_BLE
624 0 : if (mSystemState->BleLayer() != nullptr && device->GetDeviceTransportType() == Transport::Type::kBle)
625 : {
626 : // We only support one BLE connection, so if this is BLE, close it
627 0 : ChipLogProgress(Discovery, "Closing all BLE connections");
628 0 : mSystemState->BleLayer()->CloseAllBleConnections();
629 : }
630 : #endif
631 : // Make sure that there will be no dangling pointer
632 0 : if (mDeviceInPASEEstablishment == device)
633 : {
634 0 : mDeviceInPASEEstablishment = nullptr;
635 : }
636 0 : if (mDeviceBeingCommissioned == device)
637 : {
638 0 : mDeviceBeingCommissioned = nullptr;
639 : }
640 :
641 : // Release the commissionee device after we have nulled out our pointers,
642 : // because that can call back in to us with error notifications as the
643 : // session is released.
644 0 : mCommissioneeDevicePool.ReleaseObject(device);
645 0 : }
646 :
647 0 : CHIP_ERROR DeviceCommissioner::GetDeviceBeingCommissioned(NodeId deviceId, CommissioneeDeviceProxy ** out_device)
648 : {
649 0 : VerifyOrReturnError(out_device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
650 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(deviceId);
651 :
652 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
653 :
654 0 : *out_device = device;
655 :
656 0 : return CHIP_NO_ERROR;
657 : }
658 :
659 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, const CommissioningParameters & params,
660 : DiscoveryType discoveryType, Optional<Dnssd::CommonResolutionData> resolutionData)
661 : {
662 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
663 :
664 0 : if (mDefaultCommissioner == nullptr)
665 : {
666 0 : ChipLogError(Controller, "No default commissioner is specified");
667 0 : return CHIP_ERROR_INCORRECT_STATE;
668 : }
669 0 : ReturnErrorOnFailure(mDefaultCommissioner->SetCommissioningParameters(params));
670 :
671 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
672 0 : resolutionData);
673 : }
674 :
675 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
676 : Optional<Dnssd::CommonResolutionData> resolutionData)
677 : {
678 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
679 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
680 0 : resolutionData);
681 : }
682 :
683 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & params)
684 : {
685 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
686 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, params));
687 0 : auto errorCode = Commission(remoteDeviceId);
688 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
689 0 : return errorCode;
690 : }
691 :
692 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & rendezvousParams,
693 : CommissioningParameters & commissioningParams)
694 : {
695 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
696 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, rendezvousParams));
697 0 : auto errorCode = Commission(remoteDeviceId, commissioningParams);
698 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
699 0 : return errorCode;
700 : }
701 :
702 0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
703 : Optional<Dnssd::CommonResolutionData> resolutionData)
704 : {
705 : MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
706 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kPaseOnly, discoveryType,
707 0 : resolutionData);
708 : }
709 :
710 0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, RendezvousParameters & params)
711 : {
712 : MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
713 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerPASESession);
714 :
715 0 : CHIP_ERROR err = CHIP_NO_ERROR;
716 0 : CommissioneeDeviceProxy * device = nullptr;
717 0 : CommissioneeDeviceProxy * current = nullptr;
718 0 : Transport::PeerAddress peerAddress = Transport::PeerAddress::UDP(Inet::IPAddress::Any);
719 :
720 0 : Messaging::ExchangeContext * exchangeCtxt = nullptr;
721 0 : Optional<SessionHandle> session;
722 :
723 0 : VerifyOrExit(mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
724 0 : VerifyOrExit(mDeviceInPASEEstablishment == nullptr, err = CHIP_ERROR_INCORRECT_STATE);
725 :
726 : // TODO(#13940): We need to specify the peer address for BLE transport in bindings.
727 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle ||
728 0 : params.GetPeerAddress().GetTransportType() == Transport::Type::kUndefined)
729 : {
730 : #if CONFIG_NETWORK_LAYER_BLE
731 : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
732 : ConnectBleTransportToSelf();
733 : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
734 0 : if (!params.HasBleLayer())
735 : {
736 0 : params.SetPeerAddress(Transport::PeerAddress::BLE());
737 : }
738 0 : peerAddress = Transport::PeerAddress::BLE();
739 : #endif // CONFIG_NETWORK_LAYER_BLE
740 : }
741 0 : else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kTcp ||
742 0 : params.GetPeerAddress().GetTransportType() == Transport::Type::kUdp)
743 : {
744 0 : peerAddress = Transport::PeerAddress::UDP(params.GetPeerAddress().GetIPAddress(), params.GetPeerAddress().GetPort(),
745 0 : params.GetPeerAddress().GetInterface());
746 : }
747 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
748 0 : else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
749 : {
750 0 : peerAddress = Transport::PeerAddress::WiFiPAF(remoteDeviceId);
751 : }
752 : #endif // CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
753 :
754 0 : current = FindCommissioneeDevice(peerAddress);
755 0 : if (current != nullptr)
756 : {
757 0 : if (current->GetDeviceId() == remoteDeviceId)
758 : {
759 : // We might be able to just reuse its connection if it has one or is
760 : // working on one.
761 0 : if (current->IsSecureConnected())
762 : {
763 0 : if (mPairingDelegate)
764 : {
765 : // We already have an open secure session to this device, call the callback immediately and early return.
766 0 : mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR);
767 : }
768 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
769 0 : return CHIP_NO_ERROR;
770 : }
771 0 : if (current->IsSessionSetupInProgress())
772 : {
773 : // We're not connected yet, but we're in the process of connecting. Pairing delegate will get a callback when
774 : // connection completes
775 0 : return CHIP_NO_ERROR;
776 : }
777 : }
778 :
779 : // Either the consumer wants to assign a different device id to this
780 : // peer address now (so we can't reuse the commissionee device we have
781 : // already) or something has gone strange. Delete the old device, try
782 : // again.
783 0 : ChipLogError(Controller, "Found unconnected device, removing");
784 0 : ReleaseCommissioneeDevice(current);
785 : }
786 :
787 0 : device = mCommissioneeDevicePool.CreateObject();
788 0 : VerifyOrExit(device != nullptr, err = CHIP_ERROR_NO_MEMORY);
789 :
790 0 : mDeviceInPASEEstablishment = device;
791 0 : device->Init(GetControllerDeviceInitParams(), remoteDeviceId, peerAddress);
792 0 : device->UpdateDeviceData(params.GetPeerAddress(), params.GetMRPConfig());
793 :
794 : #if CONFIG_NETWORK_LAYER_BLE
795 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle)
796 : {
797 0 : if (params.HasConnectionObject())
798 : {
799 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetConnectionObject()));
800 : }
801 0 : else if (params.HasDiscoveredObject())
802 : {
803 : // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
804 : // for later.
805 0 : mRendezvousParametersForDeviceDiscoveredOverBle = params;
806 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetDiscoveredObject(), this,
807 : OnDiscoveredDeviceOverBleSuccess,
808 : OnDiscoveredDeviceOverBleError));
809 0 : ExitNow(CHIP_NO_ERROR);
810 : }
811 0 : else if (params.HasDiscriminator())
812 : {
813 : // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
814 : // for later.
815 0 : mRendezvousParametersForDeviceDiscoveredOverBle = params;
816 :
817 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByDiscriminator(params.GetSetupDiscriminator().value(),
818 : this, OnDiscoveredDeviceOverBleSuccess,
819 : OnDiscoveredDeviceOverBleError));
820 0 : ExitNow(CHIP_NO_ERROR);
821 : }
822 : else
823 : {
824 0 : ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
825 : }
826 : }
827 : #endif
828 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
829 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
830 : {
831 0 : if (DeviceLayer::ConnectivityMgr().GetWiFiPAF()->GetWiFiPAFState() != WiFiPAF::State::kConnected)
832 : {
833 0 : ChipLogProgress(Controller, "WiFi-PAF: Subscribing to the NAN-USD devices, nodeId: %lu",
834 : params.GetPeerAddress().GetRemoteId());
835 0 : if (!DeviceLayer::ConnectivityMgrImpl().IsWiFiManagementStarted())
836 : {
837 0 : ChipLogError(Controller, "Wi-Fi Management should have been started now.");
838 0 : ExitNow(CHIP_ERROR_INTERNAL);
839 : }
840 0 : mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = params;
841 0 : auto nodeId = params.GetPeerAddress().GetRemoteId();
842 0 : const SetupDiscriminator connDiscriminator(params.GetSetupDiscriminator().value());
843 0 : VerifyOrReturnValue(!connDiscriminator.IsShortDiscriminator(), CHIP_ERROR_INVALID_ARGUMENT,
844 : ChipLogError(Controller, "Error, Long discriminator is required"));
845 0 : uint16_t discriminator = connDiscriminator.GetLongValue();
846 0 : WiFiPAF::WiFiPAFSession sessionInfo = { .role = WiFiPAF::WiFiPafRole::kWiFiPafRole_Subscriber,
847 : .nodeId = nodeId,
848 0 : .discriminator = discriminator };
849 0 : ReturnErrorOnFailure(
850 : DeviceLayer::ConnectivityMgr().GetWiFiPAF()->AddPafSession(WiFiPAF::PafInfoAccess::kAccNodeInfo, sessionInfo));
851 0 : DeviceLayer::ConnectivityMgr().WiFiPAFSubscribe(discriminator, reinterpret_cast<void *>(this),
852 : OnWiFiPAFSubscribeComplete, OnWiFiPAFSubscribeError);
853 0 : ExitNow(CHIP_NO_ERROR);
854 : }
855 : }
856 : #endif
857 0 : session = mSystemState->SessionMgr()->CreateUnauthenticatedSession(params.GetPeerAddress(), params.GetMRPConfig());
858 0 : VerifyOrExit(session.HasValue(), err = CHIP_ERROR_NO_MEMORY);
859 :
860 : // Allocate the exchange immediately before calling PASESession::Pair.
861 : //
862 : // PASESession::Pair takes ownership of the exchange and will free it on
863 : // error, but can only do this if it is actually called. Allocating the
864 : // exchange context right before calling Pair ensures that if allocation
865 : // succeeds, PASESession has taken ownership.
866 0 : exchangeCtxt = mSystemState->ExchangeMgr()->NewContext(session.Value(), &device->GetPairing());
867 0 : VerifyOrExit(exchangeCtxt != nullptr, err = CHIP_ERROR_INTERNAL);
868 :
869 0 : err = device->GetPairing().Pair(*mSystemState->SessionMgr(), params.GetSetupPINCode(), GetLocalMRPConfig(), exchangeCtxt, this);
870 0 : SuccessOrExit(err);
871 :
872 0 : exit:
873 0 : if (err != CHIP_NO_ERROR)
874 : {
875 0 : if (device != nullptr)
876 : {
877 0 : ReleaseCommissioneeDevice(device);
878 : }
879 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
880 : }
881 :
882 0 : return err;
883 0 : }
884 :
885 : #if CONFIG_NETWORK_LAYER_BLE
886 0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleSuccess(void * appState, BLE_CONNECTION_OBJECT connObj)
887 : {
888 0 : auto self = static_cast<DeviceCommissioner *>(appState);
889 0 : auto device = self->mDeviceInPASEEstablishment;
890 :
891 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
892 : {
893 0 : auto remoteId = device->GetDeviceId();
894 :
895 0 : auto params = self->mRendezvousParametersForDeviceDiscoveredOverBle;
896 0 : params.SetConnectionObject(connObj);
897 0 : self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
898 :
899 0 : self->ReleaseCommissioneeDevice(device);
900 0 : LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
901 : }
902 0 : }
903 :
904 0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleError(void * appState, CHIP_ERROR err)
905 : {
906 0 : auto self = static_cast<DeviceCommissioner *>(appState);
907 0 : auto device = self->mDeviceInPASEEstablishment;
908 :
909 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
910 : {
911 0 : self->ReleaseCommissioneeDevice(device);
912 0 : self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
913 :
914 : // Callback is required when BLE discovery fails, otherwise the caller will always be in a suspended state
915 : // A better way to handle it should define a new error code
916 0 : if (self->mPairingDelegate != nullptr)
917 : {
918 0 : self->mPairingDelegate->OnPairingComplete(err);
919 : }
920 : }
921 0 : }
922 : #endif // CONFIG_NETWORK_LAYER_BLE
923 :
924 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
925 0 : void DeviceCommissioner::OnWiFiPAFSubscribeComplete(void * appState)
926 : {
927 0 : auto self = reinterpret_cast<DeviceCommissioner *>(appState);
928 0 : auto device = self->mDeviceInPASEEstablishment;
929 :
930 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
931 : {
932 0 : ChipLogProgress(Controller, "WiFi-PAF: Subscription Completed, dev_id = %lu", device->GetDeviceId());
933 0 : auto remoteId = device->GetDeviceId();
934 0 : auto params = self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF;
935 :
936 0 : self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
937 0 : self->ReleaseCommissioneeDevice(device);
938 0 : LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
939 : }
940 0 : }
941 :
942 0 : void DeviceCommissioner::OnWiFiPAFSubscribeError(void * appState, CHIP_ERROR err)
943 : {
944 0 : auto self = (DeviceCommissioner *) appState;
945 0 : auto device = self->mDeviceInPASEEstablishment;
946 :
947 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
948 : {
949 0 : ChipLogError(Controller, "WiFi-PAF: Subscription Error, id = %lu, err = %" CHIP_ERROR_FORMAT, device->GetDeviceId(),
950 : err.Format());
951 0 : self->ReleaseCommissioneeDevice(device);
952 0 : self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
953 0 : if (self->mPairingDelegate != nullptr)
954 : {
955 0 : self->mPairingDelegate->OnPairingComplete(err);
956 : }
957 : }
958 0 : }
959 : #endif
960 :
961 0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId, CommissioningParameters & params)
962 : {
963 0 : if (mDefaultCommissioner == nullptr)
964 : {
965 0 : ChipLogError(Controller, "No default commissioner is specified");
966 0 : return CHIP_ERROR_INCORRECT_STATE;
967 : }
968 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, mDefaultCommissioner->SetCommissioningParameters(params));
969 0 : auto errorCode = Commission(remoteDeviceId);
970 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
971 0 : return errorCode;
972 : }
973 :
974 0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId)
975 : {
976 : MATTER_TRACE_SCOPE("Commission", "DeviceCommissioner");
977 :
978 0 : if (mDefaultCommissioner == nullptr)
979 : {
980 0 : ChipLogError(Controller, "No default commissioner is specified");
981 0 : return CHIP_ERROR_INCORRECT_STATE;
982 : }
983 :
984 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
985 0 : if (device == nullptr || (!device->IsSecureConnected() && !device->IsSessionSetupInProgress()))
986 : {
987 0 : ChipLogError(Controller, "Invalid device for commissioning " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
988 0 : return CHIP_ERROR_INCORRECT_STATE;
989 : }
990 0 : if (!device->IsSecureConnected() && device != mDeviceInPASEEstablishment)
991 : {
992 : // We should not end up in this state because we won't attempt to establish more than one connection at a time.
993 0 : ChipLogError(Controller, "Device is not connected and not being paired " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
994 0 : return CHIP_ERROR_INCORRECT_STATE;
995 : }
996 :
997 0 : if (mCommissioningStage != CommissioningStage::kSecurePairing)
998 : {
999 0 : ChipLogError(Controller, "Commissioning already in progress (stage '%s') - not restarting",
1000 : StageToString(mCommissioningStage));
1001 0 : return CHIP_ERROR_INCORRECT_STATE;
1002 : }
1003 :
1004 0 : ChipLogProgress(Controller, "Commission called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
1005 :
1006 0 : mDefaultCommissioner->SetOperationalCredentialsDelegate(mOperationalCredentialsDelegate);
1007 0 : if (device->IsSecureConnected())
1008 : {
1009 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
1010 0 : mDefaultCommissioner->StartCommissioning(this, device);
1011 : }
1012 : else
1013 : {
1014 0 : mRunCommissioningAfterConnection = true;
1015 : }
1016 0 : return CHIP_NO_ERROR;
1017 : }
1018 :
1019 : CHIP_ERROR
1020 0 : DeviceCommissioner::ContinueCommissioningAfterDeviceAttestation(DeviceProxy * device,
1021 : Credentials::AttestationVerificationResult attestationResult)
1022 : {
1023 : MATTER_TRACE_SCOPE("continueCommissioningDevice", "DeviceCommissioner");
1024 :
1025 0 : if (mDefaultCommissioner == nullptr)
1026 : {
1027 0 : ChipLogError(Controller, "No default commissioner is specified");
1028 0 : return CHIP_ERROR_INCORRECT_STATE;
1029 : }
1030 :
1031 0 : if (device == nullptr || device != mDeviceBeingCommissioned)
1032 : {
1033 0 : ChipLogError(Controller, "Invalid device for commissioning %p", device);
1034 0 : return CHIP_ERROR_INCORRECT_STATE;
1035 : }
1036 0 : CommissioneeDeviceProxy * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
1037 0 : if (commissioneeDevice == nullptr)
1038 : {
1039 0 : ChipLogError(Controller, "Couldn't find commissionee device");
1040 0 : return CHIP_ERROR_INCORRECT_STATE;
1041 : }
1042 0 : if (!commissioneeDevice->IsSecureConnected() || commissioneeDevice != mDeviceBeingCommissioned)
1043 : {
1044 0 : ChipLogError(Controller, "Invalid device for commissioning after attestation failure: 0x" ChipLogFormatX64,
1045 : ChipLogValueX64(commissioneeDevice->GetDeviceId()));
1046 0 : return CHIP_ERROR_INCORRECT_STATE;
1047 : }
1048 :
1049 0 : if (mCommissioningStage != CommissioningStage::kAttestationRevocationCheck)
1050 : {
1051 0 : ChipLogError(Controller, "Commissioning is not attestation verification phase");
1052 0 : return CHIP_ERROR_INCORRECT_STATE;
1053 : }
1054 :
1055 0 : ChipLogProgress(Controller, "Continuing commissioning after attestation failure for device ID 0x" ChipLogFormatX64,
1056 : ChipLogValueX64(commissioneeDevice->GetDeviceId()));
1057 :
1058 0 : if (attestationResult != AttestationVerificationResult::kSuccess)
1059 : {
1060 0 : ChipLogError(Controller, "Client selected error: %u for failed 'Attestation Information' for device",
1061 : to_underlying(attestationResult));
1062 :
1063 0 : CommissioningDelegate::CommissioningReport report;
1064 0 : report.Set<AttestationErrorInfo>(attestationResult);
1065 0 : CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1066 0 : }
1067 : else
1068 : {
1069 0 : ChipLogProgress(Controller, "Overriding attestation failure per client and continuing commissioning");
1070 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1071 : }
1072 0 : return CHIP_NO_ERROR;
1073 : }
1074 :
1075 0 : CHIP_ERROR DeviceCommissioner::StopPairing(NodeId remoteDeviceId)
1076 : {
1077 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1078 0 : VerifyOrReturnError(remoteDeviceId != kUndefinedNodeId, CHIP_ERROR_INVALID_ARGUMENT);
1079 :
1080 0 : ChipLogProgress(Controller, "StopPairing called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
1081 :
1082 : // If we're still in the process of discovering the device, just stop the SetUpCodePairer
1083 0 : if (mSetUpCodePairer.StopPairing(remoteDeviceId))
1084 : {
1085 0 : mRunCommissioningAfterConnection = false;
1086 0 : return CHIP_NO_ERROR;
1087 : }
1088 :
1089 : // Otherwise we might be pairing and / or commissioning it.
1090 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
1091 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR);
1092 :
1093 0 : if (mDeviceBeingCommissioned == device)
1094 : {
1095 0 : CancelCommissioningInteractions();
1096 0 : CommissioningStageComplete(CHIP_ERROR_CANCELLED);
1097 : }
1098 : else
1099 : {
1100 0 : ReleaseCommissioneeDevice(device);
1101 : }
1102 0 : return CHIP_NO_ERROR;
1103 : }
1104 :
1105 0 : void DeviceCommissioner::CancelCommissioningInteractions()
1106 : {
1107 0 : if (mReadClient)
1108 : {
1109 0 : ChipLogDetail(Controller, "Cancelling read request for step '%s'", StageToString(mCommissioningStage));
1110 0 : mReadClient.reset(); // destructor cancels
1111 0 : mAttributeCache.reset();
1112 : }
1113 0 : if (mInvokeCancelFn)
1114 : {
1115 0 : ChipLogDetail(Controller, "Cancelling command invocation for step '%s'", StageToString(mCommissioningStage));
1116 0 : mInvokeCancelFn();
1117 0 : mInvokeCancelFn = nullptr;
1118 : }
1119 0 : if (mWriteCancelFn)
1120 : {
1121 0 : ChipLogDetail(Controller, "Cancelling write request for step '%s'", StageToString(mCommissioningStage));
1122 0 : mWriteCancelFn();
1123 0 : mWriteCancelFn = nullptr;
1124 : }
1125 0 : if (mOnDeviceConnectedCallback.IsRegistered())
1126 : {
1127 0 : ChipLogDetail(Controller, "Cancelling CASE setup for step '%s'", StageToString(mCommissioningStage));
1128 0 : CancelCASECallbacks();
1129 : }
1130 0 : }
1131 :
1132 0 : void DeviceCommissioner::CancelCASECallbacks()
1133 : {
1134 0 : mOnDeviceConnectedCallback.Cancel();
1135 0 : mOnDeviceConnectionFailureCallback.Cancel();
1136 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
1137 0 : mOnDeviceConnectionRetryCallback.Cancel();
1138 : #endif
1139 0 : }
1140 :
1141 0 : CHIP_ERROR DeviceCommissioner::UnpairDevice(NodeId remoteDeviceId)
1142 : {
1143 : MATTER_TRACE_SCOPE("UnpairDevice", "DeviceCommissioner");
1144 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1145 :
1146 0 : return AutoCurrentFabricRemover::RemoveCurrentFabric(this, remoteDeviceId);
1147 : }
1148 :
1149 0 : void DeviceCommissioner::RendezvousCleanup(CHIP_ERROR status)
1150 : {
1151 0 : if (mDeviceInPASEEstablishment != nullptr)
1152 : {
1153 : // Release the commissionee device. For BLE, this is stored,
1154 : // for IP commissioning, we have taken a reference to the
1155 : // operational node to send the completion command.
1156 0 : ReleaseCommissioneeDevice(mDeviceInPASEEstablishment);
1157 :
1158 0 : if (mPairingDelegate != nullptr)
1159 : {
1160 0 : mPairingDelegate->OnPairingComplete(status);
1161 : }
1162 : }
1163 0 : }
1164 :
1165 0 : void DeviceCommissioner::OnSessionEstablishmentError(CHIP_ERROR err)
1166 : {
1167 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
1168 :
1169 0 : if (mPairingDelegate != nullptr)
1170 : {
1171 0 : mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingFailed);
1172 : }
1173 :
1174 0 : RendezvousCleanup(err);
1175 0 : }
1176 :
1177 0 : void DeviceCommissioner::OnSessionEstablished(const SessionHandle & session)
1178 : {
1179 : // PASE session established.
1180 0 : CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
1181 :
1182 : // We are in the callback for this pairing. Reset so we can pair another device.
1183 0 : mDeviceInPASEEstablishment = nullptr;
1184 :
1185 0 : VerifyOrReturn(device != nullptr, OnSessionEstablishmentError(CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR));
1186 :
1187 0 : CHIP_ERROR err = device->SetConnected(session);
1188 0 : if (err != CHIP_NO_ERROR)
1189 : {
1190 0 : ChipLogError(Controller, "Failed in setting up secure channel: err %s", ErrorStr(err));
1191 0 : OnSessionEstablishmentError(err);
1192 0 : return;
1193 : }
1194 :
1195 0 : ChipLogDetail(Controller, "Remote device completed SPAKE2+ handshake");
1196 :
1197 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
1198 0 : if (mPairingDelegate != nullptr)
1199 : {
1200 0 : mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR);
1201 : }
1202 :
1203 0 : if (mRunCommissioningAfterConnection)
1204 : {
1205 0 : mRunCommissioningAfterConnection = false;
1206 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
1207 0 : mDefaultCommissioner->StartCommissioning(this, device);
1208 : }
1209 : }
1210 :
1211 0 : CHIP_ERROR DeviceCommissioner::SendCertificateChainRequestCommand(DeviceProxy * device,
1212 : Credentials::CertificateType certificateType,
1213 : Optional<System::Clock::Timeout> timeout)
1214 : {
1215 : MATTER_TRACE_SCOPE("SendCertificateChainRequestCommand", "DeviceCommissioner");
1216 0 : ChipLogDetail(Controller, "Sending Certificate Chain request to %p device", device);
1217 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1218 :
1219 0 : OperationalCredentials::Commands::CertificateChainRequest::Type request;
1220 0 : request.certificateType = static_cast<OperationalCredentials::CertificateChainTypeEnum>(certificateType);
1221 0 : return SendCommissioningCommand(device, request, OnCertificateChainResponse, OnCertificateChainFailureResponse, kRootEndpointId,
1222 0 : timeout);
1223 : }
1224 :
1225 0 : void DeviceCommissioner::OnCertificateChainFailureResponse(void * context, CHIP_ERROR error)
1226 : {
1227 : MATTER_TRACE_SCOPE("OnCertificateChainFailureResponse", "DeviceCommissioner");
1228 0 : ChipLogProgress(Controller, "Device failed to receive the Certificate Chain request Response: %s", chip::ErrorStr(error));
1229 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1230 0 : commissioner->CommissioningStageComplete(error);
1231 0 : }
1232 :
1233 0 : void DeviceCommissioner::OnCertificateChainResponse(
1234 : void * context, const chip::app::Clusters::OperationalCredentials::Commands::CertificateChainResponse::DecodableType & response)
1235 : {
1236 : MATTER_TRACE_SCOPE("OnCertificateChainResponse", "DeviceCommissioner");
1237 0 : ChipLogProgress(Controller, "Received certificate chain from the device");
1238 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1239 :
1240 0 : CommissioningDelegate::CommissioningReport report;
1241 0 : report.Set<RequestedCertificate>(RequestedCertificate(response.certificate));
1242 :
1243 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1244 0 : }
1245 :
1246 0 : CHIP_ERROR DeviceCommissioner::SendAttestationRequestCommand(DeviceProxy * device, const ByteSpan & attestationNonce,
1247 : Optional<System::Clock::Timeout> timeout)
1248 : {
1249 : MATTER_TRACE_SCOPE("SendAttestationRequestCommand", "DeviceCommissioner");
1250 0 : ChipLogDetail(Controller, "Sending Attestation request to %p device", device);
1251 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1252 :
1253 0 : OperationalCredentials::Commands::AttestationRequest::Type request;
1254 0 : request.attestationNonce = attestationNonce;
1255 :
1256 0 : ReturnErrorOnFailure(
1257 : SendCommissioningCommand(device, request, OnAttestationResponse, OnAttestationFailureResponse, kRootEndpointId, timeout));
1258 0 : ChipLogDetail(Controller, "Sent Attestation request, waiting for the Attestation Information");
1259 0 : return CHIP_NO_ERROR;
1260 : }
1261 :
1262 0 : void DeviceCommissioner::OnAttestationFailureResponse(void * context, CHIP_ERROR error)
1263 : {
1264 : MATTER_TRACE_SCOPE("OnAttestationFailureResponse", "DeviceCommissioner");
1265 0 : ChipLogProgress(Controller, "Device failed to receive the Attestation Information Response: %s", chip::ErrorStr(error));
1266 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1267 0 : commissioner->CommissioningStageComplete(error);
1268 0 : }
1269 :
1270 0 : void DeviceCommissioner::OnAttestationResponse(void * context,
1271 : const OperationalCredentials::Commands::AttestationResponse::DecodableType & data)
1272 : {
1273 : MATTER_TRACE_SCOPE("OnAttestationResponse", "DeviceCommissioner");
1274 0 : ChipLogProgress(Controller, "Received Attestation Information from the device");
1275 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1276 :
1277 0 : CommissioningDelegate::CommissioningReport report;
1278 0 : report.Set<AttestationResponse>(AttestationResponse(data.attestationElements, data.attestationSignature));
1279 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1280 0 : }
1281 :
1282 0 : void DeviceCommissioner::OnDeviceAttestationInformationVerification(
1283 : void * context, const Credentials::DeviceAttestationVerifier::AttestationInfo & info, AttestationVerificationResult result)
1284 : {
1285 : MATTER_TRACE_SCOPE("OnDeviceAttestationInformationVerification", "DeviceCommissioner");
1286 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1287 :
1288 0 : if (commissioner->mCommissioningStage == CommissioningStage::kAttestationVerification)
1289 : {
1290 : // Check for revoked DAC Chain before calling delegate. Enter next stage.
1291 :
1292 0 : CommissioningDelegate::CommissioningReport report;
1293 0 : report.Set<AttestationErrorInfo>(result);
1294 :
1295 0 : return commissioner->CommissioningStageComplete(
1296 0 : result == AttestationVerificationResult::kSuccess ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL, report);
1297 0 : }
1298 :
1299 0 : if (!commissioner->mDeviceBeingCommissioned)
1300 : {
1301 0 : ChipLogError(Controller, "Device attestation verification result received when we're not commissioning a device");
1302 0 : return;
1303 : }
1304 :
1305 0 : auto & params = commissioner->mDefaultCommissioner->GetCommissioningParameters();
1306 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1307 :
1308 0 : if (params.GetCompletionStatus().attestationResult.HasValue())
1309 : {
1310 0 : auto previousResult = params.GetCompletionStatus().attestationResult.Value();
1311 0 : if (previousResult != AttestationVerificationResult::kSuccess)
1312 : {
1313 0 : result = previousResult;
1314 : }
1315 : }
1316 :
1317 0 : if (result != AttestationVerificationResult::kSuccess)
1318 : {
1319 0 : CommissioningDelegate::CommissioningReport report;
1320 0 : report.Set<AttestationErrorInfo>(result);
1321 0 : if (result == AttestationVerificationResult::kNotImplemented)
1322 : {
1323 0 : ChipLogError(Controller,
1324 : "Failed in verifying 'Attestation Information' command received from the device due to default "
1325 : "DeviceAttestationVerifier Class not being overridden by a real implementation.");
1326 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_NOT_IMPLEMENTED, report);
1327 0 : return;
1328 : }
1329 :
1330 0 : ChipLogError(Controller,
1331 : "Failed in verifying 'Attestation Information' command received from the device: err %hu. Look at "
1332 : "AttestationVerificationResult enum to understand the errors",
1333 : static_cast<uint16_t>(result));
1334 : // Go look at AttestationVerificationResult enum in src/credentials/attestation_verifier/DeviceAttestationVerifier.h to
1335 : // understand the errors.
1336 :
1337 : // If a device attestation status delegate is installed, delegate handling of failure to the client and let them
1338 : // decide on whether to proceed further or not.
1339 0 : if (deviceAttestationDelegate)
1340 : {
1341 0 : commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
1342 : }
1343 : else
1344 : {
1345 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1346 : }
1347 0 : }
1348 : else
1349 : {
1350 0 : if (deviceAttestationDelegate && deviceAttestationDelegate->ShouldWaitAfterDeviceAttestation())
1351 : {
1352 0 : commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
1353 : }
1354 : else
1355 : {
1356 0 : ChipLogProgress(Controller, "Successfully validated 'Attestation Information' command received from the device.");
1357 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1358 : }
1359 : }
1360 : }
1361 :
1362 0 : void DeviceCommissioner::OnArmFailSafeExtendedForDeviceAttestation(
1363 : void * context, const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType &)
1364 : {
1365 0 : ChipLogProgress(Controller, "Successfully extended fail-safe timer to handle DA failure");
1366 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1367 :
1368 : // We have completed our command invoke, but we're not going to finish the
1369 : // commissioning step until our client examines the attestation
1370 : // information. Clear out mInvokeCancelFn (which points at the
1371 : // CommandSender we just finished using) now, so it's not dangling.
1372 0 : commissioner->mInvokeCancelFn = nullptr;
1373 :
1374 0 : commissioner->HandleDeviceAttestationCompleted();
1375 0 : }
1376 :
1377 0 : void DeviceCommissioner::HandleDeviceAttestationCompleted()
1378 : {
1379 0 : if (!mDeviceBeingCommissioned)
1380 : {
1381 0 : return;
1382 : }
1383 :
1384 0 : auto & params = mDefaultCommissioner->GetCommissioningParameters();
1385 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1386 0 : if (deviceAttestationDelegate)
1387 : {
1388 0 : ChipLogProgress(Controller, "Device attestation completed, delegating continuation to client");
1389 0 : deviceAttestationDelegate->OnDeviceAttestationCompleted(this, mDeviceBeingCommissioned, *mAttestationDeviceInfo,
1390 : mAttestationResult);
1391 : }
1392 : else
1393 : {
1394 0 : ChipLogProgress(Controller, "Device attestation failed and no delegate set, failing commissioning");
1395 0 : CommissioningDelegate::CommissioningReport report;
1396 0 : report.Set<AttestationErrorInfo>(mAttestationResult);
1397 0 : CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1398 0 : }
1399 : }
1400 :
1401 0 : void DeviceCommissioner::OnFailedToExtendedArmFailSafeDeviceAttestation(void * context, CHIP_ERROR error)
1402 : {
1403 0 : ChipLogProgress(Controller, "Failed to extend fail-safe timer to handle attestation failure %s", chip::ErrorStr(error));
1404 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1405 :
1406 0 : CommissioningDelegate::CommissioningReport report;
1407 0 : report.Set<AttestationErrorInfo>(commissioner->mAttestationResult);
1408 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1409 0 : }
1410 :
1411 0 : void DeviceCommissioner::OnICDManagementRegisterClientResponse(
1412 : void * context, const app::Clusters::IcdManagement::Commands::RegisterClientResponse::DecodableType & data)
1413 : {
1414 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1415 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1416 0 : VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
1417 0 : VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDRegistration, err = CHIP_ERROR_INCORRECT_STATE);
1418 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1419 :
1420 0 : if (commissioner->mPairingDelegate != nullptr)
1421 : {
1422 0 : commissioner->mPairingDelegate->OnICDRegistrationComplete(
1423 0 : ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()), data.ICDCounter);
1424 : }
1425 :
1426 0 : exit:
1427 0 : CommissioningDelegate::CommissioningReport report;
1428 0 : commissioner->CommissioningStageComplete(err, report);
1429 0 : }
1430 :
1431 0 : void DeviceCommissioner::OnICDManagementStayActiveResponse(
1432 : void * context, const app::Clusters::IcdManagement::Commands::StayActiveResponse::DecodableType & data)
1433 : {
1434 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1435 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1436 0 : VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
1437 0 : VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDSendStayActive, err = CHIP_ERROR_INCORRECT_STATE);
1438 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1439 :
1440 0 : if (commissioner->mPairingDelegate != nullptr)
1441 : {
1442 0 : commissioner->mPairingDelegate->OnICDStayActiveComplete(
1443 :
1444 0 : ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()),
1445 0 : data.promisedActiveDuration);
1446 : }
1447 :
1448 0 : exit:
1449 0 : CommissioningDelegate::CommissioningReport report;
1450 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1451 0 : }
1452 :
1453 0 : bool DeviceCommissioner::ExtendArmFailSafeInternal(DeviceProxy * proxy, CommissioningStage step, uint16_t armFailSafeTimeout,
1454 : Optional<System::Clock::Timeout> commandTimeout,
1455 : OnExtendFailsafeSuccess onSuccess, OnExtendFailsafeFailure onFailure,
1456 : bool fireAndForget)
1457 : {
1458 : using namespace System;
1459 : using namespace System::Clock;
1460 0 : auto now = SystemClock().GetMonotonicTimestamp();
1461 0 : auto newFailSafeTimeout = now + Seconds16(armFailSafeTimeout);
1462 0 : if (newFailSafeTimeout < proxy->GetFailSafeExpirationTimestamp())
1463 : {
1464 0 : ChipLogProgress(
1465 : Controller, "Skipping arming failsafe: new time (%u seconds from now) before old time (%u seconds from now)",
1466 : armFailSafeTimeout, std::chrono::duration_cast<Seconds16>(proxy->GetFailSafeExpirationTimestamp() - now).count());
1467 0 : return false;
1468 : }
1469 :
1470 0 : uint64_t breadcrumb = static_cast<uint64_t>(step);
1471 0 : GeneralCommissioning::Commands::ArmFailSafe::Type request;
1472 0 : request.expiryLengthSeconds = armFailSafeTimeout;
1473 0 : request.breadcrumb = breadcrumb;
1474 0 : ChipLogProgress(Controller, "Arming failsafe (%u seconds)", request.expiryLengthSeconds);
1475 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, onSuccess, onFailure, kRootEndpointId, commandTimeout, fireAndForget);
1476 0 : if (err != CHIP_NO_ERROR)
1477 : {
1478 0 : onFailure((!fireAndForget) ? this : nullptr, err);
1479 0 : return true; // we have called onFailure already
1480 : }
1481 :
1482 : // Note: The stored timestamp may become invalid if we fail asynchronously
1483 0 : proxy->SetFailSafeExpirationTimestamp(newFailSafeTimeout);
1484 0 : return true;
1485 : }
1486 :
1487 0 : void DeviceCommissioner::ExtendArmFailSafeForDeviceAttestation(const Credentials::DeviceAttestationVerifier::AttestationInfo & info,
1488 : Credentials::AttestationVerificationResult result)
1489 : {
1490 0 : mAttestationResult = result;
1491 :
1492 0 : auto & params = mDefaultCommissioner->GetCommissioningParameters();
1493 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1494 :
1495 0 : mAttestationDeviceInfo = Platform::MakeUnique<Credentials::DeviceAttestationVerifier::AttestationDeviceInfo>(info);
1496 :
1497 0 : auto expiryLengthSeconds = deviceAttestationDelegate->FailSafeExpiryTimeoutSecs();
1498 0 : bool waitForFailsafeExtension = expiryLengthSeconds.HasValue();
1499 0 : if (waitForFailsafeExtension)
1500 : {
1501 0 : ChipLogProgress(Controller, "Changing fail-safe timer to %u seconds to handle DA failure", expiryLengthSeconds.Value());
1502 : // Per spec, anything we do with the fail-safe armed must not time out
1503 : // in less than kMinimumCommissioningStepTimeout.
1504 : waitForFailsafeExtension =
1505 0 : ExtendArmFailSafeInternal(mDeviceBeingCommissioned, mCommissioningStage, expiryLengthSeconds.Value(),
1506 0 : MakeOptional(kMinimumCommissioningStepTimeout), OnArmFailSafeExtendedForDeviceAttestation,
1507 : OnFailedToExtendedArmFailSafeDeviceAttestation, /* fireAndForget = */ false);
1508 : }
1509 : else
1510 : {
1511 0 : ChipLogProgress(Controller, "Proceeding without changing fail-safe timer value as delegate has not set it");
1512 : }
1513 :
1514 0 : if (!waitForFailsafeExtension)
1515 : {
1516 0 : HandleDeviceAttestationCompleted();
1517 : }
1518 0 : }
1519 :
1520 0 : CHIP_ERROR DeviceCommissioner::ValidateAttestationInfo(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
1521 : {
1522 : MATTER_TRACE_SCOPE("ValidateAttestationInfo", "DeviceCommissioner");
1523 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1524 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1525 :
1526 0 : mDeviceAttestationVerifier->VerifyAttestationInformation(info, &mDeviceAttestationInformationVerificationCallback);
1527 :
1528 : // TODO: Validate Firmware Information
1529 :
1530 0 : return CHIP_NO_ERROR;
1531 : }
1532 :
1533 : CHIP_ERROR
1534 0 : DeviceCommissioner::CheckForRevokedDACChain(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
1535 : {
1536 : MATTER_TRACE_SCOPE("CheckForRevokedDACChain", "DeviceCommissioner");
1537 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1538 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1539 :
1540 0 : mDeviceAttestationVerifier->CheckForRevokedDACChain(info, &mDeviceAttestationInformationVerificationCallback);
1541 :
1542 0 : return CHIP_NO_ERROR;
1543 : }
1544 :
1545 0 : CHIP_ERROR DeviceCommissioner::ValidateCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
1546 : const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & csrNonce)
1547 : {
1548 : MATTER_TRACE_SCOPE("ValidateCSR", "DeviceCommissioner");
1549 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1550 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1551 :
1552 0 : P256PublicKey dacPubkey;
1553 0 : ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
1554 :
1555 : // Retrieve attestation challenge
1556 : ByteSpan attestationChallenge =
1557 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
1558 :
1559 : // The operational CA should also verify this on its end during NOC generation, if end-to-end attestation is desired.
1560 0 : return mDeviceAttestationVerifier->VerifyNodeOperationalCSRInformation(NOCSRElements, attestationChallenge,
1561 0 : AttestationSignature, dacPubkey, csrNonce);
1562 0 : }
1563 :
1564 0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificateSigningRequestCommand(DeviceProxy * device, const ByteSpan & csrNonce,
1565 : Optional<System::Clock::Timeout> timeout)
1566 : {
1567 : MATTER_TRACE_SCOPE("SendOperationalCertificateSigningRequestCommand", "DeviceCommissioner");
1568 0 : ChipLogDetail(Controller, "Sending CSR request to %p device", device);
1569 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1570 :
1571 0 : OperationalCredentials::Commands::CSRRequest::Type request;
1572 0 : request.CSRNonce = csrNonce;
1573 :
1574 0 : ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateSigningRequest, OnCSRFailureResponse,
1575 : kRootEndpointId, timeout));
1576 0 : ChipLogDetail(Controller, "Sent CSR request, waiting for the CSR");
1577 0 : return CHIP_NO_ERROR;
1578 : }
1579 :
1580 0 : void DeviceCommissioner::OnCSRFailureResponse(void * context, CHIP_ERROR error)
1581 : {
1582 : MATTER_TRACE_SCOPE("OnCSRFailureResponse", "DeviceCommissioner");
1583 0 : ChipLogProgress(Controller, "Device failed to receive the CSR request Response: %s", chip::ErrorStr(error));
1584 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1585 0 : commissioner->CommissioningStageComplete(error);
1586 0 : }
1587 :
1588 0 : void DeviceCommissioner::OnOperationalCertificateSigningRequest(
1589 : void * context, const OperationalCredentials::Commands::CSRResponse::DecodableType & data)
1590 : {
1591 : MATTER_TRACE_SCOPE("OnOperationalCertificateSigningRequest", "DeviceCommissioner");
1592 0 : ChipLogProgress(Controller, "Received certificate signing request from the device");
1593 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1594 :
1595 0 : CommissioningDelegate::CommissioningReport report;
1596 0 : report.Set<CSRResponse>(CSRResponse(data.NOCSRElements, data.attestationSignature));
1597 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1598 0 : }
1599 :
1600 0 : void DeviceCommissioner::OnDeviceNOCChainGeneration(void * context, CHIP_ERROR status, const ByteSpan & noc, const ByteSpan & icac,
1601 : const ByteSpan & rcac, Optional<IdentityProtectionKeySpan> ipk,
1602 : Optional<NodeId> adminSubject)
1603 : {
1604 : MATTER_TRACE_SCOPE("OnDeviceNOCChainGeneration", "DeviceCommissioner");
1605 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1606 :
1607 : // The placeholder IPK is not satisfactory, but is there to fill the NocChain struct on error. It will still fail.
1608 0 : const uint8_t placeHolderIpk[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1609 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1610 0 : if (status == CHIP_NO_ERROR && !ipk.HasValue())
1611 : {
1612 0 : ChipLogError(Controller, "Did not have an IPK from the OperationalCredentialsIssuer! Cannot commission.");
1613 0 : status = CHIP_ERROR_INVALID_ARGUMENT;
1614 : }
1615 :
1616 0 : ChipLogProgress(Controller, "Received callback from the CA for NOC Chain generation. Status %s", ErrorStr(status));
1617 0 : if (status == CHIP_NO_ERROR && commissioner->mState != State::Initialized)
1618 : {
1619 0 : status = CHIP_ERROR_INCORRECT_STATE;
1620 : }
1621 0 : if (status != CHIP_NO_ERROR)
1622 : {
1623 0 : ChipLogError(Controller, "Failed in generating device's operational credentials. Error %s", ErrorStr(status));
1624 : }
1625 :
1626 : // TODO - Verify that the generated root cert matches with commissioner's root cert
1627 0 : CommissioningDelegate::CommissioningReport report;
1628 0 : report.Set<NocChain>(NocChain(noc, icac, rcac, ipk.HasValue() ? ipk.Value() : IdentityProtectionKeySpan(placeHolderIpk),
1629 0 : adminSubject.HasValue() ? adminSubject.Value() : commissioner->GetNodeId()));
1630 0 : commissioner->CommissioningStageComplete(status, report);
1631 0 : }
1632 :
1633 0 : CHIP_ERROR DeviceCommissioner::IssueNOCChain(const ByteSpan & NOCSRElements, NodeId nodeId,
1634 : chip::Callback::Callback<OnNOCChainGeneration> * callback)
1635 : {
1636 : MATTER_TRACE_SCOPE("IssueNOCChain", "DeviceCommissioner");
1637 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1638 :
1639 0 : ChipLogProgress(Controller, "Getting certificate chain for the device on fabric idx %u", static_cast<unsigned>(mFabricIndex));
1640 :
1641 0 : mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(nodeId);
1642 :
1643 0 : if (mFabricIndex != kUndefinedFabricIndex)
1644 : {
1645 0 : mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
1646 : }
1647 :
1648 : // Note: we don't have attestationSignature, attestationChallenge, DAC, PAI so we are just providing an empty ByteSpan
1649 : // for those arguments.
1650 0 : return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, ByteSpan(), ByteSpan(), ByteSpan(), ByteSpan(),
1651 0 : ByteSpan(), callback);
1652 : }
1653 :
1654 0 : CHIP_ERROR DeviceCommissioner::ProcessCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
1655 : const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & pai,
1656 : const ByteSpan & csrNonce)
1657 : {
1658 : MATTER_TRACE_SCOPE("ProcessOpCSR", "DeviceCommissioner");
1659 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1660 :
1661 0 : ChipLogProgress(Controller, "Getting certificate chain for the device from the issuer");
1662 :
1663 0 : P256PublicKey dacPubkey;
1664 0 : ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
1665 :
1666 : // Retrieve attestation challenge
1667 : ByteSpan attestationChallenge =
1668 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
1669 :
1670 0 : mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(proxy->GetDeviceId());
1671 :
1672 0 : if (mFabricIndex != kUndefinedFabricIndex)
1673 : {
1674 0 : mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
1675 : }
1676 :
1677 0 : return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, csrNonce, AttestationSignature, attestationChallenge,
1678 0 : dac, pai, &mDeviceNOCChainCallback);
1679 0 : }
1680 :
1681 0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificate(DeviceProxy * device, const ByteSpan & nocCertBuf,
1682 : const Optional<ByteSpan> & icaCertBuf,
1683 : const IdentityProtectionKeySpan ipk, const NodeId adminSubject,
1684 : Optional<System::Clock::Timeout> timeout)
1685 : {
1686 : MATTER_TRACE_SCOPE("SendOperationalCertificate", "DeviceCommissioner");
1687 :
1688 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1689 :
1690 0 : OperationalCredentials::Commands::AddNOC::Type request;
1691 0 : request.NOCValue = nocCertBuf;
1692 0 : request.ICACValue = icaCertBuf;
1693 0 : request.IPKValue = ipk;
1694 0 : request.caseAdminSubject = adminSubject;
1695 0 : request.adminVendorId = mVendorId;
1696 :
1697 0 : ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateAddResponse, OnAddNOCFailureResponse,
1698 : kRootEndpointId, timeout));
1699 :
1700 0 : ChipLogProgress(Controller, "Sent operational certificate to the device");
1701 :
1702 0 : return CHIP_NO_ERROR;
1703 : }
1704 :
1705 0 : CHIP_ERROR DeviceCommissioner::ConvertFromOperationalCertStatus(OperationalCredentials::NodeOperationalCertStatusEnum err)
1706 : {
1707 : using OperationalCredentials::NodeOperationalCertStatusEnum;
1708 0 : switch (err)
1709 : {
1710 0 : case NodeOperationalCertStatusEnum::kOk:
1711 0 : return CHIP_NO_ERROR;
1712 0 : case NodeOperationalCertStatusEnum::kInvalidPublicKey:
1713 0 : return CHIP_ERROR_INVALID_PUBLIC_KEY;
1714 0 : case NodeOperationalCertStatusEnum::kInvalidNodeOpId:
1715 0 : return CHIP_ERROR_WRONG_NODE_ID;
1716 0 : case NodeOperationalCertStatusEnum::kInvalidNOC:
1717 0 : return CHIP_ERROR_UNSUPPORTED_CERT_FORMAT;
1718 0 : case NodeOperationalCertStatusEnum::kMissingCsr:
1719 0 : return CHIP_ERROR_INCORRECT_STATE;
1720 0 : case NodeOperationalCertStatusEnum::kTableFull:
1721 0 : return CHIP_ERROR_NO_MEMORY;
1722 0 : case NodeOperationalCertStatusEnum::kInvalidAdminSubject:
1723 0 : return CHIP_ERROR_INVALID_ADMIN_SUBJECT;
1724 0 : case NodeOperationalCertStatusEnum::kFabricConflict:
1725 0 : return CHIP_ERROR_FABRIC_EXISTS;
1726 0 : case NodeOperationalCertStatusEnum::kLabelConflict:
1727 0 : return CHIP_ERROR_INVALID_ARGUMENT;
1728 0 : case NodeOperationalCertStatusEnum::kInvalidFabricIndex:
1729 0 : return CHIP_ERROR_INVALID_FABRIC_INDEX;
1730 0 : case NodeOperationalCertStatusEnum::kUnknownEnumValue:
1731 : // Is this a reasonable value?
1732 0 : return CHIP_ERROR_CERT_LOAD_FAILED;
1733 : }
1734 :
1735 0 : return CHIP_ERROR_CERT_LOAD_FAILED;
1736 : }
1737 :
1738 0 : void DeviceCommissioner::OnAddNOCFailureResponse(void * context, CHIP_ERROR error)
1739 : {
1740 : MATTER_TRACE_SCOPE("OnAddNOCFailureResponse", "DeviceCommissioner");
1741 0 : ChipLogProgress(Controller, "Device failed to receive the operational certificate Response: %s", chip::ErrorStr(error));
1742 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1743 0 : commissioner->CommissioningStageComplete(error);
1744 0 : }
1745 :
1746 0 : void DeviceCommissioner::OnOperationalCertificateAddResponse(
1747 : void * context, const OperationalCredentials::Commands::NOCResponse::DecodableType & data)
1748 : {
1749 : MATTER_TRACE_SCOPE("OnOperationalCertificateAddResponse", "DeviceCommissioner");
1750 0 : ChipLogProgress(Controller, "Device returned status %d on receiving the NOC", to_underlying(data.statusCode));
1751 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1752 :
1753 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1754 :
1755 0 : VerifyOrExit(commissioner->mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
1756 :
1757 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1758 :
1759 0 : err = ConvertFromOperationalCertStatus(data.statusCode);
1760 0 : SuccessOrExit(err);
1761 :
1762 0 : err = commissioner->OnOperationalCredentialsProvisioningCompletion(commissioner->mDeviceBeingCommissioned);
1763 :
1764 0 : exit:
1765 0 : if (err != CHIP_NO_ERROR)
1766 : {
1767 0 : ChipLogProgress(Controller, "Add NOC failed with error %s", ErrorStr(err));
1768 0 : commissioner->CommissioningStageComplete(err);
1769 : }
1770 0 : }
1771 :
1772 0 : CHIP_ERROR DeviceCommissioner::SendTrustedRootCertificate(DeviceProxy * device, const ByteSpan & rcac,
1773 : Optional<System::Clock::Timeout> timeout)
1774 : {
1775 : MATTER_TRACE_SCOPE("SendTrustedRootCertificate", "DeviceCommissioner");
1776 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1777 :
1778 0 : ChipLogProgress(Controller, "Sending root certificate to the device");
1779 :
1780 0 : OperationalCredentials::Commands::AddTrustedRootCertificate::Type request;
1781 0 : request.rootCACertificate = rcac;
1782 0 : ReturnErrorOnFailure(
1783 : SendCommissioningCommand(device, request, OnRootCertSuccessResponse, OnRootCertFailureResponse, kRootEndpointId, timeout));
1784 :
1785 0 : ChipLogProgress(Controller, "Sent root certificate to the device");
1786 :
1787 0 : return CHIP_NO_ERROR;
1788 : }
1789 :
1790 0 : void DeviceCommissioner::OnRootCertSuccessResponse(void * context, const chip::app::DataModel::NullObjectType &)
1791 : {
1792 : MATTER_TRACE_SCOPE("OnRootCertSuccessResponse", "DeviceCommissioner");
1793 0 : ChipLogProgress(Controller, "Device confirmed that it has received the root certificate");
1794 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1795 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1796 0 : }
1797 :
1798 0 : void DeviceCommissioner::OnRootCertFailureResponse(void * context, CHIP_ERROR error)
1799 : {
1800 : MATTER_TRACE_SCOPE("OnRootCertFailureResponse", "DeviceCommissioner");
1801 0 : ChipLogProgress(Controller, "Device failed to receive the root certificate Response: %s", chip::ErrorStr(error));
1802 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1803 0 : commissioner->CommissioningStageComplete(error);
1804 0 : }
1805 :
1806 0 : CHIP_ERROR DeviceCommissioner::OnOperationalCredentialsProvisioningCompletion(DeviceProxy * device)
1807 : {
1808 : MATTER_TRACE_SCOPE("OnOperationalCredentialsProvisioningCompletion", "DeviceCommissioner");
1809 0 : ChipLogProgress(Controller, "Operational credentials provisioned on device %p", device);
1810 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1811 :
1812 0 : if (mPairingDelegate != nullptr)
1813 : {
1814 0 : mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingSuccess);
1815 : }
1816 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1817 :
1818 0 : return CHIP_NO_ERROR;
1819 : }
1820 :
1821 : #if CONFIG_NETWORK_LAYER_BLE
1822 : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
1823 : void DeviceCommissioner::ConnectBleTransportToSelf()
1824 : {
1825 : Transport::BLEBase & transport = std::get<Transport::BLE<1>>(mSystemState->TransportMgr()->GetTransport().GetTransports());
1826 : if (!transport.IsBleLayerTransportSetToSelf())
1827 : {
1828 : transport.SetBleLayerTransportToSelf();
1829 : }
1830 : }
1831 : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
1832 :
1833 0 : void DeviceCommissioner::CloseBleConnection()
1834 : {
1835 : // It is fine since we can only commission one device at the same time.
1836 : // We should be able to distinguish different BLE connections if we want
1837 : // to commission multiple devices at the same time over BLE.
1838 0 : mSystemState->BleLayer()->CloseAllBleConnections();
1839 0 : }
1840 : #endif
1841 :
1842 0 : CHIP_ERROR DeviceCommissioner::DiscoverCommissionableNodes(Dnssd::DiscoveryFilter filter)
1843 : {
1844 0 : ReturnErrorOnFailure(SetUpNodeDiscovery());
1845 0 : return mDNSResolver.DiscoverCommissionableNodes(filter);
1846 : }
1847 :
1848 0 : CHIP_ERROR DeviceCommissioner::StopCommissionableDiscovery()
1849 : {
1850 0 : return mDNSResolver.StopDiscovery();
1851 : }
1852 :
1853 0 : const Dnssd::CommissionNodeData * DeviceCommissioner::GetDiscoveredDevice(int idx)
1854 : {
1855 0 : return GetDiscoveredNode(idx);
1856 : }
1857 :
1858 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
1859 :
1860 : CHIP_ERROR DeviceCommissioner::SetUdcListenPort(uint16_t listenPort)
1861 : {
1862 : if (mState == State::Initialized)
1863 : {
1864 : return CHIP_ERROR_INCORRECT_STATE;
1865 : }
1866 :
1867 : mUdcListenPort = listenPort;
1868 : return CHIP_NO_ERROR;
1869 : }
1870 :
1871 : void DeviceCommissioner::FindCommissionableNode(char * instanceName)
1872 : {
1873 : Dnssd::DiscoveryFilter filter(Dnssd::DiscoveryFilterType::kInstanceName, instanceName);
1874 : DiscoverCommissionableNodes(filter);
1875 : }
1876 :
1877 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1878 :
1879 0 : void DeviceCommissioner::OnNodeDiscovered(const chip::Dnssd::DiscoveredNodeData & nodeData)
1880 : {
1881 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1882 : if (mUdcServer != nullptr)
1883 : {
1884 : mUdcServer->OnCommissionableNodeFound(nodeData);
1885 : }
1886 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1887 0 : AbstractDnssdDiscoveryController::OnNodeDiscovered(nodeData);
1888 0 : mSetUpCodePairer.NotifyCommissionableDeviceDiscovered(nodeData);
1889 0 : }
1890 :
1891 0 : void DeviceCommissioner::OnBasicSuccess(void * context, const chip::app::DataModel::NullObjectType &)
1892 : {
1893 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1894 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1895 0 : }
1896 :
1897 0 : void DeviceCommissioner::OnBasicFailure(void * context, CHIP_ERROR error)
1898 : {
1899 0 : ChipLogProgress(Controller, "Received failure response %s\n", chip::ErrorStr(error));
1900 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1901 0 : commissioner->CommissioningStageComplete(error);
1902 0 : }
1903 :
1904 0 : static GeneralCommissioning::Commands::ArmFailSafe::Type DisarmFailsafeRequest()
1905 : {
1906 0 : GeneralCommissioning::Commands::ArmFailSafe::Type request;
1907 0 : request.expiryLengthSeconds = 0; // Expire immediately.
1908 0 : request.breadcrumb = 0;
1909 0 : return request;
1910 : }
1911 :
1912 0 : static void MarkForEviction(const Optional<SessionHandle> & session)
1913 : {
1914 0 : if (session.HasValue())
1915 : {
1916 0 : session.Value()->AsSecureSession()->MarkForEviction();
1917 : }
1918 0 : }
1919 :
1920 0 : void DeviceCommissioner::CleanupCommissioning(DeviceProxy * proxy, NodeId nodeId, const CompletionStatus & completionStatus)
1921 : {
1922 : // At this point, proxy == mDeviceBeingCommissioned, nodeId == mDeviceBeingCommissioned->GetDeviceId()
1923 :
1924 0 : mCommissioningCompletionStatus = completionStatus;
1925 :
1926 0 : if (completionStatus.err == CHIP_NO_ERROR)
1927 : {
1928 : // CommissioningStageComplete uses mDeviceBeingCommissioned, which can
1929 : // be commissionee if we are cleaning up before we've gone operational. Normally
1930 : // that would not happen in this non-error case, _except_ if we were told to skip sending
1931 : // CommissioningComplete: in that case we do not have an operational DeviceProxy, so
1932 : // we're using our CommissioneeDeviceProxy to do a successful cleanup.
1933 : //
1934 : // This means we have to call CommissioningStageComplete() before we destroy commissionee.
1935 : //
1936 : // This should be safe, because CommissioningStageComplete() does not call CleanupCommissioning
1937 : // when called in the cleanup stage (which is where we are), and StopPairing does not directly release
1938 : // mDeviceBeingCommissioned.
1939 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1940 :
1941 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
1942 0 : if (commissionee != nullptr)
1943 : {
1944 0 : ReleaseCommissioneeDevice(commissionee);
1945 : }
1946 : // Send the callbacks, we're done.
1947 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
1948 : }
1949 0 : else if (completionStatus.err == CHIP_ERROR_CANCELLED)
1950 : {
1951 : // If we're cleaning up because cancellation has been requested via StopPairing(), expire the failsafe
1952 : // in the background and reset our state synchronously, so a new commissioning attempt can be started.
1953 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
1954 0 : SessionHolder session((commissionee == proxy) ? commissionee->DetachSecureSession().Value()
1955 0 : : proxy->GetSecureSession().Value());
1956 :
1957 0 : auto request = DisarmFailsafeRequest();
1958 0 : auto onSuccessCb = [session](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
1959 : const decltype(request)::ResponseType & responseData) {
1960 0 : ChipLogProgress(Controller, "Failsafe disarmed");
1961 0 : MarkForEviction(session.Get());
1962 0 : };
1963 0 : auto onFailureCb = [session](CHIP_ERROR aError) {
1964 0 : ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, aError.Format());
1965 0 : MarkForEviction(session.Get());
1966 0 : };
1967 :
1968 0 : ChipLogProgress(Controller, "Disarming failsafe on device %p in background", proxy);
1969 0 : CHIP_ERROR err = InvokeCommandRequest(proxy->GetExchangeManager(), session.Get().Value(), kRootEndpointId, request,
1970 : onSuccessCb, onFailureCb);
1971 0 : if (err != CHIP_NO_ERROR)
1972 : {
1973 0 : ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
1974 : }
1975 :
1976 0 : CleanupDoneAfterError();
1977 0 : }
1978 0 : else if (completionStatus.failedStage.HasValue() && completionStatus.failedStage.Value() >= kWiFiNetworkSetup)
1979 : {
1980 : // If we were already doing network setup, we need to retain the pase session and start again from network setup stage.
1981 : // We do not need to reset the failsafe here because we want to keep everything on the device up to this point, so just
1982 : // send the completion callbacks (see "Commissioning Flows Error Handling" in the spec).
1983 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1984 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
1985 : }
1986 : else
1987 : {
1988 : // If we've failed somewhere in the early stages (or we don't have a failedStage specified), we need to start from the
1989 : // beginning. However, because some of the commands can only be sent once per arm-failsafe, we also need to force a reset on
1990 : // the failsafe so we can start fresh on the next attempt.
1991 0 : ChipLogProgress(Controller, "Disarming failsafe on device %p", proxy);
1992 0 : auto request = DisarmFailsafeRequest();
1993 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnDisarmFailsafe, OnDisarmFailsafeFailure, kRootEndpointId);
1994 0 : if (err != CHIP_NO_ERROR)
1995 : {
1996 : // We won't get any async callbacks here, so just pretend like the command errored out async.
1997 0 : ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
1998 0 : CleanupDoneAfterError();
1999 : }
2000 : }
2001 0 : }
2002 :
2003 0 : void DeviceCommissioner::OnDisarmFailsafe(void * context,
2004 : const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2005 : {
2006 0 : ChipLogProgress(Controller, "Failsafe disarmed");
2007 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2008 0 : commissioner->CleanupDoneAfterError();
2009 0 : }
2010 :
2011 0 : void DeviceCommissioner::OnDisarmFailsafeFailure(void * context, CHIP_ERROR error)
2012 : {
2013 0 : ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, error.Format());
2014 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2015 0 : commissioner->CleanupDoneAfterError();
2016 0 : }
2017 :
2018 0 : void DeviceCommissioner::CleanupDoneAfterError()
2019 : {
2020 : // If someone nulled out our mDeviceBeingCommissioned, there's nothing else
2021 : // to do here.
2022 0 : VerifyOrReturn(mDeviceBeingCommissioned != nullptr);
2023 :
2024 0 : NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
2025 :
2026 : // Signal completion - this will reset mDeviceBeingCommissioned.
2027 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2028 :
2029 : // At this point, we also want to close off the pase session so we need to re-establish
2030 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
2031 :
2032 : // If we've disarmed the failsafe, it's because we're starting again, so kill the pase connection.
2033 0 : if (commissionee != nullptr)
2034 : {
2035 0 : ReleaseCommissioneeDevice(commissionee);
2036 : }
2037 :
2038 : // Invoke callbacks last, after we have cleared up all state.
2039 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
2040 : }
2041 :
2042 0 : void DeviceCommissioner::SendCommissioningCompleteCallbacks(NodeId nodeId, const CompletionStatus & completionStatus)
2043 : {
2044 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerCommission, completionStatus.err);
2045 :
2046 0 : ChipLogProgress(Controller, "Commissioning complete for node ID 0x" ChipLogFormatX64 ": %s", ChipLogValueX64(nodeId),
2047 : (completionStatus.err == CHIP_NO_ERROR ? "success" : completionStatus.err.AsString()));
2048 0 : mCommissioningStage = CommissioningStage::kSecurePairing;
2049 :
2050 0 : if (mPairingDelegate == nullptr)
2051 : {
2052 0 : return;
2053 : }
2054 :
2055 0 : mPairingDelegate->OnCommissioningComplete(nodeId, completionStatus.err);
2056 0 : PeerId peerId(GetCompressedFabricId(), nodeId);
2057 0 : if (completionStatus.err == CHIP_NO_ERROR)
2058 : {
2059 0 : mPairingDelegate->OnCommissioningSuccess(peerId);
2060 : }
2061 : else
2062 : {
2063 : // TODO: We should propogate detailed error information (commissioningError, networkCommissioningStatus) from
2064 : // completionStatus.
2065 0 : mPairingDelegate->OnCommissioningFailure(peerId, completionStatus.err, completionStatus.failedStage.ValueOr(kError),
2066 0 : completionStatus.attestationResult);
2067 : }
2068 : }
2069 :
2070 0 : void DeviceCommissioner::CommissioningStageComplete(CHIP_ERROR err, CommissioningDelegate::CommissioningReport report)
2071 : {
2072 : // Once this stage is complete, reset mDeviceBeingCommissioned - this will be reset when the delegate calls the next step.
2073 : MATTER_TRACE_SCOPE("CommissioningStageComplete", "DeviceCommissioner");
2074 : MATTER_LOG_METRIC_END(MetricKeyForCommissioningStage(mCommissioningStage), err);
2075 0 : VerifyOrDie(mDeviceBeingCommissioned);
2076 :
2077 0 : NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
2078 0 : DeviceProxy * proxy = mDeviceBeingCommissioned;
2079 0 : mDeviceBeingCommissioned = nullptr;
2080 0 : mInvokeCancelFn = nullptr;
2081 0 : mWriteCancelFn = nullptr;
2082 :
2083 0 : if (mPairingDelegate != nullptr)
2084 : {
2085 0 : mPairingDelegate->OnCommissioningStatusUpdate(PeerId(GetCompressedFabricId(), nodeId), mCommissioningStage, err);
2086 : }
2087 :
2088 0 : if (mCommissioningDelegate == nullptr)
2089 : {
2090 0 : return;
2091 : }
2092 0 : report.stageCompleted = mCommissioningStage;
2093 0 : CHIP_ERROR status = mCommissioningDelegate->CommissioningStepFinished(err, report);
2094 0 : if (status != CHIP_NO_ERROR && mCommissioningStage != CommissioningStage::kCleanup)
2095 : {
2096 : // Commissioning delegate will only return error if it failed to perform the appropriate commissioning step.
2097 : // In this case, we should complete the commissioning for it.
2098 0 : CompletionStatus completionStatus;
2099 0 : completionStatus.err = status;
2100 0 : completionStatus.failedStage = MakeOptional(report.stageCompleted);
2101 0 : mCommissioningStage = CommissioningStage::kCleanup;
2102 0 : mDeviceBeingCommissioned = proxy;
2103 0 : CleanupCommissioning(proxy, nodeId, completionStatus);
2104 : }
2105 : }
2106 :
2107 0 : void DeviceCommissioner::OnDeviceConnectedFn(void * context, Messaging::ExchangeManager & exchangeMgr,
2108 : const SessionHandle & sessionHandle)
2109 : {
2110 : // CASE session established.
2111 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, CHIP_NO_ERROR);
2112 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2113 0 : VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
2114 : commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
2115 0 : VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == sessionHandle->GetPeer().GetNodeId());
2116 0 : commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
2117 :
2118 0 : CommissioningDelegate::CommissioningReport report;
2119 0 : report.Set<OperationalNodeFoundData>(OperationalNodeFoundData(OperationalDeviceProxy(&exchangeMgr, sessionHandle)));
2120 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
2121 0 : }
2122 :
2123 0 : void DeviceCommissioner::OnDeviceConnectionFailureFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error)
2124 : {
2125 : // CASE session establishment failed.
2126 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, error);
2127 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2128 0 : VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
2129 : commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
2130 0 : VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
2131 0 : commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
2132 :
2133 0 : if (error != CHIP_NO_ERROR)
2134 : {
2135 0 : ChipLogProgress(Controller, "Device connection failed. Error %" CHIP_ERROR_FORMAT, error.Format());
2136 : }
2137 : else
2138 : {
2139 : // Ensure that commissioning stage advancement is done based on seeing an error.
2140 0 : ChipLogError(Controller, "Device connection failed without a valid error code.");
2141 0 : error = CHIP_ERROR_INTERNAL;
2142 : }
2143 0 : commissioner->CommissioningStageComplete(error);
2144 0 : }
2145 :
2146 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
2147 : // No specific action to take on either success or failure here; we're just
2148 : // trying to bump the fail-safe, and if that fails it's not clear there's much
2149 : // we can to with that.
2150 0 : static void OnExtendFailsafeForCASERetryFailure(void * context, CHIP_ERROR error)
2151 : {
2152 0 : ChipLogError(Controller, "Failed to extend fail-safe for CASE retry: %" CHIP_ERROR_FORMAT, error.Format());
2153 0 : }
2154 : static void
2155 0 : OnExtendFailsafeForCASERetrySuccess(void * context,
2156 : const app::Clusters::GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2157 : {
2158 0 : ChipLogProgress(Controller, "Status of extending fail-safe for CASE retry: %u", to_underlying(data.errorCode));
2159 0 : }
2160 :
2161 0 : void DeviceCommissioner::OnDeviceConnectionRetryFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error,
2162 : System::Clock::Seconds16 retryTimeout)
2163 : {
2164 0 : ChipLogError(Controller,
2165 : "Session establishment failed for " ChipLogFormatScopedNodeId ", error: %" CHIP_ERROR_FORMAT
2166 : ". Next retry expected to get a response to Sigma1 or fail within %d seconds",
2167 : ChipLogValueScopedNodeId(peerId), error.Format(), retryTimeout.count());
2168 :
2169 0 : auto self = static_cast<DeviceCommissioner *>(context);
2170 0 : VerifyOrDie(self->GetCommissioningStage() == CommissioningStage::kFindOperationalForStayActive ||
2171 : self->GetCommissioningStage() == CommissioningStage::kFindOperationalForCommissioningComplete);
2172 0 : VerifyOrDie(self->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
2173 :
2174 : // We need to do the fail-safe arming over the PASE session.
2175 0 : auto * commissioneeDevice = self->FindCommissioneeDevice(peerId.GetNodeId());
2176 0 : if (!commissioneeDevice)
2177 : {
2178 : // Commissioning canceled, presumably. Just ignore the notification,
2179 : // not much we can do here.
2180 0 : return;
2181 : }
2182 :
2183 : // Extend by the default failsafe timeout plus our retry timeout, so we can
2184 : // be sure the fail-safe will not expire before we try the next time, if
2185 : // there will be a next time.
2186 : //
2187 : // TODO: Make it possible for our clients to control the exact timeout here?
2188 : uint16_t failsafeTimeout;
2189 0 : if (UINT16_MAX - retryTimeout.count() < kDefaultFailsafeTimeout)
2190 : {
2191 0 : failsafeTimeout = UINT16_MAX;
2192 : }
2193 : else
2194 : {
2195 0 : failsafeTimeout = static_cast<uint16_t>(retryTimeout.count() + kDefaultFailsafeTimeout);
2196 : }
2197 :
2198 : // A false return is fine; we don't want to make the fail-safe shorter here.
2199 0 : self->ExtendArmFailSafeInternal(commissioneeDevice, self->GetCommissioningStage(), failsafeTimeout,
2200 0 : MakeOptional(kMinimumCommissioningStepTimeout), OnExtendFailsafeForCASERetrySuccess,
2201 : OnExtendFailsafeForCASERetryFailure, /* fireAndForget = */ true);
2202 : }
2203 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
2204 :
2205 : // ClusterStateCache::Callback / ReadClient::Callback
2206 0 : void DeviceCommissioner::OnDone(app::ReadClient * readClient)
2207 : {
2208 0 : VerifyOrDie(readClient != nullptr && readClient == mReadClient.get());
2209 0 : mReadClient.reset();
2210 0 : switch (mCommissioningStage)
2211 : {
2212 0 : case CommissioningStage::kReadCommissioningInfo:
2213 0 : ContinueReadingCommissioningInfo(mCommissioningDelegate->GetCommissioningParameters());
2214 0 : break;
2215 0 : default:
2216 0 : VerifyOrDie(false);
2217 : break;
2218 : }
2219 0 : }
2220 :
2221 : namespace {
2222 : // Helper for grouping attribute paths into read interactions in ContinueReadingCommissioningInfo()
2223 : // below. The logic generates a sequence of calls to AddAttributePath(), stopping when the capacity
2224 : // of the builder is exceeded. When creating subsequent read requests, the same sequence of calls
2225 : // is generated again, but the builder will skip however many attributes were already read in
2226 : // previous requests. This makes it easy to have logic that conditionally reads attributes, without
2227 : // needing to write manual code to work out where subsequent reads need to resume -- the logic that
2228 : // decides which attributes to read simply needs to be repeatable / deterministic.
2229 : class ReadInteractionBuilder
2230 : {
2231 : static constexpr auto kCapacity = InteractionModelEngine::kMinSupportedPathsPerReadRequest;
2232 :
2233 : size_t mSkip = 0;
2234 : size_t mCount = 0;
2235 : app::AttributePathParams mPaths[kCapacity];
2236 :
2237 : public:
2238 0 : ReadInteractionBuilder(size_t skip = 0) : mSkip(skip) {}
2239 :
2240 0 : size_t size() { return std::min(mCount, kCapacity); }
2241 0 : bool exceeded() { return mCount > kCapacity; }
2242 0 : app::AttributePathParams * paths() { return mPaths; }
2243 :
2244 : // Adds an attribute path if within the current window.
2245 : // Returns false if the available space has been exceeded.
2246 : template <typename... Ts>
2247 0 : bool AddAttributePath(Ts &&... args)
2248 : {
2249 0 : if (mSkip > 0)
2250 : {
2251 0 : mSkip--;
2252 0 : return true;
2253 : }
2254 0 : if (mCount >= kCapacity)
2255 : {
2256 : // capacity exceeded
2257 0 : mCount = kCapacity + 1;
2258 0 : return false;
2259 : }
2260 0 : mPaths[mCount++] = app::AttributePathParams(std::forward<Ts>(args)...);
2261 0 : return true;
2262 : }
2263 : };
2264 : } // namespace
2265 :
2266 0 : void DeviceCommissioner::ContinueReadingCommissioningInfo(const CommissioningParameters & params)
2267 : {
2268 0 : VerifyOrDie(mCommissioningStage == CommissioningStage::kReadCommissioningInfo);
2269 :
2270 : // mReadCommissioningInfoProgress starts at 0 and counts the number of paths we have read.
2271 : // A marker value is used to indicate that there are no further attributes to read.
2272 : static constexpr auto kReadProgressNoFurtherAttributes = std::numeric_limits<decltype(mReadCommissioningInfoProgress)>::max();
2273 0 : if (mReadCommissioningInfoProgress == kReadProgressNoFurtherAttributes)
2274 : {
2275 0 : FinishReadingCommissioningInfo();
2276 0 : return;
2277 : }
2278 :
2279 : // We can ony read 9 paths per Read Interaction, since that is the minimum a server has to
2280 : // support per spec (see "Interaction Model Limits"), so we generally need to perform more
2281 : // that one interaction. To build the list of attributes for each interaction, we use a
2282 : // builder that skips adding paths that we already handled in a previous interaction, and
2283 : // returns false if the current request is exhausted. This construction avoids allocating
2284 : // memory to hold the complete list of attributes to read up front; however the logic to
2285 : // determine the attributes to include must be deterministic since it runs multiple times.
2286 : // The use of an immediately-invoked lambda is convenient for control flow.
2287 0 : ReadInteractionBuilder builder(mReadCommissioningInfoProgress);
2288 0 : [&]() -> void {
2289 : // General Commissioning
2290 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2291 : Clusters::GeneralCommissioning::Attributes::SupportsConcurrentConnection::Id));
2292 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2293 : Clusters::GeneralCommissioning::Attributes::Breadcrumb::Id));
2294 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2295 : Clusters::GeneralCommissioning::Attributes::BasicCommissioningInfo::Id));
2296 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2297 : Clusters::GeneralCommissioning::Attributes::RegulatoryConfig::Id));
2298 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2299 : Clusters::GeneralCommissioning::Attributes::LocationCapability::Id));
2300 :
2301 : // Basic Information: VID and PID for device attestation purposes
2302 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
2303 : Clusters::BasicInformation::Attributes::VendorID::Id));
2304 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
2305 : Clusters::BasicInformation::Attributes::ProductID::Id));
2306 :
2307 : // Time Synchronization: all attributes
2308 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::TimeSynchronization::Id));
2309 :
2310 : // Network Commissioning (all endpoints): Read the feature map and connect time
2311 : // TODO: Expose a flag that disables network setup so we don't need to read this
2312 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2313 : Clusters::NetworkCommissioning::Attributes::FeatureMap::Id));
2314 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2315 : Clusters::NetworkCommissioning::Attributes::ConnectMaxTimeSeconds::Id));
2316 :
2317 : // OperationalCredentials: existing fabrics, if necessary
2318 0 : if (params.GetCheckForMatchingFabric())
2319 : {
2320 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::OperationalCredentials::Id,
2321 : Clusters::OperationalCredentials::Attributes::Fabrics::Id));
2322 : }
2323 :
2324 : // ICD Management
2325 0 : if (params.GetICDRegistrationStrategy() != ICDRegistrationStrategy::kIgnore)
2326 : {
2327 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2328 : Clusters::IcdManagement::Attributes::FeatureMap::Id));
2329 : }
2330 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2331 : Clusters::IcdManagement::Attributes::UserActiveModeTriggerHint::Id));
2332 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2333 : Clusters::IcdManagement::Attributes::UserActiveModeTriggerInstruction::Id));
2334 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2335 : Clusters::IcdManagement::Attributes::IdleModeDuration::Id));
2336 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2337 : Clusters::IcdManagement::Attributes::ActiveModeDuration::Id));
2338 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2339 : Clusters::IcdManagement::Attributes::ActiveModeThreshold::Id));
2340 :
2341 : // Extra paths requested via CommissioningParameters
2342 0 : for (auto const & path : params.GetExtraReadPaths())
2343 : {
2344 0 : VerifyOrReturn(builder.AddAttributePath(path));
2345 : }
2346 0 : }();
2347 :
2348 0 : VerifyOrDie(builder.size() > 0); // our logic is broken if there is nothing to read
2349 0 : if (builder.exceeded())
2350 : {
2351 : // Keep track of the number of attributes we have read already so we can resume from there.
2352 0 : auto progress = mReadCommissioningInfoProgress + builder.size();
2353 0 : VerifyOrDie(progress < kReadProgressNoFurtherAttributes);
2354 0 : mReadCommissioningInfoProgress = static_cast<decltype(mReadCommissioningInfoProgress)>(progress);
2355 : }
2356 : else
2357 : {
2358 0 : mReadCommissioningInfoProgress = kReadProgressNoFurtherAttributes;
2359 : }
2360 :
2361 0 : SendCommissioningReadRequest(mDeviceBeingCommissioned, mCommissioningStepTimeout, builder.paths(), builder.size());
2362 : }
2363 :
2364 : namespace {
2365 0 : void AccumulateErrors(CHIP_ERROR & acc, CHIP_ERROR err)
2366 : {
2367 0 : if (acc == CHIP_NO_ERROR && err != CHIP_NO_ERROR)
2368 : {
2369 0 : acc = err;
2370 : }
2371 0 : }
2372 : } // namespace
2373 :
2374 0 : void DeviceCommissioner::FinishReadingCommissioningInfo()
2375 : {
2376 : // We want to parse as much information as possible, even if we eventually end
2377 : // up returning an error (e.g. because some mandatory information was missing).
2378 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2379 0 : ReadCommissioningInfo info;
2380 0 : info.attributes = mAttributeCache.get();
2381 0 : AccumulateErrors(err, ParseGeneralCommissioningInfo(info));
2382 0 : AccumulateErrors(err, ParseBasicInformation(info));
2383 0 : AccumulateErrors(err, ParseNetworkCommissioningInfo(info));
2384 0 : AccumulateErrors(err, ParseTimeSyncInfo(info));
2385 0 : AccumulateErrors(err, ParseFabrics(info));
2386 0 : AccumulateErrors(err, ParseICDInfo(info));
2387 :
2388 0 : if (mPairingDelegate != nullptr && err == CHIP_NO_ERROR)
2389 : {
2390 0 : mPairingDelegate->OnReadCommissioningInfo(info);
2391 : }
2392 :
2393 0 : CommissioningDelegate::CommissioningReport report;
2394 0 : report.Set<ReadCommissioningInfo>(info);
2395 0 : CommissioningStageComplete(err, report);
2396 :
2397 : // Only release the attribute cache once `info` is no longer needed.
2398 0 : mAttributeCache.reset();
2399 0 : }
2400 :
2401 0 : CHIP_ERROR DeviceCommissioner::ParseGeneralCommissioningInfo(ReadCommissioningInfo & info)
2402 : {
2403 : using namespace GeneralCommissioning::Attributes;
2404 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2405 : CHIP_ERROR err;
2406 :
2407 0 : BasicCommissioningInfo::TypeInfo::DecodableType basicInfo;
2408 0 : err = mAttributeCache->Get<BasicCommissioningInfo::TypeInfo>(kRootEndpointId, basicInfo);
2409 0 : if (err == CHIP_NO_ERROR)
2410 : {
2411 0 : info.general.recommendedFailsafe = basicInfo.failSafeExpiryLengthSeconds;
2412 : }
2413 : else
2414 : {
2415 0 : ChipLogError(Controller, "Failed to read BasicCommissioningInfo: %" CHIP_ERROR_FORMAT, err.Format());
2416 0 : return_err = err;
2417 : }
2418 :
2419 0 : err = mAttributeCache->Get<RegulatoryConfig::TypeInfo>(kRootEndpointId, info.general.currentRegulatoryLocation);
2420 0 : if (err != CHIP_NO_ERROR)
2421 : {
2422 0 : ChipLogError(Controller, "Failed to read RegulatoryConfig: %" CHIP_ERROR_FORMAT, err.Format());
2423 0 : return_err = err;
2424 : }
2425 :
2426 0 : err = mAttributeCache->Get<LocationCapability::TypeInfo>(kRootEndpointId, info.general.locationCapability);
2427 0 : if (err != CHIP_NO_ERROR)
2428 : {
2429 0 : ChipLogError(Controller, "Failed to read LocationCapability: %" CHIP_ERROR_FORMAT, err.Format());
2430 0 : return_err = err;
2431 : }
2432 :
2433 0 : err = mAttributeCache->Get<Breadcrumb::TypeInfo>(kRootEndpointId, info.general.breadcrumb);
2434 0 : if (err != CHIP_NO_ERROR)
2435 : {
2436 0 : ChipLogError(Controller, "Failed to read Breadcrumb: %" CHIP_ERROR_FORMAT, err.Format());
2437 0 : return_err = err;
2438 : }
2439 :
2440 0 : err = mAttributeCache->Get<SupportsConcurrentConnection::TypeInfo>(kRootEndpointId, info.supportsConcurrentConnection);
2441 0 : if (err != CHIP_NO_ERROR)
2442 : {
2443 0 : ChipLogError(Controller, "Ignoring failure to read SupportsConcurrentConnection: %" CHIP_ERROR_FORMAT, err.Format());
2444 0 : info.supportsConcurrentConnection = true; // default to true (concurrent), not a fatal error
2445 : }
2446 :
2447 0 : return return_err;
2448 : }
2449 :
2450 0 : CHIP_ERROR DeviceCommissioner::ParseBasicInformation(ReadCommissioningInfo & info)
2451 : {
2452 : using namespace BasicInformation::Attributes;
2453 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2454 : CHIP_ERROR err;
2455 :
2456 0 : err = mAttributeCache->Get<VendorID::TypeInfo>(kRootEndpointId, info.basic.vendorId);
2457 0 : if (err != CHIP_NO_ERROR)
2458 : {
2459 0 : ChipLogError(Controller, "Failed to read VendorID: %" CHIP_ERROR_FORMAT, err.Format());
2460 0 : return_err = err;
2461 : }
2462 :
2463 0 : err = mAttributeCache->Get<ProductID::TypeInfo>(kRootEndpointId, info.basic.productId);
2464 0 : if (err != CHIP_NO_ERROR)
2465 : {
2466 0 : ChipLogError(Controller, "Failed to read ProductID: %" CHIP_ERROR_FORMAT, err.Format());
2467 0 : return_err = err;
2468 : }
2469 :
2470 0 : return return_err;
2471 : }
2472 :
2473 0 : CHIP_ERROR DeviceCommissioner::ParseNetworkCommissioningInfo(ReadCommissioningInfo & info)
2474 : {
2475 : using namespace NetworkCommissioning::Attributes;
2476 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2477 : CHIP_ERROR err;
2478 :
2479 : // Set the network cluster endpoints first so we can match up the connection
2480 : // times. Note that here we don't know what endpoints the network
2481 : // commissioning clusters might be on.
2482 0 : err = mAttributeCache->ForEachAttribute(NetworkCommissioning::Id, [this, &info](const ConcreteAttributePath & path) {
2483 0 : VerifyOrReturnError(path.mAttributeId == FeatureMap::Id, CHIP_NO_ERROR);
2484 0 : BitFlags<NetworkCommissioning::Feature> features;
2485 0 : if (mAttributeCache->Get<FeatureMap::TypeInfo>(path, *features.RawStorage()) == CHIP_NO_ERROR)
2486 : {
2487 0 : if (features.Has(NetworkCommissioning::Feature::kWiFiNetworkInterface))
2488 : {
2489 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has WiFi. endpointid = %u", path.mEndpointId);
2490 0 : info.network.wifi.endpoint = path.mEndpointId;
2491 : }
2492 0 : else if (features.Has(NetworkCommissioning::Feature::kThreadNetworkInterface))
2493 : {
2494 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has Thread. endpointid = %u", path.mEndpointId);
2495 0 : info.network.thread.endpoint = path.mEndpointId;
2496 : }
2497 0 : else if (features.Has(NetworkCommissioning::Feature::kEthernetNetworkInterface))
2498 : {
2499 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has Ethernet. endpointid = %u", path.mEndpointId);
2500 0 : info.network.eth.endpoint = path.mEndpointId;
2501 : }
2502 : }
2503 0 : return CHIP_NO_ERROR;
2504 : });
2505 0 : AccumulateErrors(return_err, err);
2506 :
2507 0 : if (info.network.thread.endpoint != kInvalidEndpointId)
2508 : {
2509 0 : err = mAttributeCache->Get<ConnectMaxTimeSeconds::TypeInfo>(info.network.thread.endpoint,
2510 0 : info.network.thread.minConnectionTime);
2511 0 : if (err != CHIP_NO_ERROR)
2512 : {
2513 0 : ChipLogError(Controller, "Failed to read Thread ConnectMaxTimeSeconds (endpoint %u): %" CHIP_ERROR_FORMAT,
2514 : info.network.thread.endpoint, err.Format());
2515 0 : return_err = err;
2516 : }
2517 : }
2518 :
2519 0 : if (info.network.wifi.endpoint != kInvalidEndpointId)
2520 : {
2521 0 : err =
2522 0 : mAttributeCache->Get<ConnectMaxTimeSeconds::TypeInfo>(info.network.wifi.endpoint, info.network.wifi.minConnectionTime);
2523 0 : if (err != CHIP_NO_ERROR)
2524 : {
2525 0 : ChipLogError(Controller, "Failed to read Wi-Fi ConnectMaxTimeSeconds (endpoint %u): %" CHIP_ERROR_FORMAT,
2526 : info.network.wifi.endpoint, err.Format());
2527 0 : return_err = err;
2528 : }
2529 : }
2530 :
2531 0 : if (return_err != CHIP_NO_ERROR)
2532 : {
2533 0 : ChipLogError(Controller, "Failed to parsing Network Commissioning information: %" CHIP_ERROR_FORMAT, return_err.Format());
2534 : }
2535 0 : return return_err;
2536 : }
2537 :
2538 0 : CHIP_ERROR DeviceCommissioner::ParseTimeSyncInfo(ReadCommissioningInfo & info)
2539 : {
2540 : using namespace TimeSynchronization::Attributes;
2541 : CHIP_ERROR err;
2542 :
2543 : // If we fail to get the feature map, there's no viable time cluster, don't set anything.
2544 0 : BitFlags<TimeSynchronization::Feature> featureMap;
2545 0 : err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
2546 0 : if (err != CHIP_NO_ERROR)
2547 : {
2548 0 : info.requiresUTC = false;
2549 0 : info.requiresTimeZone = false;
2550 0 : info.requiresDefaultNTP = false;
2551 0 : info.requiresTrustedTimeSource = false;
2552 0 : return CHIP_NO_ERROR;
2553 : }
2554 0 : info.requiresUTC = true;
2555 0 : info.requiresTimeZone = featureMap.Has(TimeSynchronization::Feature::kTimeZone);
2556 0 : info.requiresDefaultNTP = featureMap.Has(TimeSynchronization::Feature::kNTPClient);
2557 0 : info.requiresTrustedTimeSource = featureMap.Has(TimeSynchronization::Feature::kTimeSyncClient);
2558 :
2559 0 : if (info.requiresTimeZone)
2560 : {
2561 0 : err = mAttributeCache->Get<TimeZoneListMaxSize::TypeInfo>(kRootEndpointId, info.maxTimeZoneSize);
2562 0 : if (err != CHIP_NO_ERROR)
2563 : {
2564 : // This information should be available, let's do our best with what we have, but we can't set
2565 : // the time zone without this information
2566 0 : info.requiresTimeZone = false;
2567 : }
2568 0 : err = mAttributeCache->Get<DSTOffsetListMaxSize::TypeInfo>(kRootEndpointId, info.maxDSTSize);
2569 0 : if (err != CHIP_NO_ERROR)
2570 : {
2571 0 : info.requiresTimeZone = false;
2572 : }
2573 : }
2574 0 : if (info.requiresDefaultNTP)
2575 : {
2576 0 : DefaultNTP::TypeInfo::DecodableType defaultNTP;
2577 0 : err = mAttributeCache->Get<DefaultNTP::TypeInfo>(kRootEndpointId, defaultNTP);
2578 0 : if (err == CHIP_NO_ERROR && (!defaultNTP.IsNull()) && (defaultNTP.Value().size() != 0))
2579 : {
2580 0 : info.requiresDefaultNTP = false;
2581 : }
2582 : }
2583 0 : if (info.requiresTrustedTimeSource)
2584 : {
2585 0 : TrustedTimeSource::TypeInfo::DecodableType trustedTimeSource;
2586 0 : err = mAttributeCache->Get<TrustedTimeSource::TypeInfo>(kRootEndpointId, trustedTimeSource);
2587 0 : if (err == CHIP_NO_ERROR && !trustedTimeSource.IsNull())
2588 : {
2589 0 : info.requiresTrustedTimeSource = false;
2590 : }
2591 : }
2592 :
2593 0 : return CHIP_NO_ERROR;
2594 : }
2595 :
2596 0 : CHIP_ERROR DeviceCommissioner::ParseFabrics(ReadCommissioningInfo & info)
2597 : {
2598 : using namespace OperationalCredentials::Attributes;
2599 : CHIP_ERROR err;
2600 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2601 :
2602 : // We might not have requested a Fabrics attribute at all, so not having a
2603 : // value for it is not an error.
2604 0 : err = mAttributeCache->ForEachAttribute(OperationalCredentials::Id, [this, &info](const ConcreteAttributePath & path) {
2605 : using namespace chip::app::Clusters::OperationalCredentials::Attributes;
2606 : // this code is checking if the device is already on the commissioner's fabric.
2607 : // if a matching fabric is found, then remember the nodeId so that the commissioner
2608 : // can, if it decides to, cancel commissioning (before it fails in AddNoc) and know
2609 : // the device's nodeId on its fabric.
2610 0 : switch (path.mAttributeId)
2611 : {
2612 0 : case Fabrics::Id: {
2613 0 : Fabrics::TypeInfo::DecodableType fabrics;
2614 0 : ReturnErrorOnFailure(this->mAttributeCache->Get<Fabrics::TypeInfo>(path, fabrics));
2615 : // this is a best effort attempt to find a matching fabric, so no error checking on iter
2616 0 : auto iter = fabrics.begin();
2617 0 : while (iter.Next())
2618 : {
2619 0 : auto & fabricDescriptor = iter.GetValue();
2620 0 : ChipLogProgress(Controller,
2621 : "DeviceCommissioner::OnDone - fabric.vendorId=0x%04X fabric.fabricId=0x" ChipLogFormatX64
2622 : " fabric.nodeId=0x" ChipLogFormatX64,
2623 : fabricDescriptor.vendorID, ChipLogValueX64(fabricDescriptor.fabricID),
2624 : ChipLogValueX64(fabricDescriptor.nodeID));
2625 0 : if (GetFabricId() == fabricDescriptor.fabricID)
2626 : {
2627 0 : ChipLogProgress(Controller, "DeviceCommissioner::OnDone - found a matching fabric id");
2628 0 : chip::ByteSpan rootKeySpan = fabricDescriptor.rootPublicKey;
2629 0 : if (rootKeySpan.size() != Crypto::kP256_PublicKey_Length)
2630 : {
2631 0 : ChipLogError(Controller, "DeviceCommissioner::OnDone - fabric root key size mismatch %u != %u",
2632 : static_cast<unsigned>(rootKeySpan.size()),
2633 : static_cast<unsigned>(Crypto::kP256_PublicKey_Length));
2634 0 : continue;
2635 : }
2636 0 : P256PublicKeySpan rootPubKeySpan(rootKeySpan.data());
2637 0 : Crypto::P256PublicKey deviceRootPublicKey(rootPubKeySpan);
2638 :
2639 0 : Crypto::P256PublicKey commissionerRootPublicKey;
2640 0 : if (CHIP_NO_ERROR != GetRootPublicKey(commissionerRootPublicKey))
2641 : {
2642 0 : ChipLogError(Controller, "DeviceCommissioner::OnDone - error reading commissioner root public key");
2643 : }
2644 0 : else if (commissionerRootPublicKey.Matches(deviceRootPublicKey))
2645 : {
2646 0 : ChipLogProgress(Controller, "DeviceCommissioner::OnDone - fabric root keys match");
2647 0 : info.remoteNodeId = fabricDescriptor.nodeID;
2648 : }
2649 0 : }
2650 : }
2651 :
2652 0 : return CHIP_NO_ERROR;
2653 : }
2654 0 : default:
2655 0 : return CHIP_NO_ERROR;
2656 : }
2657 : });
2658 :
2659 0 : if (mPairingDelegate != nullptr)
2660 : {
2661 0 : mPairingDelegate->OnFabricCheck(info.remoteNodeId);
2662 : }
2663 :
2664 0 : return return_err;
2665 : }
2666 :
2667 0 : CHIP_ERROR DeviceCommissioner::ParseICDInfo(ReadCommissioningInfo & info)
2668 : {
2669 : using namespace IcdManagement::Attributes;
2670 : CHIP_ERROR err;
2671 :
2672 0 : bool hasUserActiveModeTrigger = false;
2673 0 : bool isICD = false;
2674 :
2675 0 : BitFlags<IcdManagement::Feature> featureMap;
2676 0 : err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
2677 0 : if (err == CHIP_NO_ERROR)
2678 : {
2679 0 : info.icd.isLIT = featureMap.Has(IcdManagement::Feature::kLongIdleTimeSupport);
2680 0 : info.icd.checkInProtocolSupport = featureMap.Has(IcdManagement::Feature::kCheckInProtocolSupport);
2681 0 : hasUserActiveModeTrigger = featureMap.Has(IcdManagement::Feature::kUserActiveModeTrigger);
2682 0 : isICD = true;
2683 : }
2684 0 : else if (err == CHIP_ERROR_KEY_NOT_FOUND)
2685 : {
2686 : // This key is optional so not an error
2687 0 : info.icd.isLIT = false;
2688 0 : err = CHIP_NO_ERROR;
2689 : }
2690 0 : else if (err == CHIP_ERROR_IM_STATUS_CODE_RECEIVED)
2691 : {
2692 0 : app::StatusIB statusIB;
2693 0 : err = mAttributeCache->GetStatus(app::ConcreteAttributePath(kRootEndpointId, IcdManagement::Id, FeatureMap::Id), statusIB);
2694 0 : if (err == CHIP_NO_ERROR)
2695 : {
2696 0 : if (statusIB.mStatus == Protocols::InteractionModel::Status::UnsupportedCluster)
2697 : {
2698 0 : info.icd.isLIT = false;
2699 : }
2700 : else
2701 : {
2702 0 : err = statusIB.ToChipError();
2703 : }
2704 : }
2705 : }
2706 :
2707 0 : ReturnErrorOnFailure(err);
2708 :
2709 0 : info.icd.userActiveModeTriggerHint.ClearAll();
2710 0 : info.icd.userActiveModeTriggerInstruction = CharSpan();
2711 :
2712 0 : if (hasUserActiveModeTrigger)
2713 : {
2714 : // Intentionally ignore errors since they are not mandatory.
2715 0 : bool activeModeTriggerInstructionRequired = false;
2716 :
2717 0 : err = mAttributeCache->Get<UserActiveModeTriggerHint::TypeInfo>(kRootEndpointId, info.icd.userActiveModeTriggerHint);
2718 0 : if (err != CHIP_NO_ERROR)
2719 : {
2720 0 : ChipLogError(Controller, "IcdManagement.UserActiveModeTriggerHint expected, but failed to read.");
2721 0 : return err;
2722 : }
2723 :
2724 : using IcdManagement::UserActiveModeTriggerBitmap;
2725 0 : activeModeTriggerInstructionRequired = info.icd.userActiveModeTriggerHint.HasAny(
2726 0 : UserActiveModeTriggerBitmap::kCustomInstruction, UserActiveModeTriggerBitmap::kActuateSensorSeconds,
2727 0 : UserActiveModeTriggerBitmap::kActuateSensorTimes, UserActiveModeTriggerBitmap::kActuateSensorLightsBlink,
2728 0 : UserActiveModeTriggerBitmap::kResetButtonLightsBlink, UserActiveModeTriggerBitmap::kResetButtonSeconds,
2729 0 : UserActiveModeTriggerBitmap::kResetButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonSeconds,
2730 0 : UserActiveModeTriggerBitmap::kSetupButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonTimes,
2731 0 : UserActiveModeTriggerBitmap::kAppDefinedButton);
2732 :
2733 0 : if (activeModeTriggerInstructionRequired)
2734 : {
2735 0 : err = mAttributeCache->Get<UserActiveModeTriggerInstruction::TypeInfo>(kRootEndpointId,
2736 0 : info.icd.userActiveModeTriggerInstruction);
2737 0 : if (err != CHIP_NO_ERROR)
2738 : {
2739 0 : ChipLogError(Controller,
2740 : "IcdManagement.UserActiveModeTriggerInstruction expected for given active mode trigger hint, but "
2741 : "failed to read.");
2742 0 : return err;
2743 : }
2744 : }
2745 : }
2746 :
2747 0 : if (!isICD)
2748 : {
2749 0 : info.icd.idleModeDuration = 0;
2750 0 : info.icd.activeModeDuration = 0;
2751 0 : info.icd.activeModeThreshold = 0;
2752 0 : return CHIP_NO_ERROR;
2753 : }
2754 :
2755 0 : err = mAttributeCache->Get<IdleModeDuration::TypeInfo>(kRootEndpointId, info.icd.idleModeDuration);
2756 0 : if (err != CHIP_NO_ERROR)
2757 : {
2758 0 : ChipLogError(Controller, "IcdManagement.IdleModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT, err.Format());
2759 0 : return err;
2760 : }
2761 :
2762 0 : err = mAttributeCache->Get<ActiveModeDuration::TypeInfo>(kRootEndpointId, info.icd.activeModeDuration);
2763 0 : if (err != CHIP_NO_ERROR)
2764 : {
2765 0 : ChipLogError(Controller, "IcdManagement.ActiveModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT,
2766 : err.Format());
2767 0 : return err;
2768 : }
2769 :
2770 0 : err = mAttributeCache->Get<ActiveModeThreshold::TypeInfo>(kRootEndpointId, info.icd.activeModeThreshold);
2771 0 : if (err != CHIP_NO_ERROR)
2772 : {
2773 0 : ChipLogError(Controller, "IcdManagement.ActiveModeThreshold expected, but failed to read: %" CHIP_ERROR_FORMAT,
2774 : err.Format());
2775 : }
2776 :
2777 0 : return err;
2778 : }
2779 :
2780 0 : void DeviceCommissioner::OnArmFailSafe(void * context,
2781 : const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2782 : {
2783 0 : CommissioningDelegate::CommissioningReport report;
2784 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2785 :
2786 0 : ChipLogProgress(Controller, "Received ArmFailSafe response errorCode=%u", to_underlying(data.errorCode));
2787 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2788 : {
2789 0 : err = CHIP_ERROR_INTERNAL;
2790 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2791 : }
2792 :
2793 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2794 0 : commissioner->CommissioningStageComplete(err, report);
2795 0 : }
2796 :
2797 0 : void DeviceCommissioner::OnSetRegulatoryConfigResponse(
2798 : void * context, const GeneralCommissioning::Commands::SetRegulatoryConfigResponse::DecodableType & data)
2799 : {
2800 0 : CommissioningDelegate::CommissioningReport report;
2801 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2802 :
2803 0 : ChipLogProgress(Controller, "Received SetRegulatoryConfig response errorCode=%u", to_underlying(data.errorCode));
2804 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2805 : {
2806 0 : err = CHIP_ERROR_INTERNAL;
2807 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2808 : }
2809 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2810 0 : commissioner->CommissioningStageComplete(err, report);
2811 0 : }
2812 :
2813 0 : void DeviceCommissioner::OnSetTCAcknowledgementsResponse(
2814 : void * context, const GeneralCommissioning::Commands::SetTCAcknowledgementsResponse::DecodableType & data)
2815 : {
2816 0 : CommissioningDelegate::CommissioningReport report;
2817 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2818 :
2819 0 : ChipLogProgress(Controller, "Received SetTCAcknowledgements response errorCode=%u", to_underlying(data.errorCode));
2820 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2821 : {
2822 0 : err = CHIP_ERROR_INTERNAL;
2823 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2824 : }
2825 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2826 0 : commissioner->CommissioningStageComplete(err, report);
2827 0 : }
2828 :
2829 0 : void DeviceCommissioner::OnSetTimeZoneResponse(void * context,
2830 : const TimeSynchronization::Commands::SetTimeZoneResponse::DecodableType & data)
2831 : {
2832 0 : CommissioningDelegate::CommissioningReport report;
2833 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2834 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2835 : TimeZoneResponseInfo info;
2836 0 : info.requiresDSTOffsets = data.DSTOffsetRequired;
2837 0 : report.Set<TimeZoneResponseInfo>(info);
2838 0 : commissioner->CommissioningStageComplete(err, report);
2839 0 : }
2840 :
2841 0 : void DeviceCommissioner::OnSetUTCError(void * context, CHIP_ERROR error)
2842 : {
2843 : // For SetUTCTime, we don't actually care if the commissionee didn't want out time, that's its choice
2844 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2845 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2846 0 : }
2847 :
2848 0 : void DeviceCommissioner::OnScanNetworksFailure(void * context, CHIP_ERROR error)
2849 : {
2850 0 : ChipLogProgress(Controller, "Received ScanNetworks failure response %" CHIP_ERROR_FORMAT, error.Format());
2851 :
2852 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2853 :
2854 : // advance to the kNeedsNetworkCreds waiting step
2855 : // clear error so that we don't abort the commissioning when ScanNetworks fails
2856 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2857 :
2858 0 : if (commissioner->GetPairingDelegate() != nullptr)
2859 : {
2860 0 : commissioner->GetPairingDelegate()->OnScanNetworksFailure(error);
2861 : }
2862 0 : }
2863 :
2864 0 : void DeviceCommissioner::OnScanNetworksResponse(void * context,
2865 : const NetworkCommissioning::Commands::ScanNetworksResponse::DecodableType & data)
2866 : {
2867 0 : CommissioningDelegate::CommissioningReport report;
2868 :
2869 0 : ChipLogProgress(Controller, "Received ScanNetwork response, networkingStatus=%u debugText=%s",
2870 : to_underlying(data.networkingStatus),
2871 : (data.debugText.HasValue() ? std::string(data.debugText.Value().data(), data.debugText.Value().size()).c_str()
2872 : : "none provided"));
2873 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2874 :
2875 : // advance to the kNeedsNetworkCreds waiting step
2876 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2877 :
2878 0 : if (commissioner->GetPairingDelegate() != nullptr)
2879 : {
2880 0 : commissioner->GetPairingDelegate()->OnScanNetworksSuccess(data);
2881 : }
2882 0 : }
2883 :
2884 0 : CHIP_ERROR DeviceCommissioner::NetworkCredentialsReady()
2885 : {
2886 0 : VerifyOrReturnError(mCommissioningStage == CommissioningStage::kNeedsNetworkCreds, CHIP_ERROR_INCORRECT_STATE);
2887 :
2888 : // need to advance to next step
2889 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2890 :
2891 0 : return CHIP_NO_ERROR;
2892 : }
2893 :
2894 0 : CHIP_ERROR DeviceCommissioner::ICDRegistrationInfoReady()
2895 : {
2896 0 : VerifyOrReturnError(mCommissioningStage == CommissioningStage::kICDGetRegistrationInfo, CHIP_ERROR_INCORRECT_STATE);
2897 :
2898 : // need to advance to next step
2899 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2900 :
2901 0 : return CHIP_NO_ERROR;
2902 : }
2903 :
2904 0 : void DeviceCommissioner::OnNetworkConfigResponse(void * context,
2905 : const NetworkCommissioning::Commands::NetworkConfigResponse::DecodableType & data)
2906 : {
2907 0 : CommissioningDelegate::CommissioningReport report;
2908 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2909 :
2910 0 : ChipLogProgress(Controller, "Received NetworkConfig response, networkingStatus=%u", to_underlying(data.networkingStatus));
2911 0 : if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
2912 : {
2913 0 : err = CHIP_ERROR_INTERNAL;
2914 0 : report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
2915 : }
2916 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2917 0 : commissioner->CommissioningStageComplete(err, report);
2918 0 : }
2919 :
2920 0 : void DeviceCommissioner::OnConnectNetworkResponse(
2921 : void * context, const NetworkCommissioning::Commands::ConnectNetworkResponse::DecodableType & data)
2922 : {
2923 0 : CommissioningDelegate::CommissioningReport report;
2924 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2925 :
2926 0 : ChipLogProgress(Controller, "Received ConnectNetwork response, networkingStatus=%u", to_underlying(data.networkingStatus));
2927 0 : if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
2928 : {
2929 0 : err = CHIP_ERROR_INTERNAL;
2930 0 : report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
2931 : }
2932 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2933 0 : commissioner->CommissioningStageComplete(err, report);
2934 0 : }
2935 :
2936 0 : void DeviceCommissioner::OnCommissioningCompleteResponse(
2937 : void * context, const GeneralCommissioning::Commands::CommissioningCompleteResponse::DecodableType & data)
2938 : {
2939 0 : CommissioningDelegate::CommissioningReport report;
2940 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2941 :
2942 0 : ChipLogProgress(Controller, "Received CommissioningComplete response, errorCode=%u", to_underlying(data.errorCode));
2943 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2944 : {
2945 0 : err = CHIP_ERROR_INTERNAL;
2946 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2947 : }
2948 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2949 0 : commissioner->CommissioningStageComplete(err, report);
2950 0 : }
2951 :
2952 : template <typename RequestObjectT>
2953 : CHIP_ERROR
2954 0 : DeviceCommissioner::SendCommissioningCommand(DeviceProxy * device, const RequestObjectT & request,
2955 : CommandResponseSuccessCallback<typename RequestObjectT::ResponseType> successCb,
2956 : CommandResponseFailureCallback failureCb, EndpointId endpoint,
2957 : Optional<System::Clock::Timeout> timeout, bool fireAndForget)
2958 :
2959 : {
2960 : // Default behavior is to make sequential, cancellable calls tracked via mInvokeCancelFn.
2961 : // Fire-and-forget calls are not cancellable and don't receive `this` as context in callbacks.
2962 0 : VerifyOrDie(fireAndForget || !mInvokeCancelFn); // we don't make parallel (cancellable) calls
2963 :
2964 0 : void * context = (!fireAndForget) ? this : nullptr;
2965 0 : auto onSuccessCb = [context, successCb](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
2966 : const typename RequestObjectT::ResponseType & responseData) {
2967 0 : successCb(context, responseData);
2968 : };
2969 0 : auto onFailureCb = [context, failureCb](CHIP_ERROR aError) { failureCb(context, aError); };
2970 :
2971 0 : return InvokeCommandRequest(device->GetExchangeManager(), device->GetSecureSession().Value(), endpoint, request, onSuccessCb,
2972 0 : onFailureCb, NullOptional, timeout, (!fireAndForget) ? &mInvokeCancelFn : nullptr);
2973 : }
2974 :
2975 : template <typename AttrType>
2976 : CHIP_ERROR DeviceCommissioner::SendCommissioningWriteRequest(DeviceProxy * device, EndpointId endpoint, ClusterId cluster,
2977 : AttributeId attribute, const AttrType & requestData,
2978 : WriteResponseSuccessCallback successCb,
2979 : WriteResponseFailureCallback failureCb)
2980 : {
2981 : VerifyOrDie(!mWriteCancelFn); // we don't make parallel (cancellable) calls
2982 : auto onSuccessCb = [this, successCb](const app::ConcreteAttributePath & aPath) { successCb(this); };
2983 : auto onFailureCb = [this, failureCb](const app::ConcreteAttributePath * aPath, CHIP_ERROR aError) { failureCb(this, aError); };
2984 : return WriteAttribute(device->GetSecureSession().Value(), endpoint, cluster, attribute, requestData, onSuccessCb, onFailureCb,
2985 : /* aTimedWriteTimeoutMs = */ NullOptional, /* onDoneCb = */ nullptr, /* aDataVersion = */ NullOptional,
2986 : /* outCancelFn = */ &mWriteCancelFn);
2987 : }
2988 :
2989 0 : void DeviceCommissioner::SendCommissioningReadRequest(DeviceProxy * proxy, Optional<System::Clock::Timeout> timeout,
2990 : app::AttributePathParams * readPaths, size_t readPathsSize)
2991 : {
2992 0 : VerifyOrDie(!mReadClient); // we don't perform parallel reads
2993 :
2994 0 : app::InteractionModelEngine * engine = app::InteractionModelEngine::GetInstance();
2995 0 : app::ReadPrepareParams readParams(proxy->GetSecureSession().Value());
2996 0 : readParams.mIsFabricFiltered = false;
2997 0 : if (timeout.HasValue())
2998 : {
2999 0 : readParams.mTimeout = timeout.Value();
3000 : }
3001 0 : readParams.mpAttributePathParamsList = readPaths;
3002 0 : readParams.mAttributePathParamsListSize = readPathsSize;
3003 :
3004 : // Take ownership of the attribute cache, so it can be released if SendRequest fails.
3005 0 : auto attributeCache = std::move(mAttributeCache);
3006 : auto readClient = chip::Platform::MakeUnique<app::ReadClient>(
3007 0 : engine, proxy->GetExchangeManager(), attributeCache->GetBufferedCallback(), app::ReadClient::InteractionType::Read);
3008 0 : CHIP_ERROR err = readClient->SendRequest(readParams);
3009 0 : if (err != CHIP_NO_ERROR)
3010 : {
3011 0 : ChipLogError(Controller, "Failed to send read request: %" CHIP_ERROR_FORMAT, err.Format());
3012 0 : CommissioningStageComplete(err);
3013 0 : return;
3014 : }
3015 0 : mAttributeCache = std::move(attributeCache);
3016 0 : mReadClient = std::move(readClient);
3017 0 : }
3018 :
3019 0 : void DeviceCommissioner::PerformCommissioningStep(DeviceProxy * proxy, CommissioningStage step, CommissioningParameters & params,
3020 : CommissioningDelegate * delegate, EndpointId endpoint,
3021 : Optional<System::Clock::Timeout> timeout)
3022 :
3023 : {
3024 : MATTER_LOG_METRIC(kMetricDeviceCommissionerCommissionStage, step);
3025 : MATTER_LOG_METRIC_BEGIN(MetricKeyForCommissioningStage(step));
3026 :
3027 0 : if (params.GetCompletionStatus().err == CHIP_NO_ERROR)
3028 : {
3029 0 : ChipLogProgress(Controller, "Performing next commissioning step '%s'", StageToString(step));
3030 : }
3031 : else
3032 : {
3033 0 : ChipLogProgress(Controller, "Performing next commissioning step '%s' with completion status = '%s'", StageToString(step),
3034 : params.GetCompletionStatus().err.AsString());
3035 : }
3036 :
3037 0 : mCommissioningStepTimeout = timeout;
3038 0 : mCommissioningStage = step;
3039 0 : mCommissioningDelegate = delegate;
3040 0 : mDeviceBeingCommissioned = proxy;
3041 :
3042 : // TODO: Extend timeouts to the DAC and Opcert requests.
3043 : // TODO(cecille): We probably want something better than this for breadcrumbs.
3044 0 : uint64_t breadcrumb = static_cast<uint64_t>(step);
3045 :
3046 0 : switch (step)
3047 : {
3048 0 : case CommissioningStage::kArmFailsafe: {
3049 0 : VerifyOrDie(endpoint == kRootEndpointId);
3050 : // Make sure the fail-safe value we set here actually ends up being used
3051 : // no matter what.
3052 0 : proxy->SetFailSafeExpirationTimestamp(System::Clock::kZero);
3053 0 : VerifyOrDie(ExtendArmFailSafeInternal(proxy, step, params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout),
3054 : timeout, OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false));
3055 : }
3056 0 : break;
3057 0 : case CommissioningStage::kReadCommissioningInfo: {
3058 0 : VerifyOrDie(endpoint == kRootEndpointId);
3059 0 : ChipLogProgress(Controller, "Sending read requests for commissioning information");
3060 :
3061 : // Allocate a ClusterStateCache to collect the data from our read requests.
3062 : // The cache will be released in:
3063 : // - SendCommissioningReadRequest when failing to send a read request.
3064 : // - FinishReadingCommissioningInfo when the ReadCommissioningInfo stage is completed.
3065 : // - CancelCommissioningInteractions
3066 0 : mAttributeCache = Platform::MakeUnique<app::ClusterStateCache>(*this);
3067 :
3068 : // Generally we need to make more than one read request, because as per spec a server only
3069 : // supports a limited number of paths per Read Interaction. Because the actual number of
3070 : // interactions we end up performing is dynamic, we track all of them within a single
3071 : // commissioning stage.
3072 0 : mReadCommissioningInfoProgress = 0;
3073 0 : ContinueReadingCommissioningInfo(params); // Note: assume params == delegate.GetCommissioningParameters()
3074 0 : break;
3075 : }
3076 0 : case CommissioningStage::kConfigureUTCTime: {
3077 0 : TimeSynchronization::Commands::SetUTCTime::Type request;
3078 0 : uint64_t kChipEpochUsSinceUnixEpoch = static_cast<uint64_t>(kChipEpochSecondsSinceUnixEpoch) * chip::kMicrosecondsPerSecond;
3079 : System::Clock::Microseconds64 utcTime;
3080 0 : if (System::SystemClock().GetClock_RealTime(utcTime) != CHIP_NO_ERROR || utcTime.count() <= kChipEpochUsSinceUnixEpoch)
3081 : {
3082 : // We have no time to give, but that's OK, just complete this stage
3083 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3084 0 : return;
3085 : }
3086 :
3087 0 : request.UTCTime = utcTime.count() - kChipEpochUsSinceUnixEpoch;
3088 : // For now, we assume a seconds granularity
3089 0 : request.granularity = TimeSynchronization::GranularityEnum::kSecondsGranularity;
3090 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnSetUTCError, endpoint, timeout);
3091 0 : if (err != CHIP_NO_ERROR)
3092 : {
3093 : // We won't get any async callbacks here, so just complete our stage.
3094 0 : ChipLogError(Controller, "Failed to send SetUTCTime command: %" CHIP_ERROR_FORMAT, err.Format());
3095 0 : CommissioningStageComplete(err);
3096 0 : return;
3097 : }
3098 0 : break;
3099 : }
3100 0 : case CommissioningStage::kConfigureTimeZone: {
3101 0 : if (!params.GetTimeZone().HasValue())
3102 : {
3103 0 : ChipLogError(Controller, "ConfigureTimeZone stage called with no time zone data");
3104 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3105 0 : return;
3106 : }
3107 0 : TimeSynchronization::Commands::SetTimeZone::Type request;
3108 0 : request.timeZone = params.GetTimeZone().Value();
3109 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetTimeZoneResponse, OnBasicFailure, endpoint, timeout);
3110 0 : if (err != CHIP_NO_ERROR)
3111 : {
3112 : // We won't get any async callbacks here, so just complete our stage.
3113 0 : ChipLogError(Controller, "Failed to send SetTimeZone command: %" CHIP_ERROR_FORMAT, err.Format());
3114 0 : CommissioningStageComplete(err);
3115 0 : return;
3116 : }
3117 0 : break;
3118 : }
3119 0 : case CommissioningStage::kConfigureDSTOffset: {
3120 0 : if (!params.GetDSTOffsets().HasValue())
3121 : {
3122 0 : ChipLogError(Controller, "ConfigureDSTOffset stage called with no DST data");
3123 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3124 0 : return;
3125 : }
3126 0 : TimeSynchronization::Commands::SetDSTOffset::Type request;
3127 0 : request.DSTOffset = params.GetDSTOffsets().Value();
3128 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3129 0 : if (err != CHIP_NO_ERROR)
3130 : {
3131 : // We won't get any async callbacks here, so just complete our stage.
3132 0 : ChipLogError(Controller, "Failed to send SetDSTOffset command: %" CHIP_ERROR_FORMAT, err.Format());
3133 0 : CommissioningStageComplete(err);
3134 0 : return;
3135 : }
3136 0 : break;
3137 : }
3138 0 : case CommissioningStage::kConfigureDefaultNTP: {
3139 0 : if (!params.GetDefaultNTP().HasValue())
3140 : {
3141 0 : ChipLogError(Controller, "ConfigureDefaultNTP stage called with no default NTP data");
3142 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3143 0 : return;
3144 : }
3145 0 : TimeSynchronization::Commands::SetDefaultNTP::Type request;
3146 0 : request.defaultNTP = params.GetDefaultNTP().Value();
3147 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3148 0 : if (err != CHIP_NO_ERROR)
3149 : {
3150 : // We won't get any async callbacks here, so just complete our stage.
3151 0 : ChipLogError(Controller, "Failed to send SetDefaultNTP command: %" CHIP_ERROR_FORMAT, err.Format());
3152 0 : CommissioningStageComplete(err);
3153 0 : return;
3154 : }
3155 0 : break;
3156 : }
3157 0 : case CommissioningStage::kScanNetworks: {
3158 0 : NetworkCommissioning::Commands::ScanNetworks::Type request;
3159 0 : if (params.GetWiFiCredentials().HasValue())
3160 : {
3161 0 : request.ssid.Emplace(params.GetWiFiCredentials().Value().ssid);
3162 : }
3163 0 : request.breadcrumb.Emplace(breadcrumb);
3164 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnScanNetworksResponse, OnScanNetworksFailure, endpoint, timeout);
3165 0 : if (err != CHIP_NO_ERROR)
3166 : {
3167 : // We won't get any async callbacks here, so just complete our stage.
3168 0 : ChipLogError(Controller, "Failed to send ScanNetworks command: %" CHIP_ERROR_FORMAT, err.Format());
3169 0 : CommissioningStageComplete(err);
3170 0 : return;
3171 : }
3172 0 : break;
3173 : }
3174 0 : case CommissioningStage::kNeedsNetworkCreds: {
3175 : // nothing to do, the OnScanNetworksSuccess and OnScanNetworksFailure callbacks provide indication to the
3176 : // DevicePairingDelegate that network credentials are needed.
3177 0 : break;
3178 : }
3179 0 : case CommissioningStage::kConfigRegulatory: {
3180 : // TODO(cecille): Worthwhile to keep this around as part of the class?
3181 : // TODO(cecille): Where is the country config actually set?
3182 0 : ChipLogProgress(Controller, "Setting Regulatory Config");
3183 : auto capability =
3184 0 : params.GetLocationCapability().ValueOr(app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor);
3185 : app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum regulatoryConfig;
3186 : // Value is only switchable on the devices with indoor/outdoor capability
3187 0 : if (capability == app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kIndoorOutdoor)
3188 : {
3189 : // If the device supports indoor and outdoor configs, use the setting from the commissioner, otherwise fall back to
3190 : // the current device setting then to outdoor (most restrictive)
3191 0 : if (params.GetDeviceRegulatoryLocation().HasValue())
3192 : {
3193 0 : regulatoryConfig = params.GetDeviceRegulatoryLocation().Value();
3194 0 : ChipLogProgress(Controller, "Setting regulatory config to %u from commissioner override",
3195 : static_cast<uint8_t>(regulatoryConfig));
3196 : }
3197 0 : else if (params.GetDefaultRegulatoryLocation().HasValue())
3198 : {
3199 0 : regulatoryConfig = params.GetDefaultRegulatoryLocation().Value();
3200 0 : ChipLogProgress(Controller, "No regulatory config supplied by controller, leaving as device default (%u)",
3201 : static_cast<uint8_t>(regulatoryConfig));
3202 : }
3203 : else
3204 : {
3205 0 : regulatoryConfig = app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor;
3206 0 : ChipLogProgress(Controller, "No overrride or device regulatory config supplied, setting to outdoor");
3207 : }
3208 : }
3209 : else
3210 : {
3211 0 : ChipLogProgress(Controller, "Device does not support configurable regulatory location");
3212 0 : regulatoryConfig = capability;
3213 : }
3214 :
3215 0 : CharSpan countryCode;
3216 0 : const auto & providedCountryCode = params.GetCountryCode();
3217 0 : if (providedCountryCode.HasValue())
3218 : {
3219 0 : countryCode = providedCountryCode.Value();
3220 : }
3221 : else
3222 : {
3223 : // Default to "XX", for lack of anything better.
3224 0 : countryCode = "XX"_span;
3225 : }
3226 :
3227 0 : GeneralCommissioning::Commands::SetRegulatoryConfig::Type request;
3228 0 : request.newRegulatoryConfig = regulatoryConfig;
3229 0 : request.countryCode = countryCode;
3230 0 : request.breadcrumb = breadcrumb;
3231 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetRegulatoryConfigResponse, OnBasicFailure, endpoint, timeout);
3232 0 : if (err != CHIP_NO_ERROR)
3233 : {
3234 : // We won't get any async callbacks here, so just complete our stage.
3235 0 : ChipLogError(Controller, "Failed to send SetRegulatoryConfig command: %" CHIP_ERROR_FORMAT, err.Format());
3236 0 : CommissioningStageComplete(err);
3237 0 : return;
3238 : }
3239 : }
3240 0 : break;
3241 0 : case CommissioningStage::kConfigureTCAcknowledgments: {
3242 0 : ChipLogProgress(Controller, "Setting Terms and Conditions");
3243 :
3244 0 : if (!params.GetTermsAndConditionsAcknowledgement().HasValue())
3245 : {
3246 0 : ChipLogProgress(Controller, "Setting Terms and Conditions: Skipped");
3247 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3248 0 : return;
3249 : }
3250 :
3251 0 : GeneralCommissioning::Commands::SetTCAcknowledgements::Type request;
3252 0 : TermsAndConditionsAcknowledgement termsAndConditionsAcknowledgement = params.GetTermsAndConditionsAcknowledgement().Value();
3253 0 : request.TCUserResponse = termsAndConditionsAcknowledgement.acceptedTermsAndConditions;
3254 0 : request.TCVersion = termsAndConditionsAcknowledgement.acceptedTermsAndConditionsVersion;
3255 :
3256 0 : ChipLogProgress(Controller, "Setting Terms and Conditions: %hu, %hu", request.TCUserResponse, request.TCVersion);
3257 : CHIP_ERROR err =
3258 0 : SendCommissioningCommand(proxy, request, OnSetTCAcknowledgementsResponse, OnBasicFailure, endpoint, timeout);
3259 0 : if (err != CHIP_NO_ERROR)
3260 : {
3261 0 : ChipLogError(Controller, "Failed to send SetTCAcknowledgements command: %" CHIP_ERROR_FORMAT, err.Format());
3262 0 : CommissioningStageComplete(err);
3263 0 : return;
3264 : }
3265 0 : break;
3266 : }
3267 0 : case CommissioningStage::kSendPAICertificateRequest: {
3268 0 : ChipLogProgress(Controller, "Sending request for PAI certificate");
3269 0 : CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kPAI, timeout);
3270 0 : if (err != CHIP_NO_ERROR)
3271 : {
3272 : // We won't get any async callbacks here, so just complete our stage.
3273 0 : ChipLogError(Controller, "Failed to send CertificateChainRequest command to get PAI: %" CHIP_ERROR_FORMAT,
3274 : err.Format());
3275 0 : CommissioningStageComplete(err);
3276 0 : return;
3277 : }
3278 0 : break;
3279 : }
3280 0 : case CommissioningStage::kSendDACCertificateRequest: {
3281 0 : ChipLogProgress(Controller, "Sending request for DAC certificate");
3282 0 : CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kDAC, timeout);
3283 0 : if (err != CHIP_NO_ERROR)
3284 : {
3285 : // We won't get any async callbacks here, so just complete our stage.
3286 0 : ChipLogError(Controller, "Failed to send CertificateChainRequest command to get DAC: %" CHIP_ERROR_FORMAT,
3287 : err.Format());
3288 0 : CommissioningStageComplete(err);
3289 0 : return;
3290 : }
3291 0 : break;
3292 : }
3293 0 : case CommissioningStage::kSendAttestationRequest: {
3294 0 : ChipLogProgress(Controller, "Sending Attestation Request to the device.");
3295 0 : if (!params.GetAttestationNonce().HasValue())
3296 : {
3297 0 : ChipLogError(Controller, "No attestation nonce found");
3298 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3299 0 : return;
3300 : }
3301 0 : CHIP_ERROR err = SendAttestationRequestCommand(proxy, params.GetAttestationNonce().Value(), timeout);
3302 0 : if (err != CHIP_NO_ERROR)
3303 : {
3304 : // We won't get any async callbacks here, so just complete our stage.
3305 0 : ChipLogError(Controller, "Failed to send AttestationRequest command: %" CHIP_ERROR_FORMAT, err.Format());
3306 0 : CommissioningStageComplete(err);
3307 0 : return;
3308 : }
3309 0 : break;
3310 : }
3311 0 : case CommissioningStage::kAttestationVerification: {
3312 0 : ChipLogProgress(Controller, "Verifying attestation");
3313 0 : if (IsAttestationInformationMissing(params))
3314 : {
3315 0 : ChipLogError(Controller, "Missing attestation information");
3316 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3317 0 : return;
3318 : }
3319 :
3320 : DeviceAttestationVerifier::AttestationInfo info(
3321 0 : params.GetAttestationElements().Value(),
3322 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
3323 0 : params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
3324 0 : params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
3325 :
3326 0 : if (ValidateAttestationInfo(info) != CHIP_NO_ERROR)
3327 : {
3328 0 : ChipLogError(Controller, "Error validating attestation information");
3329 0 : CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
3330 0 : return;
3331 : }
3332 : }
3333 0 : break;
3334 0 : case CommissioningStage::kAttestationRevocationCheck: {
3335 0 : ChipLogProgress(Controller, "Verifying device's DAC chain revocation status");
3336 0 : if (IsAttestationInformationMissing(params))
3337 : {
3338 0 : ChipLogError(Controller, "Missing attestation information");
3339 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3340 0 : return;
3341 : }
3342 :
3343 : DeviceAttestationVerifier::AttestationInfo info(
3344 0 : params.GetAttestationElements().Value(),
3345 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
3346 0 : params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
3347 0 : params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
3348 :
3349 0 : if (CheckForRevokedDACChain(info) != CHIP_NO_ERROR)
3350 : {
3351 0 : ChipLogError(Controller, "Error validating device's DAC chain revocation status");
3352 0 : CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
3353 0 : return;
3354 : }
3355 : }
3356 0 : break;
3357 0 : case CommissioningStage::kSendOpCertSigningRequest: {
3358 0 : if (!params.GetCSRNonce().HasValue())
3359 : {
3360 0 : ChipLogError(Controller, "No CSR nonce found");
3361 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3362 0 : return;
3363 : }
3364 0 : CHIP_ERROR err = SendOperationalCertificateSigningRequestCommand(proxy, params.GetCSRNonce().Value(), timeout);
3365 0 : if (err != CHIP_NO_ERROR)
3366 : {
3367 : // We won't get any async callbacks here, so just complete our stage.
3368 0 : ChipLogError(Controller, "Failed to send CSR request: %" CHIP_ERROR_FORMAT, err.Format());
3369 0 : CommissioningStageComplete(err);
3370 0 : return;
3371 : }
3372 0 : break;
3373 : }
3374 0 : case CommissioningStage::kValidateCSR: {
3375 0 : if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetCSRNonce().HasValue())
3376 : {
3377 0 : ChipLogError(Controller, "Unable to validate CSR");
3378 0 : return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3379 : }
3380 : // This is non-blocking, so send the callback immediately.
3381 0 : CHIP_ERROR err = ValidateCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
3382 0 : params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
3383 0 : params.GetCSRNonce().Value());
3384 0 : if (err != CHIP_NO_ERROR)
3385 : {
3386 0 : ChipLogError(Controller, "Unable to validate CSR");
3387 : }
3388 0 : CommissioningStageComplete(err);
3389 0 : return;
3390 : }
3391 : break;
3392 0 : case CommissioningStage::kGenerateNOCChain: {
3393 0 : if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
3394 0 : !params.GetCSRNonce().HasValue())
3395 : {
3396 0 : ChipLogError(Controller, "Unable to generate NOC chain parameters");
3397 0 : return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3398 : }
3399 0 : CHIP_ERROR err = ProcessCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
3400 0 : params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
3401 0 : params.GetPAI().Value(), params.GetCSRNonce().Value());
3402 0 : if (err != CHIP_NO_ERROR)
3403 : {
3404 0 : ChipLogError(Controller, "Unable to process Op CSR");
3405 : // Handle error, and notify session failure to the commissioner application.
3406 0 : ChipLogError(Controller, "Failed to process the certificate signing request");
3407 : // TODO: Map error status to correct error code
3408 0 : CommissioningStageComplete(err);
3409 0 : return;
3410 : }
3411 : }
3412 0 : break;
3413 0 : case CommissioningStage::kSendTrustedRootCert: {
3414 0 : if (!params.GetRootCert().HasValue() || !params.GetNoc().HasValue())
3415 : {
3416 0 : ChipLogError(Controller, "No trusted root cert or NOC specified");
3417 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3418 0 : return;
3419 : }
3420 0 : CHIP_ERROR err = SendTrustedRootCertificate(proxy, params.GetRootCert().Value(), timeout);
3421 0 : if (err != CHIP_NO_ERROR)
3422 : {
3423 0 : ChipLogError(Controller, "Error sending trusted root certificate: %" CHIP_ERROR_FORMAT, err.Format());
3424 0 : CommissioningStageComplete(err);
3425 0 : return;
3426 : }
3427 :
3428 0 : err = proxy->SetPeerId(params.GetRootCert().Value(), params.GetNoc().Value());
3429 0 : if (err != CHIP_NO_ERROR)
3430 : {
3431 0 : ChipLogError(Controller, "Error setting peer id: %s", err.AsString());
3432 0 : CommissioningStageComplete(err);
3433 0 : return;
3434 : }
3435 0 : if (!IsOperationalNodeId(proxy->GetDeviceId()))
3436 : {
3437 0 : ChipLogError(Controller, "Given node ID is not an operational node ID");
3438 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3439 0 : return;
3440 : }
3441 : }
3442 0 : break;
3443 0 : case CommissioningStage::kSendNOC: {
3444 0 : if (!params.GetNoc().HasValue() || !params.GetIpk().HasValue() || !params.GetAdminSubject().HasValue())
3445 : {
3446 0 : ChipLogError(Controller, "AddNOC contents not specified");
3447 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3448 0 : return;
3449 : }
3450 0 : CHIP_ERROR err = SendOperationalCertificate(proxy, params.GetNoc().Value(), params.GetIcac(), params.GetIpk().Value(),
3451 0 : params.GetAdminSubject().Value(), timeout);
3452 0 : if (err != CHIP_NO_ERROR)
3453 : {
3454 : // We won't get any async callbacks here, so just complete our stage.
3455 0 : ChipLogError(Controller, "Error sending operational certificate: %" CHIP_ERROR_FORMAT, err.Format());
3456 0 : CommissioningStageComplete(err);
3457 0 : return;
3458 : }
3459 0 : break;
3460 : }
3461 0 : case CommissioningStage::kConfigureTrustedTimeSource: {
3462 0 : if (!params.GetTrustedTimeSource().HasValue())
3463 : {
3464 0 : ChipLogError(Controller, "ConfigureTrustedTimeSource stage called with no trusted time source data");
3465 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3466 0 : return;
3467 : }
3468 0 : TimeSynchronization::Commands::SetTrustedTimeSource::Type request;
3469 0 : request.trustedTimeSource = params.GetTrustedTimeSource().Value();
3470 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3471 0 : if (err != CHIP_NO_ERROR)
3472 : {
3473 : // We won't get any async callbacks here, so just complete our stage.
3474 0 : ChipLogError(Controller, "Failed to send SendTrustedTimeSource command: %" CHIP_ERROR_FORMAT, err.Format());
3475 0 : CommissioningStageComplete(err);
3476 0 : return;
3477 : }
3478 0 : break;
3479 : }
3480 0 : case CommissioningStage::kWiFiNetworkSetup: {
3481 0 : if (!params.GetWiFiCredentials().HasValue())
3482 : {
3483 0 : ChipLogError(Controller, "No wifi credentials specified");
3484 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3485 0 : return;
3486 : }
3487 :
3488 0 : NetworkCommissioning::Commands::AddOrUpdateWiFiNetwork::Type request;
3489 0 : request.ssid = params.GetWiFiCredentials().Value().ssid;
3490 0 : request.credentials = params.GetWiFiCredentials().Value().credentials;
3491 0 : request.breadcrumb.Emplace(breadcrumb);
3492 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3493 0 : if (err != CHIP_NO_ERROR)
3494 : {
3495 : // We won't get any async callbacks here, so just complete our stage.
3496 0 : ChipLogError(Controller, "Failed to send AddOrUpdateWiFiNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3497 0 : CommissioningStageComplete(err);
3498 0 : return;
3499 : }
3500 : }
3501 0 : break;
3502 0 : case CommissioningStage::kThreadNetworkSetup: {
3503 0 : if (!params.GetThreadOperationalDataset().HasValue())
3504 : {
3505 0 : ChipLogError(Controller, "No thread credentials specified");
3506 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3507 0 : return;
3508 : }
3509 0 : NetworkCommissioning::Commands::AddOrUpdateThreadNetwork::Type request;
3510 0 : request.operationalDataset = params.GetThreadOperationalDataset().Value();
3511 0 : request.breadcrumb.Emplace(breadcrumb);
3512 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3513 0 : if (err != CHIP_NO_ERROR)
3514 : {
3515 : // We won't get any async callbacks here, so just complete our stage.
3516 0 : ChipLogError(Controller, "Failed to send AddOrUpdateThreadNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3517 0 : CommissioningStageComplete(err);
3518 0 : return;
3519 : }
3520 : }
3521 0 : break;
3522 0 : case CommissioningStage::kFailsafeBeforeWiFiEnable:
3523 : FALLTHROUGH;
3524 : case CommissioningStage::kFailsafeBeforeThreadEnable:
3525 : // Before we try to do network enablement, make sure that our fail-safe
3526 : // is set far enough out that we can later try to do operational
3527 : // discovery without it timing out.
3528 0 : ExtendFailsafeBeforeNetworkEnable(proxy, params, step);
3529 0 : break;
3530 0 : case CommissioningStage::kWiFiNetworkEnable: {
3531 0 : if (!params.GetWiFiCredentials().HasValue())
3532 : {
3533 0 : ChipLogError(Controller, "No wifi credentials specified");
3534 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3535 0 : return;
3536 : }
3537 0 : NetworkCommissioning::Commands::ConnectNetwork::Type request;
3538 0 : request.networkID = params.GetWiFiCredentials().Value().ssid;
3539 0 : request.breadcrumb.Emplace(breadcrumb);
3540 :
3541 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3542 0 : ChipLogProgress(Controller, "SendCommand kWiFiNetworkEnable, supportsConcurrentConnection=%s",
3543 : params.GetSupportsConcurrentConnection().HasValue()
3544 : ? (params.GetSupportsConcurrentConnection().Value() ? "true" : "false")
3545 : : "missing");
3546 0 : err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
3547 :
3548 0 : if (err != CHIP_NO_ERROR)
3549 : {
3550 : // We won't get any async callbacks here, so just complete our stage.
3551 0 : ChipLogError(Controller, "Failed to send WiFi ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3552 0 : CommissioningStageComplete(err);
3553 0 : return;
3554 : }
3555 : }
3556 0 : break;
3557 0 : case CommissioningStage::kThreadNetworkEnable: {
3558 0 : ByteSpan extendedPanId;
3559 0 : chip::Thread::OperationalDataset operationalDataset;
3560 0 : if (!params.GetThreadOperationalDataset().HasValue() ||
3561 0 : operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
3562 0 : operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
3563 : {
3564 0 : ChipLogError(Controller, "Unable to get extended pan ID for thread operational dataset\n");
3565 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3566 0 : return;
3567 : }
3568 0 : NetworkCommissioning::Commands::ConnectNetwork::Type request;
3569 0 : request.networkID = extendedPanId;
3570 0 : request.breadcrumb.Emplace(breadcrumb);
3571 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
3572 0 : if (err != CHIP_NO_ERROR)
3573 : {
3574 : // We won't get any async callbacks here, so just complete our stage.
3575 0 : ChipLogError(Controller, "Failed to send Thread ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3576 0 : CommissioningStageComplete(err);
3577 0 : return;
3578 : }
3579 : }
3580 0 : break;
3581 0 : case CommissioningStage::kICDGetRegistrationInfo: {
3582 0 : GetPairingDelegate()->OnICDRegistrationInfoRequired();
3583 0 : return;
3584 : }
3585 : break;
3586 0 : case CommissioningStage::kICDRegistration: {
3587 0 : IcdManagement::Commands::RegisterClient::Type request;
3588 :
3589 0 : if (!(params.GetICDCheckInNodeId().HasValue() && params.GetICDMonitoredSubject().HasValue() &&
3590 0 : params.GetICDSymmetricKey().HasValue()))
3591 : {
3592 0 : ChipLogError(Controller, "No ICD Registration information provided!");
3593 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE);
3594 0 : return;
3595 : }
3596 :
3597 0 : request.checkInNodeID = params.GetICDCheckInNodeId().Value();
3598 0 : request.monitoredSubject = params.GetICDMonitoredSubject().Value();
3599 0 : request.key = params.GetICDSymmetricKey().Value();
3600 :
3601 : CHIP_ERROR err =
3602 0 : SendCommissioningCommand(proxy, request, OnICDManagementRegisterClientResponse, OnBasicFailure, endpoint, timeout);
3603 0 : if (err != CHIP_NO_ERROR)
3604 : {
3605 : // We won't get any async callbacks here, so just complete our stage.
3606 0 : ChipLogError(Controller, "Failed to send IcdManagement.RegisterClient command: %" CHIP_ERROR_FORMAT, err.Format());
3607 0 : CommissioningStageComplete(err);
3608 0 : return;
3609 : }
3610 : }
3611 0 : break;
3612 0 : case CommissioningStage::kEvictPreviousCaseSessions: {
3613 0 : auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
3614 :
3615 : // If we ever had a commissioned device with this node ID before, we may
3616 : // have stale sessions to it. Make sure we don't re-use any of those,
3617 : // because clearly they are not related to this new device we are
3618 : // commissioning. We only care about sessions we might reuse, so just
3619 : // clearing the ones associated with our fabric index is good enough and
3620 : // we don't need to worry about ExpireAllSessionsOnLogicalFabric.
3621 0 : mSystemState->SessionMgr()->ExpireAllSessions(scopedPeerId);
3622 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3623 0 : return;
3624 : }
3625 0 : case CommissioningStage::kFindOperationalForStayActive:
3626 : case CommissioningStage::kFindOperationalForCommissioningComplete: {
3627 : // If there is an error, CommissioningStageComplete will be called from OnDeviceConnectionFailureFn.
3628 0 : auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
3629 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissioningOperationalSetup);
3630 0 : mSystemState->CASESessionMgr()->FindOrEstablishSession(scopedPeerId, &mOnDeviceConnectedCallback,
3631 : &mOnDeviceConnectionFailureCallback
3632 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
3633 : ,
3634 : /* attemptCount = */ 3, &mOnDeviceConnectionRetryCallback
3635 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
3636 : );
3637 : }
3638 0 : break;
3639 0 : case CommissioningStage::kPrimaryOperationalNetworkFailed: {
3640 : // nothing to do. This stage indicates that the primary operational network failed and the network config should be
3641 : // removed later.
3642 0 : break;
3643 : }
3644 0 : case CommissioningStage::kRemoveWiFiNetworkConfig: {
3645 0 : NetworkCommissioning::Commands::RemoveNetwork::Type request;
3646 0 : request.networkID = params.GetWiFiCredentials().Value().ssid;
3647 0 : request.breadcrumb.Emplace(breadcrumb);
3648 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3649 0 : if (err != CHIP_NO_ERROR)
3650 : {
3651 : // We won't get any async callbacks here, so just complete our stage.
3652 0 : ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3653 0 : CommissioningStageComplete(err);
3654 0 : return;
3655 : }
3656 0 : break;
3657 : }
3658 0 : case CommissioningStage::kRemoveThreadNetworkConfig: {
3659 0 : ByteSpan extendedPanId;
3660 0 : chip::Thread::OperationalDataset operationalDataset;
3661 0 : if (!params.GetThreadOperationalDataset().HasValue() ||
3662 0 : operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
3663 0 : operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
3664 : {
3665 0 : ChipLogError(Controller, "Unable to get extended pan ID for thread operational dataset\n");
3666 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3667 0 : return;
3668 : }
3669 0 : NetworkCommissioning::Commands::RemoveNetwork::Type request;
3670 0 : request.networkID = extendedPanId;
3671 0 : request.breadcrumb.Emplace(breadcrumb);
3672 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3673 0 : if (err != CHIP_NO_ERROR)
3674 : {
3675 : // We won't get any async callbacks here, so just complete our stage.
3676 0 : ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3677 0 : CommissioningStageComplete(err);
3678 0 : return;
3679 : }
3680 0 : break;
3681 : }
3682 0 : case CommissioningStage::kICDSendStayActive: {
3683 0 : if (!(params.GetICDStayActiveDurationMsec().HasValue()))
3684 : {
3685 0 : ChipLogProgress(Controller, "Skipping kICDSendStayActive");
3686 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3687 0 : return;
3688 : }
3689 :
3690 : // StayActive Command happens over CASE Connection
3691 0 : IcdManagement::Commands::StayActiveRequest::Type request;
3692 0 : request.stayActiveDuration = params.GetICDStayActiveDurationMsec().Value();
3693 0 : ChipLogError(Controller, "Send ICD StayActive with Duration %u", request.stayActiveDuration);
3694 : CHIP_ERROR err =
3695 0 : SendCommissioningCommand(proxy, request, OnICDManagementStayActiveResponse, OnBasicFailure, endpoint, timeout);
3696 0 : if (err != CHIP_NO_ERROR)
3697 : {
3698 : // We won't get any async callbacks here, so just complete our stage.
3699 0 : ChipLogError(Controller, "Failed to send IcdManagement.StayActive command: %" CHIP_ERROR_FORMAT, err.Format());
3700 0 : CommissioningStageComplete(err);
3701 0 : return;
3702 : }
3703 : }
3704 0 : break;
3705 0 : case CommissioningStage::kSendComplete: {
3706 : // CommissioningComplete command happens over the CASE connection.
3707 : GeneralCommissioning::Commands::CommissioningComplete::Type request;
3708 : CHIP_ERROR err =
3709 0 : SendCommissioningCommand(proxy, request, OnCommissioningCompleteResponse, OnBasicFailure, endpoint, timeout);
3710 0 : if (err != CHIP_NO_ERROR)
3711 : {
3712 : // We won't get any async callbacks here, so just complete our stage.
3713 0 : ChipLogError(Controller, "Failed to send CommissioningComplete command: %" CHIP_ERROR_FORMAT, err.Format());
3714 0 : CommissioningStageComplete(err);
3715 0 : return;
3716 : }
3717 : }
3718 0 : break;
3719 0 : case CommissioningStage::kCleanup:
3720 0 : CleanupCommissioning(proxy, proxy->GetDeviceId(), params.GetCompletionStatus());
3721 0 : break;
3722 0 : case CommissioningStage::kError:
3723 0 : mCommissioningStage = CommissioningStage::kSecurePairing;
3724 0 : break;
3725 0 : case CommissioningStage::kSecurePairing:
3726 0 : break;
3727 : }
3728 : }
3729 :
3730 0 : void DeviceCommissioner::ExtendFailsafeBeforeNetworkEnable(DeviceProxy * device, CommissioningParameters & params,
3731 : CommissioningStage step)
3732 : {
3733 0 : auto * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
3734 0 : if (device != commissioneeDevice)
3735 : {
3736 : // Not a commissionee device; just return.
3737 0 : ChipLogError(Controller, "Trying to extend fail-safe for an unknown commissionee with device id " ChipLogFormatX64,
3738 : ChipLogValueX64(device->GetDeviceId()));
3739 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE, CommissioningDelegate::CommissioningReport());
3740 0 : return;
3741 : }
3742 :
3743 : // Try to make sure we have at least enough time for our expected
3744 : // commissioning bits plus the MRP retries for a Sigma1.
3745 0 : uint16_t failSafeTimeoutSecs = params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout);
3746 0 : auto sigma1Timeout = CASESession::ComputeSigma1ResponseTimeout(commissioneeDevice->GetPairing().GetRemoteMRPConfig());
3747 0 : uint16_t sigma1TimeoutSecs = std::chrono::duration_cast<System::Clock::Seconds16>(sigma1Timeout).count();
3748 0 : if (UINT16_MAX - failSafeTimeoutSecs < sigma1TimeoutSecs)
3749 : {
3750 0 : failSafeTimeoutSecs = UINT16_MAX;
3751 : }
3752 : else
3753 : {
3754 0 : failSafeTimeoutSecs = static_cast<uint16_t>(failSafeTimeoutSecs + sigma1TimeoutSecs);
3755 : }
3756 :
3757 0 : if (!ExtendArmFailSafeInternal(commissioneeDevice, step, failSafeTimeoutSecs, MakeOptional(kMinimumCommissioningStepTimeout),
3758 : OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false))
3759 : {
3760 : // A false return is fine; we don't want to make the fail-safe shorter here.
3761 0 : CommissioningStageComplete(CHIP_NO_ERROR, CommissioningDelegate::CommissioningReport());
3762 : }
3763 : }
3764 :
3765 0 : bool DeviceCommissioner::IsAttestationInformationMissing(const CommissioningParameters & params)
3766 : {
3767 0 : if (!params.GetAttestationElements().HasValue() || !params.GetAttestationSignature().HasValue() ||
3768 0 : !params.GetAttestationNonce().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
3769 0 : !params.GetRemoteVendorId().HasValue() || !params.GetRemoteProductId().HasValue())
3770 : {
3771 0 : return true;
3772 : }
3773 :
3774 0 : return false;
3775 : }
3776 :
3777 0 : CHIP_ERROR DeviceController::GetCompressedFabricIdBytes(MutableByteSpan & outBytes) const
3778 : {
3779 0 : const auto * fabricInfo = GetFabricInfo();
3780 0 : VerifyOrReturnError(fabricInfo != nullptr, CHIP_ERROR_INVALID_FABRIC_INDEX);
3781 0 : return fabricInfo->GetCompressedFabricIdBytes(outBytes);
3782 : }
3783 :
3784 0 : CHIP_ERROR DeviceController::GetRootPublicKey(Crypto::P256PublicKey & outRootPublicKey) const
3785 : {
3786 0 : const auto * fabricTable = GetFabricTable();
3787 0 : VerifyOrReturnError(fabricTable != nullptr, CHIP_ERROR_INCORRECT_STATE);
3788 0 : return fabricTable->FetchRootPubkey(mFabricIndex, outRootPublicKey);
3789 : }
3790 :
3791 : } // namespace Controller
3792 : } // namespace chip
|