Line data Source code
1 : /*
2 : *
3 : * Copyright (c) 2020-2024 Project CHIP Authors
4 : * Copyright (c) 2013-2017 Nest Labs, Inc.
5 : * All rights reserved.
6 : *
7 : * Licensed under the Apache License, Version 2.0 (the "License");
8 : * you may not use this file except in compliance with the License.
9 : * You may obtain a copy of the License at
10 : *
11 : * http://www.apache.org/licenses/LICENSE-2.0
12 : *
13 : * Unless required by applicable law or agreed to in writing, software
14 : * distributed under the License is distributed on an "AS IS" BASIS,
15 : * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 : * See the License for the specific language governing permissions and
17 : * limitations under the License.
18 : */
19 :
20 : /**
21 : * @file
22 : * Implementation of CHIP Device Controller, a common class
23 : * that implements discovery, pairing and provisioning of CHIP
24 : * devices.
25 : *
26 : */
27 :
28 : // module header, comes first
29 : #include <controller/CHIPDeviceController.h>
30 :
31 : #include <app-common/zap-generated/ids/Attributes.h>
32 : #include <app-common/zap-generated/ids/Clusters.h>
33 :
34 : #include <app/InteractionModelEngine.h>
35 : #include <app/OperationalSessionSetup.h>
36 : #include <app/server/Dnssd.h>
37 : #include <controller/CurrentFabricRemover.h>
38 : #include <controller/InvokeInteraction.h>
39 : #include <controller/WriteInteraction.h>
40 : #include <credentials/CHIPCert.h>
41 : #include <credentials/DeviceAttestationCredsProvider.h>
42 : #include <crypto/CHIPCryptoPAL.h>
43 : #include <lib/core/CHIPCore.h>
44 : #include <lib/core/CHIPEncoding.h>
45 : #include <lib/core/CHIPSafeCasts.h>
46 : #include <lib/core/ErrorStr.h>
47 : #include <lib/core/NodeId.h>
48 : #include <lib/support/Base64.h>
49 : #include <lib/support/CHIPArgParser.hpp>
50 : #include <lib/support/CHIPMem.h>
51 : #include <lib/support/CodeUtils.h>
52 : #include <lib/support/PersistentStorageMacros.h>
53 : #include <lib/support/SafeInt.h>
54 : #include <lib/support/ScopedBuffer.h>
55 : #include <lib/support/ThreadOperationalDataset.h>
56 : #include <lib/support/TimeUtils.h>
57 : #include <lib/support/logging/CHIPLogging.h>
58 : #include <messaging/ExchangeContext.h>
59 : #include <platform/LockTracker.h>
60 : #include <protocols/secure_channel/MessageCounterManager.h>
61 : #include <setup_payload/QRCodeSetupPayloadParser.h>
62 : #include <tracing/macros.h>
63 : #include <tracing/metric_event.h>
64 :
65 : #if CONFIG_NETWORK_LAYER_BLE
66 : #include <ble/Ble.h>
67 : #include <transport/raw/BLE.h>
68 : #endif
69 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
70 : #include <transport/raw/WiFiPAF.h>
71 : #endif
72 :
73 : #include <algorithm>
74 : #include <array>
75 : #include <errno.h>
76 : #include <inttypes.h>
77 : #include <limits>
78 : #include <memory>
79 : #include <stdint.h>
80 : #include <stdlib.h>
81 : #include <string>
82 : #include <time.h>
83 :
84 : using namespace chip::app;
85 : using namespace chip::app::Clusters;
86 : using namespace chip::Inet;
87 : using namespace chip::System;
88 : using namespace chip::Transport;
89 : using namespace chip::Credentials;
90 : using namespace chip::Crypto;
91 : using namespace chip::Tracing;
92 :
93 : namespace chip {
94 : namespace Controller {
95 :
96 : using namespace chip::Encoding;
97 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
98 : using namespace chip::Protocols::UserDirectedCommissioning;
99 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
100 :
101 88 : DeviceController::DeviceController()
102 : {
103 8 : mState = State::NotInitialized;
104 8 : }
105 :
106 0 : CHIP_ERROR DeviceController::Init(ControllerInitParams params)
107 : {
108 0 : assertChipStackLockedByCurrentThread();
109 :
110 0 : VerifyOrReturnError(mState == State::NotInitialized, CHIP_ERROR_INCORRECT_STATE);
111 0 : VerifyOrReturnError(params.systemState != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
112 :
113 0 : VerifyOrReturnError(params.systemState->SystemLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
114 0 : VerifyOrReturnError(params.systemState->UDPEndPointManager() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
115 :
116 : #if CONFIG_NETWORK_LAYER_BLE
117 0 : VerifyOrReturnError(params.systemState->BleLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
118 : #endif
119 :
120 0 : VerifyOrReturnError(params.systemState->TransportMgr() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
121 :
122 0 : ReturnErrorOnFailure(mDNSResolver.Init(params.systemState->UDPEndPointManager()));
123 0 : mDNSResolver.SetDiscoveryDelegate(this);
124 0 : RegisterDeviceDiscoveryDelegate(params.deviceDiscoveryDelegate);
125 :
126 0 : mVendorId = params.controllerVendorId;
127 0 : if (params.operationalKeypair != nullptr || !params.controllerNOC.empty() || !params.controllerRCAC.empty())
128 : {
129 0 : ReturnErrorOnFailure(InitControllerNOCChain(params));
130 : }
131 0 : else if (params.fabricIndex.HasValue())
132 : {
133 0 : VerifyOrReturnError(params.systemState->Fabrics()->FabricCount() > 0, CHIP_ERROR_INVALID_ARGUMENT);
134 0 : if (params.systemState->Fabrics()->FindFabricWithIndex(params.fabricIndex.Value()) != nullptr)
135 : {
136 0 : mFabricIndex = params.fabricIndex.Value();
137 : }
138 : else
139 : {
140 0 : ChipLogError(Controller, "There is no fabric corresponding to the given fabricIndex");
141 0 : return CHIP_ERROR_INVALID_ARGUMENT;
142 : }
143 : }
144 :
145 0 : mSystemState = params.systemState->Retain();
146 0 : mState = State::Initialized;
147 :
148 0 : mRemoveFromFabricTableOnShutdown = params.removeFromFabricTableOnShutdown;
149 0 : mDeleteFromFabricTableOnShutdown = params.deleteFromFabricTableOnShutdown;
150 :
151 0 : if (GetFabricIndex() != kUndefinedFabricIndex)
152 : {
153 0 : ChipLogProgress(Controller,
154 : "Joined the fabric at index %d. Fabric ID is 0x" ChipLogFormatX64
155 : " (Compressed Fabric ID: " ChipLogFormatX64 ")",
156 : GetFabricIndex(), ChipLogValueX64(GetFabricId()), ChipLogValueX64(GetCompressedFabricId()));
157 : }
158 :
159 0 : return CHIP_NO_ERROR;
160 : }
161 :
162 0 : CHIP_ERROR DeviceController::InitControllerNOCChain(const ControllerInitParams & params)
163 : {
164 0 : FabricInfo newFabric;
165 0 : constexpr uint32_t chipCertAllocatedLen = kMaxCHIPCertLength;
166 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> rcacBuf;
167 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> icacBuf;
168 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> nocBuf;
169 0 : Credentials::P256PublicKeySpan rootPublicKeySpan;
170 : FabricId fabricId;
171 : NodeId nodeId;
172 0 : bool hasExternallyOwnedKeypair = false;
173 0 : Crypto::P256Keypair * externalOperationalKeypair = nullptr;
174 0 : VendorId newFabricVendorId = params.controllerVendorId;
175 :
176 : // There are three possibilities here in terms of what happens with our
177 : // operational key:
178 : // 1) We have an externally owned operational keypair.
179 : // 2) We have an operational keypair that the fabric table should clone via
180 : // serialize/deserialize.
181 : // 3) We have no keypair at all, and the fabric table has been initialized
182 : // with a key store.
183 0 : if (params.operationalKeypair != nullptr)
184 : {
185 0 : hasExternallyOwnedKeypair = params.hasExternallyOwnedOperationalKeypair;
186 0 : externalOperationalKeypair = params.operationalKeypair;
187 : }
188 :
189 0 : VerifyOrReturnError(rcacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
190 0 : VerifyOrReturnError(icacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
191 0 : VerifyOrReturnError(nocBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
192 :
193 0 : MutableByteSpan rcacSpan(rcacBuf.Get(), chipCertAllocatedLen);
194 :
195 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerRCAC, rcacSpan));
196 0 : ReturnErrorOnFailure(Credentials::ExtractPublicKeyFromChipCert(rcacSpan, rootPublicKeySpan));
197 0 : Crypto::P256PublicKey rootPublicKey{ rootPublicKeySpan };
198 :
199 0 : MutableByteSpan icacSpan;
200 0 : if (params.controllerICAC.empty())
201 : {
202 0 : ChipLogProgress(Controller, "Intermediate CA is not needed");
203 : }
204 : else
205 : {
206 0 : icacSpan = MutableByteSpan(icacBuf.Get(), chipCertAllocatedLen);
207 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerICAC, icacSpan));
208 : }
209 :
210 0 : MutableByteSpan nocSpan = MutableByteSpan(nocBuf.Get(), chipCertAllocatedLen);
211 :
212 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerNOC, nocSpan));
213 0 : ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(nocSpan, &nodeId, &fabricId));
214 :
215 0 : auto * fabricTable = params.systemState->Fabrics();
216 0 : const FabricInfo * fabricInfo = nullptr;
217 :
218 : //
219 : // When multiple controllers are permitted on the same fabric, we need to find fabrics with
220 : // nodeId as an extra discriminant since we can have multiple FabricInfo objects that all
221 : // collide on the same fabric. Not doing so may result in a match with an existing FabricInfo
222 : // instance that matches the fabric in the provided NOC but is associated with a different NodeId
223 : // that is already in use by another active controller instance. That will effectively cause it
224 : // to change its identity inadvertently, which is not acceptable.
225 : //
226 : // TODO: Figure out how to clean up unreclaimed FabricInfos restored from persistent
227 : // storage that are not in use by active DeviceController instances. Also, figure out
228 : // how to reclaim FabricInfo slots when a DeviceController instance is deleted.
229 : //
230 0 : if (params.permitMultiControllerFabrics)
231 : {
232 0 : fabricInfo = fabricTable->FindIdentity(rootPublicKey, fabricId, nodeId);
233 : }
234 : else
235 : {
236 0 : fabricInfo = fabricTable->FindFabric(rootPublicKey, fabricId);
237 : }
238 :
239 0 : bool fabricFoundInTable = (fabricInfo != nullptr);
240 :
241 0 : FabricIndex fabricIndex = fabricFoundInTable ? fabricInfo->GetFabricIndex() : kUndefinedFabricIndex;
242 :
243 0 : CHIP_ERROR err = CHIP_NO_ERROR;
244 :
245 0 : auto advertiseOperational =
246 0 : params.enableServerInteractions ? FabricTable::AdvertiseIdentity::Yes : FabricTable::AdvertiseIdentity::No;
247 :
248 : //
249 : // We permit colliding fabrics when multiple controllers are present on the same logical fabric
250 : // since each controller is associated with a unique FabricInfo 'identity' object and consequently,
251 : // a unique FabricIndex.
252 : //
253 : // This sets a flag that will be cleared automatically when the fabric is committed/reverted later
254 : // in this function.
255 : //
256 0 : if (params.permitMultiControllerFabrics)
257 : {
258 0 : fabricTable->PermitCollidingFabrics();
259 : }
260 :
261 : // We have 4 cases to handle legacy usage of direct operational key injection
262 0 : if (externalOperationalKeypair)
263 : {
264 : // Cases 1 and 2: Injected operational keys
265 :
266 : // CASE 1: Fabric update with injected key
267 0 : if (fabricFoundInTable)
268 : {
269 0 : err = fabricTable->UpdatePendingFabricWithProvidedOpKey(fabricIndex, nocSpan, icacSpan, externalOperationalKeypair,
270 : hasExternallyOwnedKeypair, advertiseOperational);
271 : }
272 : else
273 : // CASE 2: New fabric with injected key
274 : {
275 0 : err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
276 0 : if (err == CHIP_NO_ERROR)
277 : {
278 0 : err = fabricTable->AddNewPendingFabricWithProvidedOpKey(nocSpan, icacSpan, newFabricVendorId,
279 : externalOperationalKeypair, hasExternallyOwnedKeypair,
280 : &fabricIndex, advertiseOperational);
281 : }
282 : }
283 : }
284 : else
285 : {
286 : // Cases 3 and 4: OperationalKeystore has the keys
287 :
288 : // CASE 3: Fabric update with operational keystore
289 0 : if (fabricFoundInTable)
290 : {
291 0 : VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(fabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
292 :
293 0 : err = fabricTable->UpdatePendingFabricWithOperationalKeystore(fabricIndex, nocSpan, icacSpan, advertiseOperational);
294 : }
295 : else
296 : // CASE 4: New fabric with operational keystore
297 : {
298 0 : err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
299 0 : if (err == CHIP_NO_ERROR)
300 : {
301 0 : err = fabricTable->AddNewPendingFabricWithOperationalKeystore(nocSpan, icacSpan, newFabricVendorId, &fabricIndex,
302 : advertiseOperational);
303 : }
304 :
305 0 : if (err == CHIP_NO_ERROR)
306 : {
307 : // Now that we know our planned fabric index, verify that the
308 : // keystore has a key for it.
309 0 : if (!fabricTable->HasOperationalKeyForFabric(fabricIndex))
310 : {
311 0 : err = CHIP_ERROR_KEY_NOT_FOUND;
312 : }
313 : }
314 : }
315 : }
316 :
317 : // Commit after setup, error-out on failure.
318 0 : if (err == CHIP_NO_ERROR)
319 : {
320 : // No need to revert on error: CommitPendingFabricData reverts internally on *any* error.
321 0 : err = fabricTable->CommitPendingFabricData();
322 : }
323 : else
324 : {
325 0 : fabricTable->RevertPendingFabricData();
326 : }
327 :
328 0 : ReturnErrorOnFailure(err);
329 0 : VerifyOrReturnError(fabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
330 :
331 0 : mFabricIndex = fabricIndex;
332 0 : mAdvertiseIdentity = advertiseOperational;
333 0 : return CHIP_NO_ERROR;
334 0 : }
335 :
336 0 : CHIP_ERROR DeviceController::UpdateControllerNOCChain(const ByteSpan & noc, const ByteSpan & icac,
337 : Crypto::P256Keypair * operationalKeypair,
338 : bool operationalKeypairExternalOwned)
339 : {
340 0 : VerifyOrReturnError(mFabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
341 0 : VerifyOrReturnError(mSystemState != nullptr, CHIP_ERROR_INTERNAL);
342 0 : FabricTable * fabricTable = mSystemState->Fabrics();
343 0 : CHIP_ERROR err = CHIP_NO_ERROR;
344 : FabricId fabricId;
345 : NodeId nodeId;
346 0 : CATValues oldCats;
347 0 : CATValues newCats;
348 0 : ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(noc, &nodeId, &fabricId));
349 0 : ReturnErrorOnFailure(fabricTable->FetchCATs(mFabricIndex, oldCats));
350 0 : ReturnErrorOnFailure(ExtractCATsFromOpCert(noc, newCats));
351 :
352 0 : bool needCloseSession = true;
353 0 : if (GetFabricInfo()->GetNodeId() == nodeId && oldCats == newCats)
354 : {
355 0 : needCloseSession = false;
356 : }
357 :
358 0 : if (operationalKeypair != nullptr)
359 : {
360 0 : err = fabricTable->UpdatePendingFabricWithProvidedOpKey(mFabricIndex, noc, icac, operationalKeypair,
361 : operationalKeypairExternalOwned, mAdvertiseIdentity);
362 : }
363 : else
364 : {
365 0 : VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(mFabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
366 0 : err = fabricTable->UpdatePendingFabricWithOperationalKeystore(mFabricIndex, noc, icac, mAdvertiseIdentity);
367 : }
368 :
369 0 : if (err == CHIP_NO_ERROR)
370 : {
371 0 : err = fabricTable->CommitPendingFabricData();
372 : }
373 : else
374 : {
375 0 : fabricTable->RevertPendingFabricData();
376 : }
377 :
378 0 : ReturnErrorOnFailure(err);
379 0 : if (needCloseSession)
380 : {
381 : // If the node id or CATs have changed, our existing CASE sessions are no longer valid,
382 : // because the other side will think anything coming over those sessions comes from our
383 : // old node ID, and the new CATs might not satisfy the ACL requirements of the other side.
384 0 : mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
385 : }
386 0 : ChipLogProgress(Controller, "Controller NOC chain has updated");
387 0 : return CHIP_NO_ERROR;
388 : }
389 :
390 0 : void DeviceController::Shutdown()
391 : {
392 0 : assertChipStackLockedByCurrentThread();
393 :
394 0 : VerifyOrReturn(mState != State::NotInitialized);
395 :
396 : // If our state is initialialized it means mSystemState is valid,
397 : // and we can use it below before we release our reference to it.
398 0 : ChipLogDetail(Controller, "Shutting down the controller");
399 0 : mState = State::NotInitialized;
400 :
401 0 : if (mFabricIndex != kUndefinedFabricIndex)
402 : {
403 : // Shut down any subscription clients for this fabric.
404 0 : app::InteractionModelEngine::GetInstance()->ShutdownSubscriptions(mFabricIndex);
405 :
406 : // Shut down any ongoing CASE session activity we have. We're going to
407 : // assume that all sessions for our fabric belong to us here.
408 0 : mSystemState->CASESessionMgr()->ReleaseSessionsForFabric(mFabricIndex);
409 :
410 : // Shut down any bdx transfers we're acting as the server for.
411 0 : mSystemState->BDXTransferServer()->AbortTransfersForFabric(mFabricIndex);
412 :
413 : // TODO: The CASE session manager does not shut down existing CASE
414 : // sessions. It just shuts down any ongoing CASE session establishment
415 : // we're in the middle of as initiator. Maybe it should shut down
416 : // existing sessions too?
417 0 : mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
418 :
419 0 : if (mDeleteFromFabricTableOnShutdown)
420 : {
421 0 : mSystemState->Fabrics()->Delete(mFabricIndex);
422 : }
423 0 : else if (mRemoveFromFabricTableOnShutdown)
424 : {
425 0 : mSystemState->Fabrics()->Forget(mFabricIndex);
426 : }
427 : }
428 :
429 0 : mSystemState->Release();
430 0 : mSystemState = nullptr;
431 :
432 0 : mDNSResolver.Shutdown();
433 0 : mDeviceDiscoveryDelegate = nullptr;
434 : }
435 :
436 0 : CHIP_ERROR DeviceController::GetPeerAddressAndPort(NodeId peerId, Inet::IPAddress & addr, uint16_t & port)
437 : {
438 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
439 0 : Transport::PeerAddress peerAddr;
440 0 : ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(peerId), peerAddr));
441 0 : addr = peerAddr.GetIPAddress();
442 0 : port = peerAddr.GetPort();
443 0 : return CHIP_NO_ERROR;
444 : }
445 :
446 0 : CHIP_ERROR DeviceController::GetPeerAddress(NodeId nodeId, Transport::PeerAddress & addr)
447 : {
448 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
449 0 : ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(nodeId), addr));
450 :
451 0 : return CHIP_NO_ERROR;
452 : }
453 :
454 0 : CHIP_ERROR DeviceController::ComputePASEVerifier(uint32_t iterations, uint32_t setupPincode, const ByteSpan & salt,
455 : Spake2pVerifier & outVerifier)
456 : {
457 0 : ReturnErrorOnFailure(PASESession::GeneratePASEVerifier(outVerifier, iterations, salt, /* useRandomPIN= */ false, setupPincode));
458 :
459 0 : return CHIP_NO_ERROR;
460 : }
461 :
462 0 : ControllerDeviceInitParams DeviceController::GetControllerDeviceInitParams()
463 : {
464 : return ControllerDeviceInitParams{
465 0 : .sessionManager = mSystemState->SessionMgr(),
466 0 : .exchangeMgr = mSystemState->ExchangeMgr(),
467 0 : };
468 : }
469 :
470 0 : DeviceCommissioner::DeviceCommissioner() :
471 0 : mOnDeviceConnectedCallback(OnDeviceConnectedFn, this), mOnDeviceConnectionFailureCallback(OnDeviceConnectionFailureFn, this),
472 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
473 0 : mOnDeviceConnectionRetryCallback(OnDeviceConnectionRetryFn, this),
474 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
475 0 : mDeviceAttestationInformationVerificationCallback(OnDeviceAttestationInformationVerification, this),
476 0 : mDeviceNOCChainCallback(OnDeviceNOCChainGeneration, this), mSetUpCodePairer(this)
477 0 : {}
478 :
479 0 : CHIP_ERROR DeviceCommissioner::Init(CommissionerInitParams params)
480 : {
481 0 : VerifyOrReturnError(params.operationalCredentialsDelegate != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
482 0 : mOperationalCredentialsDelegate = params.operationalCredentialsDelegate;
483 0 : ReturnErrorOnFailure(DeviceController::Init(params));
484 :
485 0 : mPairingDelegate = params.pairingDelegate;
486 :
487 : // Configure device attestation validation
488 0 : mDeviceAttestationVerifier = params.deviceAttestationVerifier;
489 0 : if (mDeviceAttestationVerifier == nullptr)
490 : {
491 0 : mDeviceAttestationVerifier = Credentials::GetDeviceAttestationVerifier();
492 0 : if (mDeviceAttestationVerifier == nullptr)
493 : {
494 0 : ChipLogError(Controller,
495 : "Missing DeviceAttestationVerifier configuration at DeviceCommissioner init and none set with "
496 : "Credentials::SetDeviceAttestationVerifier()!");
497 0 : return CHIP_ERROR_INVALID_ARGUMENT;
498 : }
499 :
500 : // We fell back on a default from singleton accessor.
501 0 : ChipLogProgress(Controller,
502 : "*** Missing DeviceAttestationVerifier configuration at DeviceCommissioner init: using global default, "
503 : "consider passing one in CommissionerInitParams.");
504 : }
505 :
506 0 : if (params.defaultCommissioner != nullptr)
507 : {
508 0 : mDefaultCommissioner = params.defaultCommissioner;
509 : }
510 : else
511 : {
512 0 : mDefaultCommissioner = &mAutoCommissioner;
513 : }
514 :
515 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
516 : mUdcTransportMgr = chip::Platform::New<UdcTransportMgr>();
517 : ReturnErrorOnFailure(mUdcTransportMgr->Init(Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
518 : .SetAddressType(Inet::IPAddressType::kIPv6)
519 : .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
520 : #if INET_CONFIG_ENABLE_IPV4
521 : ,
522 : Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
523 : .SetAddressType(Inet::IPAddressType::kIPv4)
524 : .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
525 : #endif // INET_CONFIG_ENABLE_IPV4
526 : ));
527 :
528 : mUdcServer = chip::Platform::New<UserDirectedCommissioningServer>();
529 : mUdcTransportMgr->SetSessionManager(mUdcServer);
530 : mUdcServer->SetTransportManager(mUdcTransportMgr);
531 :
532 : mUdcServer->SetInstanceNameResolver(this);
533 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
534 :
535 0 : mSetUpCodePairer.SetSystemLayer(mSystemState->SystemLayer());
536 : #if CONFIG_NETWORK_LAYER_BLE
537 0 : mSetUpCodePairer.SetBleLayer(mSystemState->BleLayer());
538 : #endif // CONFIG_NETWORK_LAYER_BLE
539 :
540 0 : return CHIP_NO_ERROR;
541 : }
542 :
543 0 : void DeviceCommissioner::Shutdown()
544 : {
545 0 : VerifyOrReturn(mState != State::NotInitialized);
546 :
547 0 : ChipLogDetail(Controller, "Shutting down the commissioner");
548 :
549 0 : mSetUpCodePairer.StopPairing();
550 :
551 : // Check to see if pairing in progress before shutting down
552 0 : CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
553 0 : if (device != nullptr && device->IsSessionSetupInProgress())
554 : {
555 0 : ChipLogDetail(Controller, "Setup in progress, stopping setup before shutting down");
556 0 : OnSessionEstablishmentError(CHIP_ERROR_CONNECTION_ABORTED);
557 : }
558 :
559 0 : CancelCommissioningInteractions();
560 :
561 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
562 : if (mUdcTransportMgr != nullptr)
563 : {
564 : chip::Platform::Delete(mUdcTransportMgr);
565 : mUdcTransportMgr = nullptr;
566 : }
567 : if (mUdcServer != nullptr)
568 : {
569 : mUdcServer->SetInstanceNameResolver(nullptr);
570 : chip::Platform::Delete(mUdcServer);
571 : mUdcServer = nullptr;
572 : }
573 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
574 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
575 0 : WiFiPAF::WiFiPAFLayer::GetWiFiPAFLayer().Shutdown(
576 0 : [](uint32_t id, WiFiPAF::WiFiPafRole role) { DeviceLayer::ConnectivityMgr().WiFiPAFShutdown(id, role); });
577 : #endif
578 :
579 : // Release everything from the commissionee device pool here.
580 : // Make sure to use ReleaseCommissioneeDevice so we don't keep dangling
581 : // pointers to the device objects.
582 0 : mCommissioneeDevicePool.ForEachActiveObject([this](auto * commissioneeDevice) {
583 0 : ReleaseCommissioneeDevice(commissioneeDevice);
584 0 : return Loop::Continue;
585 : });
586 :
587 0 : DeviceController::Shutdown();
588 : }
589 :
590 0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(NodeId id)
591 : {
592 : MATTER_TRACE_SCOPE("FindCommissioneeDevice", "DeviceCommissioner");
593 0 : CommissioneeDeviceProxy * foundDevice = nullptr;
594 0 : mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
595 0 : if (deviceProxy->GetDeviceId() == id)
596 : {
597 0 : foundDevice = deviceProxy;
598 0 : return Loop::Break;
599 : }
600 0 : return Loop::Continue;
601 : });
602 :
603 0 : return foundDevice;
604 : }
605 :
606 0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(const Transport::PeerAddress & peerAddress)
607 : {
608 0 : CommissioneeDeviceProxy * foundDevice = nullptr;
609 0 : mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
610 0 : if (deviceProxy->GetPeerAddress() == peerAddress)
611 : {
612 0 : foundDevice = deviceProxy;
613 0 : return Loop::Break;
614 : }
615 0 : return Loop::Continue;
616 : });
617 :
618 0 : return foundDevice;
619 : }
620 :
621 0 : void DeviceCommissioner::ReleaseCommissioneeDevice(CommissioneeDeviceProxy * device)
622 : {
623 : #if CONFIG_NETWORK_LAYER_BLE
624 0 : if (mSystemState->BleLayer() != nullptr && device->GetDeviceTransportType() == Transport::Type::kBle)
625 : {
626 : // We only support one BLE connection, so if this is BLE, close it
627 0 : ChipLogProgress(Discovery, "Closing all BLE connections");
628 0 : mSystemState->BleLayer()->CloseAllBleConnections();
629 : }
630 : #endif
631 : // Make sure that there will be no dangling pointer
632 0 : if (mDeviceInPASEEstablishment == device)
633 : {
634 0 : mDeviceInPASEEstablishment = nullptr;
635 : }
636 0 : if (mDeviceBeingCommissioned == device)
637 : {
638 0 : mDeviceBeingCommissioned = nullptr;
639 : }
640 :
641 : // Release the commissionee device after we have nulled out our pointers,
642 : // because that can call back in to us with error notifications as the
643 : // session is released.
644 0 : mCommissioneeDevicePool.ReleaseObject(device);
645 0 : }
646 :
647 0 : CHIP_ERROR DeviceCommissioner::GetDeviceBeingCommissioned(NodeId deviceId, CommissioneeDeviceProxy ** out_device)
648 : {
649 0 : VerifyOrReturnError(out_device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
650 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(deviceId);
651 :
652 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
653 :
654 0 : *out_device = device;
655 :
656 0 : return CHIP_NO_ERROR;
657 : }
658 :
659 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, const CommissioningParameters & params,
660 : DiscoveryType discoveryType, Optional<Dnssd::CommonResolutionData> resolutionData)
661 : {
662 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
663 :
664 0 : if (mDefaultCommissioner == nullptr)
665 : {
666 0 : ChipLogError(Controller, "No default commissioner is specified");
667 0 : return CHIP_ERROR_INCORRECT_STATE;
668 : }
669 0 : ReturnErrorOnFailure(mDefaultCommissioner->SetCommissioningParameters(params));
670 :
671 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
672 0 : resolutionData);
673 : }
674 :
675 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
676 : Optional<Dnssd::CommonResolutionData> resolutionData)
677 : {
678 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
679 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
680 0 : resolutionData);
681 : }
682 :
683 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & params)
684 : {
685 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
686 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, params));
687 0 : auto errorCode = Commission(remoteDeviceId);
688 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
689 0 : return errorCode;
690 : }
691 :
692 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & rendezvousParams,
693 : CommissioningParameters & commissioningParams)
694 : {
695 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
696 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, rendezvousParams));
697 0 : auto errorCode = Commission(remoteDeviceId, commissioningParams);
698 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
699 0 : return errorCode;
700 : }
701 :
702 0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
703 : Optional<Dnssd::CommonResolutionData> resolutionData)
704 : {
705 : MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
706 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kPaseOnly, discoveryType,
707 0 : resolutionData);
708 : }
709 :
710 0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, RendezvousParameters & params)
711 : {
712 : MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
713 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerPASESession);
714 :
715 0 : CHIP_ERROR err = CHIP_NO_ERROR;
716 0 : CommissioneeDeviceProxy * device = nullptr;
717 0 : CommissioneeDeviceProxy * current = nullptr;
718 0 : Transport::PeerAddress peerAddress = Transport::PeerAddress::UDP(Inet::IPAddress::Any);
719 :
720 0 : Messaging::ExchangeContext * exchangeCtxt = nullptr;
721 0 : Optional<SessionHandle> session;
722 :
723 0 : VerifyOrExit(mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
724 0 : VerifyOrExit(mDeviceInPASEEstablishment == nullptr, err = CHIP_ERROR_INCORRECT_STATE);
725 :
726 : // TODO(#13940): We need to specify the peer address for BLE transport in bindings.
727 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle ||
728 0 : params.GetPeerAddress().GetTransportType() == Transport::Type::kUndefined)
729 : {
730 : #if CONFIG_NETWORK_LAYER_BLE
731 : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
732 : ConnectBleTransportToSelf();
733 : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
734 0 : if (!params.HasBleLayer())
735 : {
736 0 : params.SetPeerAddress(Transport::PeerAddress::BLE());
737 : }
738 0 : peerAddress = Transport::PeerAddress::BLE();
739 : #endif // CONFIG_NETWORK_LAYER_BLE
740 : }
741 0 : else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kTcp ||
742 0 : params.GetPeerAddress().GetTransportType() == Transport::Type::kUdp)
743 : {
744 0 : peerAddress = Transport::PeerAddress::UDP(params.GetPeerAddress().GetIPAddress(), params.GetPeerAddress().GetPort(),
745 0 : params.GetPeerAddress().GetInterface());
746 : }
747 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
748 0 : else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
749 : {
750 0 : peerAddress = Transport::PeerAddress::WiFiPAF(remoteDeviceId);
751 : }
752 : #endif // CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
753 :
754 0 : current = FindCommissioneeDevice(peerAddress);
755 0 : if (current != nullptr)
756 : {
757 0 : if (current->GetDeviceId() == remoteDeviceId)
758 : {
759 : // We might be able to just reuse its connection if it has one or is
760 : // working on one.
761 0 : if (current->IsSecureConnected())
762 : {
763 0 : if (mPairingDelegate)
764 : {
765 : // We already have an open secure session to this device, call the callback immediately and early return.
766 0 : mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR);
767 : }
768 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
769 0 : return CHIP_NO_ERROR;
770 : }
771 0 : if (current->IsSessionSetupInProgress())
772 : {
773 : // We're not connected yet, but we're in the process of connecting. Pairing delegate will get a callback when
774 : // connection completes
775 0 : return CHIP_NO_ERROR;
776 : }
777 : }
778 :
779 : // Either the consumer wants to assign a different device id to this
780 : // peer address now (so we can't reuse the commissionee device we have
781 : // already) or something has gone strange. Delete the old device, try
782 : // again.
783 0 : ChipLogError(Controller, "Found unconnected device, removing");
784 0 : ReleaseCommissioneeDevice(current);
785 : }
786 :
787 0 : device = mCommissioneeDevicePool.CreateObject();
788 0 : VerifyOrExit(device != nullptr, err = CHIP_ERROR_NO_MEMORY);
789 :
790 0 : mDeviceInPASEEstablishment = device;
791 0 : device->Init(GetControllerDeviceInitParams(), remoteDeviceId, peerAddress);
792 0 : device->UpdateDeviceData(params.GetPeerAddress(), params.GetMRPConfig());
793 :
794 : #if CONFIG_NETWORK_LAYER_BLE
795 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle)
796 : {
797 0 : if (params.HasConnectionObject())
798 : {
799 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetConnectionObject()));
800 : }
801 0 : else if (params.HasDiscoveredObject())
802 : {
803 : // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
804 : // for later.
805 0 : mRendezvousParametersForDeviceDiscoveredOverBle = params;
806 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetDiscoveredObject(), this,
807 : OnDiscoveredDeviceOverBleSuccess,
808 : OnDiscoveredDeviceOverBleError));
809 0 : ExitNow(CHIP_NO_ERROR);
810 : }
811 0 : else if (params.HasDiscriminator())
812 : {
813 : // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
814 : // for later.
815 0 : mRendezvousParametersForDeviceDiscoveredOverBle = params;
816 :
817 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByDiscriminator(params.GetSetupDiscriminator().value(),
818 : this, OnDiscoveredDeviceOverBleSuccess,
819 : OnDiscoveredDeviceOverBleError));
820 0 : ExitNow(CHIP_NO_ERROR);
821 : }
822 : else
823 : {
824 0 : ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
825 : }
826 : }
827 : #endif
828 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
829 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
830 : {
831 0 : if (DeviceLayer::ConnectivityMgr().GetWiFiPAF()->GetWiFiPAFState() != WiFiPAF::State::kConnected)
832 : {
833 0 : ChipLogProgress(Controller, "WiFi-PAF: Subscribing to the NAN-USD devices, nodeId: %lu",
834 : params.GetPeerAddress().GetRemoteId());
835 0 : mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = params;
836 0 : auto nodeId = params.GetPeerAddress().GetRemoteId();
837 0 : const SetupDiscriminator connDiscriminator(params.GetSetupDiscriminator().value());
838 0 : VerifyOrReturnValue(!connDiscriminator.IsShortDiscriminator(), CHIP_ERROR_INVALID_ARGUMENT,
839 : ChipLogError(Controller, "Error, Long discriminator is required"));
840 0 : uint16_t discriminator = connDiscriminator.GetLongValue();
841 0 : WiFiPAF::WiFiPAFSession sessionInfo = { .role = WiFiPAF::WiFiPafRole::kWiFiPafRole_Subscriber,
842 : .nodeId = nodeId,
843 0 : .discriminator = discriminator };
844 0 : ReturnErrorOnFailure(
845 : DeviceLayer::ConnectivityMgr().GetWiFiPAF()->AddPafSession(WiFiPAF::PafInfoAccess::kAccNodeInfo, sessionInfo));
846 0 : DeviceLayer::ConnectivityMgr().WiFiPAFSubscribe(discriminator, reinterpret_cast<void *>(this),
847 : OnWiFiPAFSubscribeComplete, OnWiFiPAFSubscribeError);
848 0 : ExitNow(CHIP_NO_ERROR);
849 : }
850 : }
851 : #endif
852 0 : session = mSystemState->SessionMgr()->CreateUnauthenticatedSession(params.GetPeerAddress(), params.GetMRPConfig());
853 0 : VerifyOrExit(session.HasValue(), err = CHIP_ERROR_NO_MEMORY);
854 :
855 : // Allocate the exchange immediately before calling PASESession::Pair.
856 : //
857 : // PASESession::Pair takes ownership of the exchange and will free it on
858 : // error, but can only do this if it is actually called. Allocating the
859 : // exchange context right before calling Pair ensures that if allocation
860 : // succeeds, PASESession has taken ownership.
861 0 : exchangeCtxt = mSystemState->ExchangeMgr()->NewContext(session.Value(), &device->GetPairing());
862 0 : VerifyOrExit(exchangeCtxt != nullptr, err = CHIP_ERROR_INTERNAL);
863 :
864 0 : err = device->GetPairing().Pair(*mSystemState->SessionMgr(), params.GetSetupPINCode(), GetLocalMRPConfig(), exchangeCtxt, this);
865 0 : SuccessOrExit(err);
866 :
867 0 : exit:
868 0 : if (err != CHIP_NO_ERROR)
869 : {
870 0 : if (device != nullptr)
871 : {
872 0 : ReleaseCommissioneeDevice(device);
873 : }
874 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
875 : }
876 :
877 0 : return err;
878 0 : }
879 :
880 : #if CONFIG_NETWORK_LAYER_BLE
881 0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleSuccess(void * appState, BLE_CONNECTION_OBJECT connObj)
882 : {
883 0 : auto self = static_cast<DeviceCommissioner *>(appState);
884 0 : auto device = self->mDeviceInPASEEstablishment;
885 :
886 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
887 : {
888 0 : auto remoteId = device->GetDeviceId();
889 :
890 0 : auto params = self->mRendezvousParametersForDeviceDiscoveredOverBle;
891 0 : params.SetConnectionObject(connObj);
892 0 : self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
893 :
894 0 : self->ReleaseCommissioneeDevice(device);
895 0 : LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
896 : }
897 0 : }
898 :
899 0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleError(void * appState, CHIP_ERROR err)
900 : {
901 0 : auto self = static_cast<DeviceCommissioner *>(appState);
902 0 : auto device = self->mDeviceInPASEEstablishment;
903 :
904 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
905 : {
906 0 : self->ReleaseCommissioneeDevice(device);
907 0 : self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
908 :
909 : // Callback is required when BLE discovery fails, otherwise the caller will always be in a suspended state
910 : // A better way to handle it should define a new error code
911 0 : if (self->mPairingDelegate != nullptr)
912 : {
913 0 : self->mPairingDelegate->OnPairingComplete(err);
914 : }
915 : }
916 0 : }
917 : #endif // CONFIG_NETWORK_LAYER_BLE
918 :
919 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
920 0 : void DeviceCommissioner::OnWiFiPAFSubscribeComplete(void * appState)
921 : {
922 0 : auto self = reinterpret_cast<DeviceCommissioner *>(appState);
923 0 : auto device = self->mDeviceInPASEEstablishment;
924 :
925 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
926 : {
927 0 : ChipLogProgress(Controller, "WiFi-PAF: Subscription Completed, dev_id = %lu", device->GetDeviceId());
928 0 : auto remoteId = device->GetDeviceId();
929 0 : auto params = self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF;
930 :
931 0 : self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
932 0 : self->ReleaseCommissioneeDevice(device);
933 0 : LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
934 : }
935 0 : }
936 :
937 0 : void DeviceCommissioner::OnWiFiPAFSubscribeError(void * appState, CHIP_ERROR err)
938 : {
939 0 : auto self = (DeviceCommissioner *) appState;
940 0 : auto device = self->mDeviceInPASEEstablishment;
941 :
942 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
943 : {
944 0 : ChipLogError(Controller, "WiFi-PAF: Subscription Error, id = %lu, err = %" CHIP_ERROR_FORMAT, device->GetDeviceId(),
945 : err.Format());
946 0 : self->ReleaseCommissioneeDevice(device);
947 0 : self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
948 0 : if (self->mPairingDelegate != nullptr)
949 : {
950 0 : self->mPairingDelegate->OnPairingComplete(err);
951 : }
952 : }
953 0 : }
954 : #endif
955 :
956 0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId, CommissioningParameters & params)
957 : {
958 0 : if (mDefaultCommissioner == nullptr)
959 : {
960 0 : ChipLogError(Controller, "No default commissioner is specified");
961 0 : return CHIP_ERROR_INCORRECT_STATE;
962 : }
963 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, mDefaultCommissioner->SetCommissioningParameters(params));
964 0 : auto errorCode = Commission(remoteDeviceId);
965 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
966 0 : return errorCode;
967 : }
968 :
969 0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId)
970 : {
971 : MATTER_TRACE_SCOPE("Commission", "DeviceCommissioner");
972 :
973 0 : if (mDefaultCommissioner == nullptr)
974 : {
975 0 : ChipLogError(Controller, "No default commissioner is specified");
976 0 : return CHIP_ERROR_INCORRECT_STATE;
977 : }
978 :
979 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
980 0 : if (device == nullptr || (!device->IsSecureConnected() && !device->IsSessionSetupInProgress()))
981 : {
982 0 : ChipLogError(Controller, "Invalid device for commissioning " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
983 0 : return CHIP_ERROR_INCORRECT_STATE;
984 : }
985 0 : if (!device->IsSecureConnected() && device != mDeviceInPASEEstablishment)
986 : {
987 : // We should not end up in this state because we won't attempt to establish more than one connection at a time.
988 0 : ChipLogError(Controller, "Device is not connected and not being paired " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
989 0 : return CHIP_ERROR_INCORRECT_STATE;
990 : }
991 :
992 0 : if (mCommissioningStage != CommissioningStage::kSecurePairing)
993 : {
994 0 : ChipLogError(Controller, "Commissioning already in progress (stage '%s') - not restarting",
995 : StageToString(mCommissioningStage));
996 0 : return CHIP_ERROR_INCORRECT_STATE;
997 : }
998 :
999 0 : ChipLogProgress(Controller, "Commission called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
1000 :
1001 0 : mDefaultCommissioner->SetOperationalCredentialsDelegate(mOperationalCredentialsDelegate);
1002 0 : if (device->IsSecureConnected())
1003 : {
1004 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
1005 0 : mDefaultCommissioner->StartCommissioning(this, device);
1006 : }
1007 : else
1008 : {
1009 0 : mRunCommissioningAfterConnection = true;
1010 : }
1011 0 : return CHIP_NO_ERROR;
1012 : }
1013 :
1014 : CHIP_ERROR
1015 0 : DeviceCommissioner::ContinueCommissioningAfterDeviceAttestation(DeviceProxy * device,
1016 : Credentials::AttestationVerificationResult attestationResult)
1017 : {
1018 : MATTER_TRACE_SCOPE("continueCommissioningDevice", "DeviceCommissioner");
1019 :
1020 0 : if (mDefaultCommissioner == nullptr)
1021 : {
1022 0 : ChipLogError(Controller, "No default commissioner is specified");
1023 0 : return CHIP_ERROR_INCORRECT_STATE;
1024 : }
1025 :
1026 0 : if (device == nullptr || device != mDeviceBeingCommissioned)
1027 : {
1028 0 : ChipLogError(Controller, "Invalid device for commissioning %p", device);
1029 0 : return CHIP_ERROR_INCORRECT_STATE;
1030 : }
1031 0 : CommissioneeDeviceProxy * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
1032 0 : if (commissioneeDevice == nullptr)
1033 : {
1034 0 : ChipLogError(Controller, "Couldn't find commissionee device");
1035 0 : return CHIP_ERROR_INCORRECT_STATE;
1036 : }
1037 0 : if (!commissioneeDevice->IsSecureConnected() || commissioneeDevice != mDeviceBeingCommissioned)
1038 : {
1039 0 : ChipLogError(Controller, "Invalid device for commissioning after attestation failure: 0x" ChipLogFormatX64,
1040 : ChipLogValueX64(commissioneeDevice->GetDeviceId()));
1041 0 : return CHIP_ERROR_INCORRECT_STATE;
1042 : }
1043 :
1044 0 : if (mCommissioningStage != CommissioningStage::kAttestationRevocationCheck)
1045 : {
1046 0 : ChipLogError(Controller, "Commissioning is not attestation verification phase");
1047 0 : return CHIP_ERROR_INCORRECT_STATE;
1048 : }
1049 :
1050 0 : ChipLogProgress(Controller, "Continuing commissioning after attestation failure for device ID 0x" ChipLogFormatX64,
1051 : ChipLogValueX64(commissioneeDevice->GetDeviceId()));
1052 :
1053 0 : if (attestationResult != AttestationVerificationResult::kSuccess)
1054 : {
1055 0 : ChipLogError(Controller, "Client selected error: %u for failed 'Attestation Information' for device",
1056 : to_underlying(attestationResult));
1057 :
1058 0 : CommissioningDelegate::CommissioningReport report;
1059 0 : report.Set<AttestationErrorInfo>(attestationResult);
1060 0 : CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1061 0 : }
1062 : else
1063 : {
1064 0 : ChipLogProgress(Controller, "Overriding attestation failure per client and continuing commissioning");
1065 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1066 : }
1067 0 : return CHIP_NO_ERROR;
1068 : }
1069 :
1070 0 : CHIP_ERROR DeviceCommissioner::StopPairing(NodeId remoteDeviceId)
1071 : {
1072 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1073 0 : VerifyOrReturnError(remoteDeviceId != kUndefinedNodeId, CHIP_ERROR_INVALID_ARGUMENT);
1074 :
1075 0 : ChipLogProgress(Controller, "StopPairing called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
1076 :
1077 : // If we're still in the process of discovering the device, just stop the SetUpCodePairer
1078 0 : if (mSetUpCodePairer.StopPairing(remoteDeviceId))
1079 : {
1080 0 : mRunCommissioningAfterConnection = false;
1081 0 : return CHIP_NO_ERROR;
1082 : }
1083 :
1084 : // Otherwise we might be pairing and / or commissioning it.
1085 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
1086 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR);
1087 :
1088 0 : if (mDeviceBeingCommissioned == device)
1089 : {
1090 0 : CancelCommissioningInteractions();
1091 0 : CommissioningStageComplete(CHIP_ERROR_CANCELLED);
1092 : }
1093 : else
1094 : {
1095 0 : ReleaseCommissioneeDevice(device);
1096 : }
1097 0 : return CHIP_NO_ERROR;
1098 : }
1099 :
1100 0 : void DeviceCommissioner::CancelCommissioningInteractions()
1101 : {
1102 0 : if (mReadClient)
1103 : {
1104 0 : ChipLogDetail(Controller, "Cancelling read request for step '%s'", StageToString(mCommissioningStage));
1105 0 : mReadClient.reset(); // destructor cancels
1106 0 : mAttributeCache.reset();
1107 : }
1108 0 : if (mInvokeCancelFn)
1109 : {
1110 0 : ChipLogDetail(Controller, "Cancelling command invocation for step '%s'", StageToString(mCommissioningStage));
1111 0 : mInvokeCancelFn();
1112 0 : mInvokeCancelFn = nullptr;
1113 : }
1114 0 : if (mWriteCancelFn)
1115 : {
1116 0 : ChipLogDetail(Controller, "Cancelling write request for step '%s'", StageToString(mCommissioningStage));
1117 0 : mWriteCancelFn();
1118 0 : mWriteCancelFn = nullptr;
1119 : }
1120 0 : if (mOnDeviceConnectedCallback.IsRegistered())
1121 : {
1122 0 : ChipLogDetail(Controller, "Cancelling CASE setup for step '%s'", StageToString(mCommissioningStage));
1123 0 : CancelCASECallbacks();
1124 : }
1125 0 : }
1126 :
1127 0 : void DeviceCommissioner::CancelCASECallbacks()
1128 : {
1129 0 : mOnDeviceConnectedCallback.Cancel();
1130 0 : mOnDeviceConnectionFailureCallback.Cancel();
1131 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
1132 0 : mOnDeviceConnectionRetryCallback.Cancel();
1133 : #endif
1134 0 : }
1135 :
1136 0 : CHIP_ERROR DeviceCommissioner::UnpairDevice(NodeId remoteDeviceId)
1137 : {
1138 : MATTER_TRACE_SCOPE("UnpairDevice", "DeviceCommissioner");
1139 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1140 :
1141 0 : return AutoCurrentFabricRemover::RemoveCurrentFabric(this, remoteDeviceId);
1142 : }
1143 :
1144 0 : void DeviceCommissioner::RendezvousCleanup(CHIP_ERROR status)
1145 : {
1146 0 : if (mDeviceInPASEEstablishment != nullptr)
1147 : {
1148 : // Release the commissionee device. For BLE, this is stored,
1149 : // for IP commissioning, we have taken a reference to the
1150 : // operational node to send the completion command.
1151 0 : ReleaseCommissioneeDevice(mDeviceInPASEEstablishment);
1152 :
1153 0 : if (mPairingDelegate != nullptr)
1154 : {
1155 0 : mPairingDelegate->OnPairingComplete(status);
1156 : }
1157 : }
1158 0 : }
1159 :
1160 0 : void DeviceCommissioner::OnSessionEstablishmentError(CHIP_ERROR err)
1161 : {
1162 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
1163 :
1164 0 : if (mPairingDelegate != nullptr)
1165 : {
1166 0 : mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingFailed);
1167 : }
1168 :
1169 0 : RendezvousCleanup(err);
1170 0 : }
1171 :
1172 0 : void DeviceCommissioner::OnSessionEstablished(const SessionHandle & session)
1173 : {
1174 : // PASE session established.
1175 0 : CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
1176 :
1177 : // We are in the callback for this pairing. Reset so we can pair another device.
1178 0 : mDeviceInPASEEstablishment = nullptr;
1179 :
1180 0 : VerifyOrReturn(device != nullptr, OnSessionEstablishmentError(CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR));
1181 :
1182 0 : CHIP_ERROR err = device->SetConnected(session);
1183 0 : if (err != CHIP_NO_ERROR)
1184 : {
1185 0 : ChipLogError(Controller, "Failed in setting up secure channel: err %s", ErrorStr(err));
1186 0 : OnSessionEstablishmentError(err);
1187 0 : return;
1188 : }
1189 :
1190 0 : ChipLogDetail(Controller, "Remote device completed SPAKE2+ handshake");
1191 :
1192 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
1193 0 : if (mPairingDelegate != nullptr)
1194 : {
1195 0 : mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR);
1196 : }
1197 :
1198 0 : if (mRunCommissioningAfterConnection)
1199 : {
1200 0 : mRunCommissioningAfterConnection = false;
1201 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
1202 0 : mDefaultCommissioner->StartCommissioning(this, device);
1203 : }
1204 : }
1205 :
1206 0 : CHIP_ERROR DeviceCommissioner::SendCertificateChainRequestCommand(DeviceProxy * device,
1207 : Credentials::CertificateType certificateType,
1208 : Optional<System::Clock::Timeout> timeout)
1209 : {
1210 : MATTER_TRACE_SCOPE("SendCertificateChainRequestCommand", "DeviceCommissioner");
1211 0 : ChipLogDetail(Controller, "Sending Certificate Chain request to %p device", device);
1212 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1213 :
1214 0 : OperationalCredentials::Commands::CertificateChainRequest::Type request;
1215 0 : request.certificateType = static_cast<OperationalCredentials::CertificateChainTypeEnum>(certificateType);
1216 0 : return SendCommissioningCommand(device, request, OnCertificateChainResponse, OnCertificateChainFailureResponse, kRootEndpointId,
1217 0 : timeout);
1218 : }
1219 :
1220 0 : void DeviceCommissioner::OnCertificateChainFailureResponse(void * context, CHIP_ERROR error)
1221 : {
1222 : MATTER_TRACE_SCOPE("OnCertificateChainFailureResponse", "DeviceCommissioner");
1223 0 : ChipLogProgress(Controller, "Device failed to receive the Certificate Chain request Response: %s", chip::ErrorStr(error));
1224 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1225 0 : commissioner->CommissioningStageComplete(error);
1226 0 : }
1227 :
1228 0 : void DeviceCommissioner::OnCertificateChainResponse(
1229 : void * context, const chip::app::Clusters::OperationalCredentials::Commands::CertificateChainResponse::DecodableType & response)
1230 : {
1231 : MATTER_TRACE_SCOPE("OnCertificateChainResponse", "DeviceCommissioner");
1232 0 : ChipLogProgress(Controller, "Received certificate chain from the device");
1233 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1234 :
1235 0 : CommissioningDelegate::CommissioningReport report;
1236 0 : report.Set<RequestedCertificate>(RequestedCertificate(response.certificate));
1237 :
1238 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1239 0 : }
1240 :
1241 0 : CHIP_ERROR DeviceCommissioner::SendAttestationRequestCommand(DeviceProxy * device, const ByteSpan & attestationNonce,
1242 : Optional<System::Clock::Timeout> timeout)
1243 : {
1244 : MATTER_TRACE_SCOPE("SendAttestationRequestCommand", "DeviceCommissioner");
1245 0 : ChipLogDetail(Controller, "Sending Attestation request to %p device", device);
1246 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1247 :
1248 0 : OperationalCredentials::Commands::AttestationRequest::Type request;
1249 0 : request.attestationNonce = attestationNonce;
1250 :
1251 0 : ReturnErrorOnFailure(
1252 : SendCommissioningCommand(device, request, OnAttestationResponse, OnAttestationFailureResponse, kRootEndpointId, timeout));
1253 0 : ChipLogDetail(Controller, "Sent Attestation request, waiting for the Attestation Information");
1254 0 : return CHIP_NO_ERROR;
1255 : }
1256 :
1257 0 : void DeviceCommissioner::OnAttestationFailureResponse(void * context, CHIP_ERROR error)
1258 : {
1259 : MATTER_TRACE_SCOPE("OnAttestationFailureResponse", "DeviceCommissioner");
1260 0 : ChipLogProgress(Controller, "Device failed to receive the Attestation Information Response: %s", chip::ErrorStr(error));
1261 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1262 0 : commissioner->CommissioningStageComplete(error);
1263 0 : }
1264 :
1265 0 : void DeviceCommissioner::OnAttestationResponse(void * context,
1266 : const OperationalCredentials::Commands::AttestationResponse::DecodableType & data)
1267 : {
1268 : MATTER_TRACE_SCOPE("OnAttestationResponse", "DeviceCommissioner");
1269 0 : ChipLogProgress(Controller, "Received Attestation Information from the device");
1270 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1271 :
1272 0 : CommissioningDelegate::CommissioningReport report;
1273 0 : report.Set<AttestationResponse>(AttestationResponse(data.attestationElements, data.attestationSignature));
1274 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1275 0 : }
1276 :
1277 0 : void DeviceCommissioner::OnDeviceAttestationInformationVerification(
1278 : void * context, const Credentials::DeviceAttestationVerifier::AttestationInfo & info, AttestationVerificationResult result)
1279 : {
1280 : MATTER_TRACE_SCOPE("OnDeviceAttestationInformationVerification", "DeviceCommissioner");
1281 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1282 :
1283 0 : if (commissioner->mCommissioningStage == CommissioningStage::kAttestationVerification)
1284 : {
1285 : // Check for revoked DAC Chain before calling delegate. Enter next stage.
1286 :
1287 0 : CommissioningDelegate::CommissioningReport report;
1288 0 : report.Set<AttestationErrorInfo>(result);
1289 :
1290 0 : return commissioner->CommissioningStageComplete(
1291 0 : result == AttestationVerificationResult::kSuccess ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL, report);
1292 0 : }
1293 :
1294 0 : if (!commissioner->mDeviceBeingCommissioned)
1295 : {
1296 0 : ChipLogError(Controller, "Device attestation verification result received when we're not commissioning a device");
1297 0 : return;
1298 : }
1299 :
1300 0 : auto & params = commissioner->mDefaultCommissioner->GetCommissioningParameters();
1301 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1302 :
1303 0 : if (params.GetCompletionStatus().attestationResult.HasValue())
1304 : {
1305 0 : auto previousResult = params.GetCompletionStatus().attestationResult.Value();
1306 0 : if (previousResult != AttestationVerificationResult::kSuccess)
1307 : {
1308 0 : result = previousResult;
1309 : }
1310 : }
1311 :
1312 0 : if (result != AttestationVerificationResult::kSuccess)
1313 : {
1314 0 : CommissioningDelegate::CommissioningReport report;
1315 0 : report.Set<AttestationErrorInfo>(result);
1316 0 : if (result == AttestationVerificationResult::kNotImplemented)
1317 : {
1318 0 : ChipLogError(Controller,
1319 : "Failed in verifying 'Attestation Information' command received from the device due to default "
1320 : "DeviceAttestationVerifier Class not being overridden by a real implementation.");
1321 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_NOT_IMPLEMENTED, report);
1322 0 : return;
1323 : }
1324 :
1325 0 : ChipLogError(Controller,
1326 : "Failed in verifying 'Attestation Information' command received from the device: err %hu. Look at "
1327 : "AttestationVerificationResult enum to understand the errors",
1328 : static_cast<uint16_t>(result));
1329 : // Go look at AttestationVerificationResult enum in src/credentials/attestation_verifier/DeviceAttestationVerifier.h to
1330 : // understand the errors.
1331 :
1332 : // If a device attestation status delegate is installed, delegate handling of failure to the client and let them
1333 : // decide on whether to proceed further or not.
1334 0 : if (deviceAttestationDelegate)
1335 : {
1336 0 : commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
1337 : }
1338 : else
1339 : {
1340 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1341 : }
1342 0 : }
1343 : else
1344 : {
1345 0 : if (deviceAttestationDelegate && deviceAttestationDelegate->ShouldWaitAfterDeviceAttestation())
1346 : {
1347 0 : commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
1348 : }
1349 : else
1350 : {
1351 0 : ChipLogProgress(Controller, "Successfully validated 'Attestation Information' command received from the device.");
1352 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1353 : }
1354 : }
1355 : }
1356 :
1357 0 : void DeviceCommissioner::OnArmFailSafeExtendedForDeviceAttestation(
1358 : void * context, const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType &)
1359 : {
1360 0 : ChipLogProgress(Controller, "Successfully extended fail-safe timer to handle DA failure");
1361 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1362 :
1363 : // We have completed our command invoke, but we're not going to finish the
1364 : // commissioning step until our client examines the attestation
1365 : // information. Clear out mInvokeCancelFn (which points at the
1366 : // CommandSender we just finished using) now, so it's not dangling.
1367 0 : commissioner->mInvokeCancelFn = nullptr;
1368 :
1369 0 : commissioner->HandleDeviceAttestationCompleted();
1370 0 : }
1371 :
1372 0 : void DeviceCommissioner::HandleDeviceAttestationCompleted()
1373 : {
1374 0 : if (!mDeviceBeingCommissioned)
1375 : {
1376 0 : return;
1377 : }
1378 :
1379 0 : auto & params = mDefaultCommissioner->GetCommissioningParameters();
1380 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1381 0 : if (deviceAttestationDelegate)
1382 : {
1383 0 : ChipLogProgress(Controller, "Device attestation completed, delegating continuation to client");
1384 0 : deviceAttestationDelegate->OnDeviceAttestationCompleted(this, mDeviceBeingCommissioned, *mAttestationDeviceInfo,
1385 : mAttestationResult);
1386 : }
1387 : else
1388 : {
1389 0 : ChipLogProgress(Controller, "Device attestation failed and no delegate set, failing commissioning");
1390 0 : CommissioningDelegate::CommissioningReport report;
1391 0 : report.Set<AttestationErrorInfo>(mAttestationResult);
1392 0 : CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1393 0 : }
1394 : }
1395 :
1396 0 : void DeviceCommissioner::OnFailedToExtendedArmFailSafeDeviceAttestation(void * context, CHIP_ERROR error)
1397 : {
1398 0 : ChipLogProgress(Controller, "Failed to extend fail-safe timer to handle attestation failure %s", chip::ErrorStr(error));
1399 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1400 :
1401 0 : CommissioningDelegate::CommissioningReport report;
1402 0 : report.Set<AttestationErrorInfo>(commissioner->mAttestationResult);
1403 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1404 0 : }
1405 :
1406 0 : void DeviceCommissioner::OnICDManagementRegisterClientResponse(
1407 : void * context, const app::Clusters::IcdManagement::Commands::RegisterClientResponse::DecodableType & data)
1408 : {
1409 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1410 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1411 0 : VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
1412 0 : VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDRegistration, err = CHIP_ERROR_INCORRECT_STATE);
1413 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1414 :
1415 0 : if (commissioner->mPairingDelegate != nullptr)
1416 : {
1417 0 : commissioner->mPairingDelegate->OnICDRegistrationComplete(
1418 0 : ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()), data.ICDCounter);
1419 : }
1420 :
1421 0 : exit:
1422 0 : CommissioningDelegate::CommissioningReport report;
1423 0 : commissioner->CommissioningStageComplete(err, report);
1424 0 : }
1425 :
1426 0 : void DeviceCommissioner::OnICDManagementStayActiveResponse(
1427 : void * context, const app::Clusters::IcdManagement::Commands::StayActiveResponse::DecodableType & data)
1428 : {
1429 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1430 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1431 0 : VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
1432 0 : VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDSendStayActive, err = CHIP_ERROR_INCORRECT_STATE);
1433 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1434 :
1435 0 : if (commissioner->mPairingDelegate != nullptr)
1436 : {
1437 0 : commissioner->mPairingDelegate->OnICDStayActiveComplete(
1438 :
1439 0 : ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()),
1440 0 : data.promisedActiveDuration);
1441 : }
1442 :
1443 0 : exit:
1444 0 : CommissioningDelegate::CommissioningReport report;
1445 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1446 0 : }
1447 :
1448 0 : bool DeviceCommissioner::ExtendArmFailSafeInternal(DeviceProxy * proxy, CommissioningStage step, uint16_t armFailSafeTimeout,
1449 : Optional<System::Clock::Timeout> commandTimeout,
1450 : OnExtendFailsafeSuccess onSuccess, OnExtendFailsafeFailure onFailure,
1451 : bool fireAndForget)
1452 : {
1453 : using namespace System;
1454 : using namespace System::Clock;
1455 0 : auto now = SystemClock().GetMonotonicTimestamp();
1456 0 : auto newFailSafeTimeout = now + Seconds16(armFailSafeTimeout);
1457 0 : if (newFailSafeTimeout < proxy->GetFailSafeExpirationTimestamp())
1458 : {
1459 0 : ChipLogProgress(
1460 : Controller, "Skipping arming failsafe: new time (%u seconds from now) before old time (%u seconds from now)",
1461 : armFailSafeTimeout, std::chrono::duration_cast<Seconds16>(proxy->GetFailSafeExpirationTimestamp() - now).count());
1462 0 : return false;
1463 : }
1464 :
1465 0 : uint64_t breadcrumb = static_cast<uint64_t>(step);
1466 0 : GeneralCommissioning::Commands::ArmFailSafe::Type request;
1467 0 : request.expiryLengthSeconds = armFailSafeTimeout;
1468 0 : request.breadcrumb = breadcrumb;
1469 0 : ChipLogProgress(Controller, "Arming failsafe (%u seconds)", request.expiryLengthSeconds);
1470 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, onSuccess, onFailure, kRootEndpointId, commandTimeout, fireAndForget);
1471 0 : if (err != CHIP_NO_ERROR)
1472 : {
1473 0 : onFailure((!fireAndForget) ? this : nullptr, err);
1474 0 : return true; // we have called onFailure already
1475 : }
1476 :
1477 : // Note: The stored timestamp may become invalid if we fail asynchronously
1478 0 : proxy->SetFailSafeExpirationTimestamp(newFailSafeTimeout);
1479 0 : return true;
1480 : }
1481 :
1482 0 : void DeviceCommissioner::ExtendArmFailSafeForDeviceAttestation(const Credentials::DeviceAttestationVerifier::AttestationInfo & info,
1483 : Credentials::AttestationVerificationResult result)
1484 : {
1485 0 : mAttestationResult = result;
1486 :
1487 0 : auto & params = mDefaultCommissioner->GetCommissioningParameters();
1488 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1489 :
1490 0 : mAttestationDeviceInfo = Platform::MakeUnique<Credentials::DeviceAttestationVerifier::AttestationDeviceInfo>(info);
1491 :
1492 0 : auto expiryLengthSeconds = deviceAttestationDelegate->FailSafeExpiryTimeoutSecs();
1493 0 : bool waitForFailsafeExtension = expiryLengthSeconds.HasValue();
1494 0 : if (waitForFailsafeExtension)
1495 : {
1496 0 : ChipLogProgress(Controller, "Changing fail-safe timer to %u seconds to handle DA failure", expiryLengthSeconds.Value());
1497 : // Per spec, anything we do with the fail-safe armed must not time out
1498 : // in less than kMinimumCommissioningStepTimeout.
1499 : waitForFailsafeExtension =
1500 0 : ExtendArmFailSafeInternal(mDeviceBeingCommissioned, mCommissioningStage, expiryLengthSeconds.Value(),
1501 0 : MakeOptional(kMinimumCommissioningStepTimeout), OnArmFailSafeExtendedForDeviceAttestation,
1502 : OnFailedToExtendedArmFailSafeDeviceAttestation, /* fireAndForget = */ false);
1503 : }
1504 : else
1505 : {
1506 0 : ChipLogProgress(Controller, "Proceeding without changing fail-safe timer value as delegate has not set it");
1507 : }
1508 :
1509 0 : if (!waitForFailsafeExtension)
1510 : {
1511 0 : HandleDeviceAttestationCompleted();
1512 : }
1513 0 : }
1514 :
1515 0 : CHIP_ERROR DeviceCommissioner::ValidateAttestationInfo(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
1516 : {
1517 : MATTER_TRACE_SCOPE("ValidateAttestationInfo", "DeviceCommissioner");
1518 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1519 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1520 :
1521 0 : mDeviceAttestationVerifier->VerifyAttestationInformation(info, &mDeviceAttestationInformationVerificationCallback);
1522 :
1523 : // TODO: Validate Firmware Information
1524 :
1525 0 : return CHIP_NO_ERROR;
1526 : }
1527 :
1528 : CHIP_ERROR
1529 0 : DeviceCommissioner::CheckForRevokedDACChain(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
1530 : {
1531 : MATTER_TRACE_SCOPE("CheckForRevokedDACChain", "DeviceCommissioner");
1532 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1533 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1534 :
1535 0 : mDeviceAttestationVerifier->CheckForRevokedDACChain(info, &mDeviceAttestationInformationVerificationCallback);
1536 :
1537 0 : return CHIP_NO_ERROR;
1538 : }
1539 :
1540 0 : CHIP_ERROR DeviceCommissioner::ValidateCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
1541 : const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & csrNonce)
1542 : {
1543 : MATTER_TRACE_SCOPE("ValidateCSR", "DeviceCommissioner");
1544 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1545 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1546 :
1547 0 : P256PublicKey dacPubkey;
1548 0 : ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
1549 :
1550 : // Retrieve attestation challenge
1551 : ByteSpan attestationChallenge =
1552 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
1553 :
1554 : // The operational CA should also verify this on its end during NOC generation, if end-to-end attestation is desired.
1555 0 : return mDeviceAttestationVerifier->VerifyNodeOperationalCSRInformation(NOCSRElements, attestationChallenge,
1556 0 : AttestationSignature, dacPubkey, csrNonce);
1557 0 : }
1558 :
1559 0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificateSigningRequestCommand(DeviceProxy * device, const ByteSpan & csrNonce,
1560 : Optional<System::Clock::Timeout> timeout)
1561 : {
1562 : MATTER_TRACE_SCOPE("SendOperationalCertificateSigningRequestCommand", "DeviceCommissioner");
1563 0 : ChipLogDetail(Controller, "Sending CSR request to %p device", device);
1564 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1565 :
1566 0 : OperationalCredentials::Commands::CSRRequest::Type request;
1567 0 : request.CSRNonce = csrNonce;
1568 :
1569 0 : ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateSigningRequest, OnCSRFailureResponse,
1570 : kRootEndpointId, timeout));
1571 0 : ChipLogDetail(Controller, "Sent CSR request, waiting for the CSR");
1572 0 : return CHIP_NO_ERROR;
1573 : }
1574 :
1575 0 : void DeviceCommissioner::OnCSRFailureResponse(void * context, CHIP_ERROR error)
1576 : {
1577 : MATTER_TRACE_SCOPE("OnCSRFailureResponse", "DeviceCommissioner");
1578 0 : ChipLogProgress(Controller, "Device failed to receive the CSR request Response: %s", chip::ErrorStr(error));
1579 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1580 0 : commissioner->CommissioningStageComplete(error);
1581 0 : }
1582 :
1583 0 : void DeviceCommissioner::OnOperationalCertificateSigningRequest(
1584 : void * context, const OperationalCredentials::Commands::CSRResponse::DecodableType & data)
1585 : {
1586 : MATTER_TRACE_SCOPE("OnOperationalCertificateSigningRequest", "DeviceCommissioner");
1587 0 : ChipLogProgress(Controller, "Received certificate signing request from the device");
1588 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1589 :
1590 0 : CommissioningDelegate::CommissioningReport report;
1591 0 : report.Set<CSRResponse>(CSRResponse(data.NOCSRElements, data.attestationSignature));
1592 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1593 0 : }
1594 :
1595 0 : void DeviceCommissioner::OnDeviceNOCChainGeneration(void * context, CHIP_ERROR status, const ByteSpan & noc, const ByteSpan & icac,
1596 : const ByteSpan & rcac, Optional<IdentityProtectionKeySpan> ipk,
1597 : Optional<NodeId> adminSubject)
1598 : {
1599 : MATTER_TRACE_SCOPE("OnDeviceNOCChainGeneration", "DeviceCommissioner");
1600 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1601 :
1602 : // The placeholder IPK is not satisfactory, but is there to fill the NocChain struct on error. It will still fail.
1603 0 : const uint8_t placeHolderIpk[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1604 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1605 0 : if (status == CHIP_NO_ERROR && !ipk.HasValue())
1606 : {
1607 0 : ChipLogError(Controller, "Did not have an IPK from the OperationalCredentialsIssuer! Cannot commission.");
1608 0 : status = CHIP_ERROR_INVALID_ARGUMENT;
1609 : }
1610 :
1611 0 : ChipLogProgress(Controller, "Received callback from the CA for NOC Chain generation. Status %s", ErrorStr(status));
1612 0 : if (status == CHIP_NO_ERROR && commissioner->mState != State::Initialized)
1613 : {
1614 0 : status = CHIP_ERROR_INCORRECT_STATE;
1615 : }
1616 0 : if (status != CHIP_NO_ERROR)
1617 : {
1618 0 : ChipLogError(Controller, "Failed in generating device's operational credentials. Error %s", ErrorStr(status));
1619 : }
1620 :
1621 : // TODO - Verify that the generated root cert matches with commissioner's root cert
1622 0 : CommissioningDelegate::CommissioningReport report;
1623 0 : report.Set<NocChain>(NocChain(noc, icac, rcac, ipk.HasValue() ? ipk.Value() : IdentityProtectionKeySpan(placeHolderIpk),
1624 0 : adminSubject.HasValue() ? adminSubject.Value() : commissioner->GetNodeId()));
1625 0 : commissioner->CommissioningStageComplete(status, report);
1626 0 : }
1627 :
1628 0 : CHIP_ERROR DeviceCommissioner::IssueNOCChain(const ByteSpan & NOCSRElements, NodeId nodeId,
1629 : chip::Callback::Callback<OnNOCChainGeneration> * callback)
1630 : {
1631 : MATTER_TRACE_SCOPE("IssueNOCChain", "DeviceCommissioner");
1632 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1633 :
1634 0 : ChipLogProgress(Controller, "Getting certificate chain for the device on fabric idx %u", static_cast<unsigned>(mFabricIndex));
1635 :
1636 0 : mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(nodeId);
1637 :
1638 0 : if (mFabricIndex != kUndefinedFabricIndex)
1639 : {
1640 0 : mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
1641 : }
1642 :
1643 : // Note: we don't have attestationSignature, attestationChallenge, DAC, PAI so we are just providing an empty ByteSpan
1644 : // for those arguments.
1645 0 : return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, ByteSpan(), ByteSpan(), ByteSpan(), ByteSpan(),
1646 0 : ByteSpan(), callback);
1647 : }
1648 :
1649 0 : CHIP_ERROR DeviceCommissioner::ProcessCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
1650 : const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & pai,
1651 : const ByteSpan & csrNonce)
1652 : {
1653 : MATTER_TRACE_SCOPE("ProcessOpCSR", "DeviceCommissioner");
1654 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1655 :
1656 0 : ChipLogProgress(Controller, "Getting certificate chain for the device from the issuer");
1657 :
1658 0 : P256PublicKey dacPubkey;
1659 0 : ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
1660 :
1661 : // Retrieve attestation challenge
1662 : ByteSpan attestationChallenge =
1663 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
1664 :
1665 0 : mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(proxy->GetDeviceId());
1666 :
1667 0 : if (mFabricIndex != kUndefinedFabricIndex)
1668 : {
1669 0 : mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
1670 : }
1671 :
1672 0 : return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, csrNonce, AttestationSignature, attestationChallenge,
1673 0 : dac, pai, &mDeviceNOCChainCallback);
1674 0 : }
1675 :
1676 0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificate(DeviceProxy * device, const ByteSpan & nocCertBuf,
1677 : const Optional<ByteSpan> & icaCertBuf,
1678 : const IdentityProtectionKeySpan ipk, const NodeId adminSubject,
1679 : Optional<System::Clock::Timeout> timeout)
1680 : {
1681 : MATTER_TRACE_SCOPE("SendOperationalCertificate", "DeviceCommissioner");
1682 :
1683 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1684 :
1685 0 : OperationalCredentials::Commands::AddNOC::Type request;
1686 0 : request.NOCValue = nocCertBuf;
1687 0 : request.ICACValue = icaCertBuf;
1688 0 : request.IPKValue = ipk;
1689 0 : request.caseAdminSubject = adminSubject;
1690 0 : request.adminVendorId = mVendorId;
1691 :
1692 0 : ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateAddResponse, OnAddNOCFailureResponse,
1693 : kRootEndpointId, timeout));
1694 :
1695 0 : ChipLogProgress(Controller, "Sent operational certificate to the device");
1696 :
1697 0 : return CHIP_NO_ERROR;
1698 : }
1699 :
1700 0 : CHIP_ERROR DeviceCommissioner::ConvertFromOperationalCertStatus(OperationalCredentials::NodeOperationalCertStatusEnum err)
1701 : {
1702 : using OperationalCredentials::NodeOperationalCertStatusEnum;
1703 0 : switch (err)
1704 : {
1705 0 : case NodeOperationalCertStatusEnum::kOk:
1706 0 : return CHIP_NO_ERROR;
1707 0 : case NodeOperationalCertStatusEnum::kInvalidPublicKey:
1708 0 : return CHIP_ERROR_INVALID_PUBLIC_KEY;
1709 0 : case NodeOperationalCertStatusEnum::kInvalidNodeOpId:
1710 0 : return CHIP_ERROR_WRONG_NODE_ID;
1711 0 : case NodeOperationalCertStatusEnum::kInvalidNOC:
1712 0 : return CHIP_ERROR_UNSUPPORTED_CERT_FORMAT;
1713 0 : case NodeOperationalCertStatusEnum::kMissingCsr:
1714 0 : return CHIP_ERROR_INCORRECT_STATE;
1715 0 : case NodeOperationalCertStatusEnum::kTableFull:
1716 0 : return CHIP_ERROR_NO_MEMORY;
1717 0 : case NodeOperationalCertStatusEnum::kInvalidAdminSubject:
1718 0 : return CHIP_ERROR_INVALID_ADMIN_SUBJECT;
1719 0 : case NodeOperationalCertStatusEnum::kFabricConflict:
1720 0 : return CHIP_ERROR_FABRIC_EXISTS;
1721 0 : case NodeOperationalCertStatusEnum::kLabelConflict:
1722 0 : return CHIP_ERROR_INVALID_ARGUMENT;
1723 0 : case NodeOperationalCertStatusEnum::kInvalidFabricIndex:
1724 0 : return CHIP_ERROR_INVALID_FABRIC_INDEX;
1725 0 : case NodeOperationalCertStatusEnum::kUnknownEnumValue:
1726 : // Is this a reasonable value?
1727 0 : return CHIP_ERROR_CERT_LOAD_FAILED;
1728 : }
1729 :
1730 0 : return CHIP_ERROR_CERT_LOAD_FAILED;
1731 : }
1732 :
1733 0 : void DeviceCommissioner::OnAddNOCFailureResponse(void * context, CHIP_ERROR error)
1734 : {
1735 : MATTER_TRACE_SCOPE("OnAddNOCFailureResponse", "DeviceCommissioner");
1736 0 : ChipLogProgress(Controller, "Device failed to receive the operational certificate Response: %s", chip::ErrorStr(error));
1737 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1738 0 : commissioner->CommissioningStageComplete(error);
1739 0 : }
1740 :
1741 0 : void DeviceCommissioner::OnOperationalCertificateAddResponse(
1742 : void * context, const OperationalCredentials::Commands::NOCResponse::DecodableType & data)
1743 : {
1744 : MATTER_TRACE_SCOPE("OnOperationalCertificateAddResponse", "DeviceCommissioner");
1745 0 : ChipLogProgress(Controller, "Device returned status %d on receiving the NOC", to_underlying(data.statusCode));
1746 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1747 :
1748 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1749 :
1750 0 : VerifyOrExit(commissioner->mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
1751 :
1752 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1753 :
1754 0 : err = ConvertFromOperationalCertStatus(data.statusCode);
1755 0 : SuccessOrExit(err);
1756 :
1757 0 : err = commissioner->OnOperationalCredentialsProvisioningCompletion(commissioner->mDeviceBeingCommissioned);
1758 :
1759 0 : exit:
1760 0 : if (err != CHIP_NO_ERROR)
1761 : {
1762 0 : ChipLogProgress(Controller, "Add NOC failed with error %s", ErrorStr(err));
1763 0 : commissioner->CommissioningStageComplete(err);
1764 : }
1765 0 : }
1766 :
1767 0 : CHIP_ERROR DeviceCommissioner::SendTrustedRootCertificate(DeviceProxy * device, const ByteSpan & rcac,
1768 : Optional<System::Clock::Timeout> timeout)
1769 : {
1770 : MATTER_TRACE_SCOPE("SendTrustedRootCertificate", "DeviceCommissioner");
1771 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1772 :
1773 0 : ChipLogProgress(Controller, "Sending root certificate to the device");
1774 :
1775 0 : OperationalCredentials::Commands::AddTrustedRootCertificate::Type request;
1776 0 : request.rootCACertificate = rcac;
1777 0 : ReturnErrorOnFailure(
1778 : SendCommissioningCommand(device, request, OnRootCertSuccessResponse, OnRootCertFailureResponse, kRootEndpointId, timeout));
1779 :
1780 0 : ChipLogProgress(Controller, "Sent root certificate to the device");
1781 :
1782 0 : return CHIP_NO_ERROR;
1783 : }
1784 :
1785 0 : void DeviceCommissioner::OnRootCertSuccessResponse(void * context, const chip::app::DataModel::NullObjectType &)
1786 : {
1787 : MATTER_TRACE_SCOPE("OnRootCertSuccessResponse", "DeviceCommissioner");
1788 0 : ChipLogProgress(Controller, "Device confirmed that it has received the root certificate");
1789 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1790 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1791 0 : }
1792 :
1793 0 : void DeviceCommissioner::OnRootCertFailureResponse(void * context, CHIP_ERROR error)
1794 : {
1795 : MATTER_TRACE_SCOPE("OnRootCertFailureResponse", "DeviceCommissioner");
1796 0 : ChipLogProgress(Controller, "Device failed to receive the root certificate Response: %s", chip::ErrorStr(error));
1797 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1798 0 : commissioner->CommissioningStageComplete(error);
1799 0 : }
1800 :
1801 0 : CHIP_ERROR DeviceCommissioner::OnOperationalCredentialsProvisioningCompletion(DeviceProxy * device)
1802 : {
1803 : MATTER_TRACE_SCOPE("OnOperationalCredentialsProvisioningCompletion", "DeviceCommissioner");
1804 0 : ChipLogProgress(Controller, "Operational credentials provisioned on device %p", device);
1805 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1806 :
1807 0 : if (mPairingDelegate != nullptr)
1808 : {
1809 0 : mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingSuccess);
1810 : }
1811 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1812 :
1813 0 : return CHIP_NO_ERROR;
1814 : }
1815 :
1816 : #if CONFIG_NETWORK_LAYER_BLE
1817 : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
1818 : void DeviceCommissioner::ConnectBleTransportToSelf()
1819 : {
1820 : Transport::BLEBase & transport = std::get<Transport::BLE<1>>(mSystemState->TransportMgr()->GetTransport().GetTransports());
1821 : if (!transport.IsBleLayerTransportSetToSelf())
1822 : {
1823 : transport.SetBleLayerTransportToSelf();
1824 : }
1825 : }
1826 : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
1827 :
1828 0 : void DeviceCommissioner::CloseBleConnection()
1829 : {
1830 : // It is fine since we can only commission one device at the same time.
1831 : // We should be able to distinguish different BLE connections if we want
1832 : // to commission multiple devices at the same time over BLE.
1833 0 : mSystemState->BleLayer()->CloseAllBleConnections();
1834 0 : }
1835 : #endif
1836 :
1837 0 : CHIP_ERROR DeviceCommissioner::DiscoverCommissionableNodes(Dnssd::DiscoveryFilter filter)
1838 : {
1839 0 : ReturnErrorOnFailure(SetUpNodeDiscovery());
1840 0 : return mDNSResolver.DiscoverCommissionableNodes(filter);
1841 : }
1842 :
1843 0 : CHIP_ERROR DeviceCommissioner::StopCommissionableDiscovery()
1844 : {
1845 0 : return mDNSResolver.StopDiscovery();
1846 : }
1847 :
1848 0 : const Dnssd::CommissionNodeData * DeviceCommissioner::GetDiscoveredDevice(int idx)
1849 : {
1850 0 : return GetDiscoveredNode(idx);
1851 : }
1852 :
1853 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
1854 :
1855 : CHIP_ERROR DeviceCommissioner::SetUdcListenPort(uint16_t listenPort)
1856 : {
1857 : if (mState == State::Initialized)
1858 : {
1859 : return CHIP_ERROR_INCORRECT_STATE;
1860 : }
1861 :
1862 : mUdcListenPort = listenPort;
1863 : return CHIP_NO_ERROR;
1864 : }
1865 :
1866 : void DeviceCommissioner::FindCommissionableNode(char * instanceName)
1867 : {
1868 : Dnssd::DiscoveryFilter filter(Dnssd::DiscoveryFilterType::kInstanceName, instanceName);
1869 : DiscoverCommissionableNodes(filter);
1870 : }
1871 :
1872 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1873 :
1874 0 : void DeviceCommissioner::OnNodeDiscovered(const chip::Dnssd::DiscoveredNodeData & nodeData)
1875 : {
1876 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1877 : if (mUdcServer != nullptr)
1878 : {
1879 : mUdcServer->OnCommissionableNodeFound(nodeData);
1880 : }
1881 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1882 0 : AbstractDnssdDiscoveryController::OnNodeDiscovered(nodeData);
1883 0 : mSetUpCodePairer.NotifyCommissionableDeviceDiscovered(nodeData);
1884 0 : }
1885 :
1886 0 : void DeviceCommissioner::OnBasicSuccess(void * context, const chip::app::DataModel::NullObjectType &)
1887 : {
1888 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1889 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1890 0 : }
1891 :
1892 0 : void DeviceCommissioner::OnBasicFailure(void * context, CHIP_ERROR error)
1893 : {
1894 0 : ChipLogProgress(Controller, "Received failure response %s\n", chip::ErrorStr(error));
1895 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1896 0 : commissioner->CommissioningStageComplete(error);
1897 0 : }
1898 :
1899 0 : static GeneralCommissioning::Commands::ArmFailSafe::Type DisarmFailsafeRequest()
1900 : {
1901 0 : GeneralCommissioning::Commands::ArmFailSafe::Type request;
1902 0 : request.expiryLengthSeconds = 0; // Expire immediately.
1903 0 : request.breadcrumb = 0;
1904 0 : return request;
1905 : }
1906 :
1907 0 : static void MarkForEviction(const Optional<SessionHandle> & session)
1908 : {
1909 0 : if (session.HasValue())
1910 : {
1911 0 : session.Value()->AsSecureSession()->MarkForEviction();
1912 : }
1913 0 : }
1914 :
1915 0 : void DeviceCommissioner::CleanupCommissioning(DeviceProxy * proxy, NodeId nodeId, const CompletionStatus & completionStatus)
1916 : {
1917 : // At this point, proxy == mDeviceBeingCommissioned, nodeId == mDeviceBeingCommissioned->GetDeviceId()
1918 :
1919 0 : mCommissioningCompletionStatus = completionStatus;
1920 :
1921 0 : if (completionStatus.err == CHIP_NO_ERROR)
1922 : {
1923 : // CommissioningStageComplete uses mDeviceBeingCommissioned, which can
1924 : // be commissionee if we are cleaning up before we've gone operational. Normally
1925 : // that would not happen in this non-error case, _except_ if we were told to skip sending
1926 : // CommissioningComplete: in that case we do not have an operational DeviceProxy, so
1927 : // we're using our CommissioneeDeviceProxy to do a successful cleanup.
1928 : //
1929 : // This means we have to call CommissioningStageComplete() before we destroy commissionee.
1930 : //
1931 : // This should be safe, because CommissioningStageComplete() does not call CleanupCommissioning
1932 : // when called in the cleanup stage (which is where we are), and StopPairing does not directly release
1933 : // mDeviceBeingCommissioned.
1934 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1935 :
1936 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
1937 0 : if (commissionee != nullptr)
1938 : {
1939 0 : ReleaseCommissioneeDevice(commissionee);
1940 : }
1941 : // Send the callbacks, we're done.
1942 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
1943 : }
1944 0 : else if (completionStatus.err == CHIP_ERROR_CANCELLED)
1945 : {
1946 : // If we're cleaning up because cancellation has been requested via StopPairing(), expire the failsafe
1947 : // in the background and reset our state synchronously, so a new commissioning attempt can be started.
1948 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
1949 0 : SessionHolder session((commissionee == proxy) ? commissionee->DetachSecureSession().Value()
1950 0 : : proxy->GetSecureSession().Value());
1951 :
1952 0 : auto request = DisarmFailsafeRequest();
1953 0 : auto onSuccessCb = [session](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
1954 : const decltype(request)::ResponseType & responseData) {
1955 0 : ChipLogProgress(Controller, "Failsafe disarmed");
1956 0 : MarkForEviction(session.Get());
1957 0 : };
1958 0 : auto onFailureCb = [session](CHIP_ERROR aError) {
1959 0 : ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, aError.Format());
1960 0 : MarkForEviction(session.Get());
1961 0 : };
1962 :
1963 0 : ChipLogProgress(Controller, "Disarming failsafe on device %p in background", proxy);
1964 0 : CHIP_ERROR err = InvokeCommandRequest(proxy->GetExchangeManager(), session.Get().Value(), kRootEndpointId, request,
1965 : onSuccessCb, onFailureCb);
1966 0 : if (err != CHIP_NO_ERROR)
1967 : {
1968 0 : ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
1969 : }
1970 :
1971 0 : CleanupDoneAfterError();
1972 0 : }
1973 0 : else if (completionStatus.failedStage.HasValue() && completionStatus.failedStage.Value() >= kWiFiNetworkSetup)
1974 : {
1975 : // If we were already doing network setup, we need to retain the pase session and start again from network setup stage.
1976 : // We do not need to reset the failsafe here because we want to keep everything on the device up to this point, so just
1977 : // send the completion callbacks (see "Commissioning Flows Error Handling" in the spec).
1978 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1979 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
1980 : }
1981 : else
1982 : {
1983 : // If we've failed somewhere in the early stages (or we don't have a failedStage specified), we need to start from the
1984 : // beginning. However, because some of the commands can only be sent once per arm-failsafe, we also need to force a reset on
1985 : // the failsafe so we can start fresh on the next attempt.
1986 0 : ChipLogProgress(Controller, "Disarming failsafe on device %p", proxy);
1987 0 : auto request = DisarmFailsafeRequest();
1988 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnDisarmFailsafe, OnDisarmFailsafeFailure, kRootEndpointId);
1989 0 : if (err != CHIP_NO_ERROR)
1990 : {
1991 : // We won't get any async callbacks here, so just pretend like the command errored out async.
1992 0 : ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
1993 0 : CleanupDoneAfterError();
1994 : }
1995 : }
1996 0 : }
1997 :
1998 0 : void DeviceCommissioner::OnDisarmFailsafe(void * context,
1999 : const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2000 : {
2001 0 : ChipLogProgress(Controller, "Failsafe disarmed");
2002 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2003 0 : commissioner->CleanupDoneAfterError();
2004 0 : }
2005 :
2006 0 : void DeviceCommissioner::OnDisarmFailsafeFailure(void * context, CHIP_ERROR error)
2007 : {
2008 0 : ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, error.Format());
2009 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2010 0 : commissioner->CleanupDoneAfterError();
2011 0 : }
2012 :
2013 0 : void DeviceCommissioner::CleanupDoneAfterError()
2014 : {
2015 : // If someone nulled out our mDeviceBeingCommissioned, there's nothing else
2016 : // to do here.
2017 0 : VerifyOrReturn(mDeviceBeingCommissioned != nullptr);
2018 :
2019 0 : NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
2020 :
2021 : // Signal completion - this will reset mDeviceBeingCommissioned.
2022 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2023 :
2024 : // At this point, we also want to close off the pase session so we need to re-establish
2025 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
2026 :
2027 : // If we've disarmed the failsafe, it's because we're starting again, so kill the pase connection.
2028 0 : if (commissionee != nullptr)
2029 : {
2030 0 : ReleaseCommissioneeDevice(commissionee);
2031 : }
2032 :
2033 : // Invoke callbacks last, after we have cleared up all state.
2034 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
2035 : }
2036 :
2037 0 : void DeviceCommissioner::SendCommissioningCompleteCallbacks(NodeId nodeId, const CompletionStatus & completionStatus)
2038 : {
2039 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerCommission, completionStatus.err);
2040 :
2041 0 : ChipLogProgress(Controller, "Commissioning complete for node ID 0x" ChipLogFormatX64 ": %s", ChipLogValueX64(nodeId),
2042 : (completionStatus.err == CHIP_NO_ERROR ? "success" : completionStatus.err.AsString()));
2043 0 : mCommissioningStage = CommissioningStage::kSecurePairing;
2044 :
2045 0 : if (mPairingDelegate == nullptr)
2046 : {
2047 0 : return;
2048 : }
2049 :
2050 0 : mPairingDelegate->OnCommissioningComplete(nodeId, completionStatus.err);
2051 0 : PeerId peerId(GetCompressedFabricId(), nodeId);
2052 0 : if (completionStatus.err == CHIP_NO_ERROR)
2053 : {
2054 0 : mPairingDelegate->OnCommissioningSuccess(peerId);
2055 : }
2056 : else
2057 : {
2058 : // TODO: We should propogate detailed error information (commissioningError, networkCommissioningStatus) from
2059 : // completionStatus.
2060 0 : mPairingDelegate->OnCommissioningFailure(peerId, completionStatus.err, completionStatus.failedStage.ValueOr(kError),
2061 0 : completionStatus.attestationResult);
2062 : }
2063 : }
2064 :
2065 0 : void DeviceCommissioner::CommissioningStageComplete(CHIP_ERROR err, CommissioningDelegate::CommissioningReport report)
2066 : {
2067 : // Once this stage is complete, reset mDeviceBeingCommissioned - this will be reset when the delegate calls the next step.
2068 : MATTER_TRACE_SCOPE("CommissioningStageComplete", "DeviceCommissioner");
2069 : MATTER_LOG_METRIC_END(MetricKeyForCommissioningStage(mCommissioningStage), err);
2070 0 : VerifyOrDie(mDeviceBeingCommissioned);
2071 :
2072 0 : NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
2073 0 : DeviceProxy * proxy = mDeviceBeingCommissioned;
2074 0 : mDeviceBeingCommissioned = nullptr;
2075 0 : mInvokeCancelFn = nullptr;
2076 0 : mWriteCancelFn = nullptr;
2077 :
2078 0 : if (mPairingDelegate != nullptr)
2079 : {
2080 0 : mPairingDelegate->OnCommissioningStatusUpdate(PeerId(GetCompressedFabricId(), nodeId), mCommissioningStage, err);
2081 : }
2082 :
2083 0 : if (mCommissioningDelegate == nullptr)
2084 : {
2085 0 : return;
2086 : }
2087 0 : report.stageCompleted = mCommissioningStage;
2088 0 : CHIP_ERROR status = mCommissioningDelegate->CommissioningStepFinished(err, report);
2089 0 : if (status != CHIP_NO_ERROR && mCommissioningStage != CommissioningStage::kCleanup)
2090 : {
2091 : // Commissioning delegate will only return error if it failed to perform the appropriate commissioning step.
2092 : // In this case, we should complete the commissioning for it.
2093 0 : CompletionStatus completionStatus;
2094 0 : completionStatus.err = status;
2095 0 : completionStatus.failedStage = MakeOptional(report.stageCompleted);
2096 0 : mCommissioningStage = CommissioningStage::kCleanup;
2097 0 : mDeviceBeingCommissioned = proxy;
2098 0 : CleanupCommissioning(proxy, nodeId, completionStatus);
2099 : }
2100 : }
2101 :
2102 0 : void DeviceCommissioner::OnDeviceConnectedFn(void * context, Messaging::ExchangeManager & exchangeMgr,
2103 : const SessionHandle & sessionHandle)
2104 : {
2105 : // CASE session established.
2106 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, CHIP_NO_ERROR);
2107 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2108 0 : VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
2109 : commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
2110 0 : VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == sessionHandle->GetPeer().GetNodeId());
2111 0 : commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
2112 :
2113 0 : CommissioningDelegate::CommissioningReport report;
2114 0 : report.Set<OperationalNodeFoundData>(OperationalNodeFoundData(OperationalDeviceProxy(&exchangeMgr, sessionHandle)));
2115 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
2116 0 : }
2117 :
2118 0 : void DeviceCommissioner::OnDeviceConnectionFailureFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error)
2119 : {
2120 : // CASE session establishment failed.
2121 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, error);
2122 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2123 0 : VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
2124 : commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
2125 0 : VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
2126 0 : commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
2127 :
2128 0 : if (error != CHIP_NO_ERROR)
2129 : {
2130 0 : ChipLogProgress(Controller, "Device connection failed. Error %" CHIP_ERROR_FORMAT, error.Format());
2131 : }
2132 : else
2133 : {
2134 : // Ensure that commissioning stage advancement is done based on seeing an error.
2135 0 : ChipLogError(Controller, "Device connection failed without a valid error code.");
2136 0 : error = CHIP_ERROR_INTERNAL;
2137 : }
2138 0 : commissioner->CommissioningStageComplete(error);
2139 0 : }
2140 :
2141 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
2142 : // No specific action to take on either success or failure here; we're just
2143 : // trying to bump the fail-safe, and if that fails it's not clear there's much
2144 : // we can to with that.
2145 0 : static void OnExtendFailsafeForCASERetryFailure(void * context, CHIP_ERROR error)
2146 : {
2147 0 : ChipLogError(Controller, "Failed to extend fail-safe for CASE retry: %" CHIP_ERROR_FORMAT, error.Format());
2148 0 : }
2149 : static void
2150 0 : OnExtendFailsafeForCASERetrySuccess(void * context,
2151 : const app::Clusters::GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2152 : {
2153 0 : ChipLogProgress(Controller, "Status of extending fail-safe for CASE retry: %u", to_underlying(data.errorCode));
2154 0 : }
2155 :
2156 0 : void DeviceCommissioner::OnDeviceConnectionRetryFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error,
2157 : System::Clock::Seconds16 retryTimeout)
2158 : {
2159 0 : ChipLogError(Controller,
2160 : "Session establishment failed for " ChipLogFormatScopedNodeId ", error: %" CHIP_ERROR_FORMAT
2161 : ". Next retry expected to get a response to Sigma1 or fail within %d seconds",
2162 : ChipLogValueScopedNodeId(peerId), error.Format(), retryTimeout.count());
2163 :
2164 0 : auto self = static_cast<DeviceCommissioner *>(context);
2165 0 : VerifyOrDie(self->GetCommissioningStage() == CommissioningStage::kFindOperationalForStayActive ||
2166 : self->GetCommissioningStage() == CommissioningStage::kFindOperationalForCommissioningComplete);
2167 0 : VerifyOrDie(self->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
2168 :
2169 : // We need to do the fail-safe arming over the PASE session.
2170 0 : auto * commissioneeDevice = self->FindCommissioneeDevice(peerId.GetNodeId());
2171 0 : if (!commissioneeDevice)
2172 : {
2173 : // Commissioning canceled, presumably. Just ignore the notification,
2174 : // not much we can do here.
2175 0 : return;
2176 : }
2177 :
2178 : // Extend by the default failsafe timeout plus our retry timeout, so we can
2179 : // be sure the fail-safe will not expire before we try the next time, if
2180 : // there will be a next time.
2181 : //
2182 : // TODO: Make it possible for our clients to control the exact timeout here?
2183 : uint16_t failsafeTimeout;
2184 0 : if (UINT16_MAX - retryTimeout.count() < kDefaultFailsafeTimeout)
2185 : {
2186 0 : failsafeTimeout = UINT16_MAX;
2187 : }
2188 : else
2189 : {
2190 0 : failsafeTimeout = static_cast<uint16_t>(retryTimeout.count() + kDefaultFailsafeTimeout);
2191 : }
2192 :
2193 : // A false return is fine; we don't want to make the fail-safe shorter here.
2194 0 : self->ExtendArmFailSafeInternal(commissioneeDevice, self->GetCommissioningStage(), failsafeTimeout,
2195 0 : MakeOptional(kMinimumCommissioningStepTimeout), OnExtendFailsafeForCASERetrySuccess,
2196 : OnExtendFailsafeForCASERetryFailure, /* fireAndForget = */ true);
2197 : }
2198 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
2199 :
2200 : // ClusterStateCache::Callback / ReadClient::Callback
2201 0 : void DeviceCommissioner::OnDone(app::ReadClient * readClient)
2202 : {
2203 0 : VerifyOrDie(readClient != nullptr && readClient == mReadClient.get());
2204 0 : mReadClient.reset();
2205 0 : switch (mCommissioningStage)
2206 : {
2207 0 : case CommissioningStage::kReadCommissioningInfo:
2208 0 : ContinueReadingCommissioningInfo(mCommissioningDelegate->GetCommissioningParameters());
2209 0 : break;
2210 0 : default:
2211 0 : VerifyOrDie(false);
2212 : break;
2213 : }
2214 0 : }
2215 :
2216 : namespace {
2217 : // Helper for grouping attribute paths into read interactions in ContinueReadingCommissioningInfo()
2218 : // below. The logic generates a sequence of calls to AddAttributePath(), stopping when the capacity
2219 : // of the builder is exceeded. When creating subsequent read requests, the same sequence of calls
2220 : // is generated again, but the builder will skip however many attributes were already read in
2221 : // previous requests. This makes it easy to have logic that conditionally reads attributes, without
2222 : // needing to write manual code to work out where subsequent reads need to resume -- the logic that
2223 : // decides which attributes to read simply needs to be repeatable / deterministic.
2224 : class ReadInteractionBuilder
2225 : {
2226 : static constexpr auto kCapacity = InteractionModelEngine::kMinSupportedPathsPerReadRequest;
2227 :
2228 : size_t mSkip = 0;
2229 : size_t mCount = 0;
2230 : app::AttributePathParams mPaths[kCapacity];
2231 :
2232 : public:
2233 0 : ReadInteractionBuilder(size_t skip = 0) : mSkip(skip) {}
2234 :
2235 0 : size_t size() { return std::min(mCount, kCapacity); }
2236 0 : bool exceeded() { return mCount > kCapacity; }
2237 0 : app::AttributePathParams * paths() { return mPaths; }
2238 :
2239 : // Adds an attribute path if within the current window.
2240 : // Returns false if the available space has been exceeded.
2241 : template <typename... Ts>
2242 0 : bool AddAttributePath(Ts &&... args)
2243 : {
2244 0 : if (mSkip > 0)
2245 : {
2246 0 : mSkip--;
2247 0 : return true;
2248 : }
2249 0 : if (mCount >= kCapacity)
2250 : {
2251 : // capacity exceeded
2252 0 : mCount = kCapacity + 1;
2253 0 : return false;
2254 : }
2255 0 : mPaths[mCount++] = app::AttributePathParams(std::forward<Ts>(args)...);
2256 0 : return true;
2257 : }
2258 : };
2259 : } // namespace
2260 :
2261 0 : void DeviceCommissioner::ContinueReadingCommissioningInfo(const CommissioningParameters & params)
2262 : {
2263 0 : VerifyOrDie(mCommissioningStage == CommissioningStage::kReadCommissioningInfo);
2264 :
2265 : // mReadCommissioningInfoProgress starts at 0 and counts the number of paths we have read.
2266 : // A marker value is used to indicate that there are no further attributes to read.
2267 : static constexpr auto kReadProgressNoFurtherAttributes = std::numeric_limits<decltype(mReadCommissioningInfoProgress)>::max();
2268 0 : if (mReadCommissioningInfoProgress == kReadProgressNoFurtherAttributes)
2269 : {
2270 0 : FinishReadingCommissioningInfo();
2271 0 : return;
2272 : }
2273 :
2274 : // We can ony read 9 paths per Read Interaction, since that is the minimum a server has to
2275 : // support per spec (see "Interaction Model Limits"), so we generally need to perform more
2276 : // that one interaction. To build the list of attributes for each interaction, we use a
2277 : // builder that skips adding paths that we already handled in a previous interaction, and
2278 : // returns false if the current request is exhausted. This construction avoids allocating
2279 : // memory to hold the complete list of attributes to read up front; however the logic to
2280 : // determine the attributes to include must be deterministic since it runs multiple times.
2281 : // The use of an immediately-invoked lambda is convenient for control flow.
2282 0 : ReadInteractionBuilder builder(mReadCommissioningInfoProgress);
2283 0 : [&]() -> void {
2284 : // General Commissioning
2285 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2286 : Clusters::GeneralCommissioning::Attributes::SupportsConcurrentConnection::Id));
2287 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2288 : Clusters::GeneralCommissioning::Attributes::Breadcrumb::Id));
2289 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2290 : Clusters::GeneralCommissioning::Attributes::BasicCommissioningInfo::Id));
2291 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2292 : Clusters::GeneralCommissioning::Attributes::RegulatoryConfig::Id));
2293 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2294 : Clusters::GeneralCommissioning::Attributes::LocationCapability::Id));
2295 :
2296 : // Basic Information: VID and PID for device attestation purposes
2297 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
2298 : Clusters::BasicInformation::Attributes::VendorID::Id));
2299 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
2300 : Clusters::BasicInformation::Attributes::ProductID::Id));
2301 :
2302 : // Time Synchronization: all attributes
2303 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::TimeSynchronization::Id));
2304 :
2305 : // Network Commissioning (all endpoints): Read the feature map and connect time
2306 : // TODO: Expose a flag that disables network setup so we don't need to read this
2307 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2308 : Clusters::NetworkCommissioning::Attributes::FeatureMap::Id));
2309 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2310 : Clusters::NetworkCommissioning::Attributes::ConnectMaxTimeSeconds::Id));
2311 :
2312 : // OperationalCredentials: existing fabrics, if necessary
2313 0 : if (params.GetCheckForMatchingFabric())
2314 : {
2315 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::OperationalCredentials::Id,
2316 : Clusters::OperationalCredentials::Attributes::Fabrics::Id));
2317 : }
2318 :
2319 : // ICD Management
2320 0 : if (params.GetICDRegistrationStrategy() != ICDRegistrationStrategy::kIgnore)
2321 : {
2322 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2323 : Clusters::IcdManagement::Attributes::FeatureMap::Id));
2324 : }
2325 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2326 : Clusters::IcdManagement::Attributes::UserActiveModeTriggerHint::Id));
2327 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2328 : Clusters::IcdManagement::Attributes::UserActiveModeTriggerInstruction::Id));
2329 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2330 : Clusters::IcdManagement::Attributes::IdleModeDuration::Id));
2331 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2332 : Clusters::IcdManagement::Attributes::ActiveModeDuration::Id));
2333 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2334 : Clusters::IcdManagement::Attributes::ActiveModeThreshold::Id));
2335 :
2336 : #if CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
2337 : if (params.GetExecuteJCM().ValueOr(false))
2338 : {
2339 : VerifyOrReturn(builder.AddAttributePath(Clusters::JointFabricAdministrator::Id,
2340 : Clusters::JointFabricAdministrator::Attributes::AdministratorFabricIndex::Id));
2341 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::OperationalCredentials::Id,
2342 : Clusters::OperationalCredentials::Attributes::Fabrics::Id));
2343 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::OperationalCredentials::Id,
2344 : Clusters::OperationalCredentials::Attributes::NOCs::Id));
2345 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::OperationalCredentials::Id,
2346 : Clusters::OperationalCredentials::Attributes::TrustedRootCertificates::Id));
2347 : }
2348 : #endif // CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
2349 :
2350 : // Extra paths requested via CommissioningParameters
2351 0 : for (auto const & path : params.GetExtraReadPaths())
2352 : {
2353 0 : VerifyOrReturn(builder.AddAttributePath(path));
2354 : }
2355 0 : }();
2356 :
2357 0 : VerifyOrDie(builder.size() > 0); // our logic is broken if there is nothing to read
2358 0 : if (builder.exceeded())
2359 : {
2360 : // Keep track of the number of attributes we have read already so we can resume from there.
2361 0 : auto progress = mReadCommissioningInfoProgress + builder.size();
2362 0 : VerifyOrDie(progress < kReadProgressNoFurtherAttributes);
2363 0 : mReadCommissioningInfoProgress = static_cast<decltype(mReadCommissioningInfoProgress)>(progress);
2364 : }
2365 : else
2366 : {
2367 0 : mReadCommissioningInfoProgress = kReadProgressNoFurtherAttributes;
2368 : }
2369 :
2370 0 : SendCommissioningReadRequest(mDeviceBeingCommissioned, mCommissioningStepTimeout, builder.paths(), builder.size());
2371 : }
2372 :
2373 : namespace {
2374 0 : void AccumulateErrors(CHIP_ERROR & acc, CHIP_ERROR err)
2375 : {
2376 0 : if (acc == CHIP_NO_ERROR && err != CHIP_NO_ERROR)
2377 : {
2378 0 : acc = err;
2379 : }
2380 0 : }
2381 : } // namespace
2382 :
2383 0 : void DeviceCommissioner::FinishReadingCommissioningInfo()
2384 : {
2385 : // We want to parse as much information as possible, even if we eventually end
2386 : // up returning an error (e.g. because some mandatory information was missing).
2387 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2388 0 : ReadCommissioningInfo info;
2389 0 : info.attributes = mAttributeCache.get();
2390 0 : AccumulateErrors(err, ParseGeneralCommissioningInfo(info));
2391 0 : AccumulateErrors(err, ParseBasicInformation(info));
2392 0 : AccumulateErrors(err, ParseNetworkCommissioningInfo(info));
2393 0 : AccumulateErrors(err, ParseTimeSyncInfo(info));
2394 0 : AccumulateErrors(err, ParseFabrics(info));
2395 0 : AccumulateErrors(err, ParseICDInfo(info));
2396 : #if CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
2397 : AccumulateErrors(err, ParseJFAdministratorInfo(info));
2398 : #endif
2399 :
2400 0 : if (mPairingDelegate != nullptr && err == CHIP_NO_ERROR)
2401 : {
2402 0 : mPairingDelegate->OnReadCommissioningInfo(info);
2403 : }
2404 :
2405 0 : CommissioningDelegate::CommissioningReport report;
2406 0 : report.Set<ReadCommissioningInfo>(info);
2407 0 : CommissioningStageComplete(err, report);
2408 :
2409 : // Only release the attribute cache once `info` is no longer needed.
2410 0 : mAttributeCache.reset();
2411 0 : }
2412 :
2413 0 : CHIP_ERROR DeviceCommissioner::ParseGeneralCommissioningInfo(ReadCommissioningInfo & info)
2414 : {
2415 : using namespace GeneralCommissioning::Attributes;
2416 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2417 : CHIP_ERROR err;
2418 :
2419 0 : BasicCommissioningInfo::TypeInfo::DecodableType basicInfo;
2420 0 : err = mAttributeCache->Get<BasicCommissioningInfo::TypeInfo>(kRootEndpointId, basicInfo);
2421 0 : if (err == CHIP_NO_ERROR)
2422 : {
2423 0 : info.general.recommendedFailsafe = basicInfo.failSafeExpiryLengthSeconds;
2424 : }
2425 : else
2426 : {
2427 0 : ChipLogError(Controller, "Failed to read BasicCommissioningInfo: %" CHIP_ERROR_FORMAT, err.Format());
2428 0 : return_err = err;
2429 : }
2430 :
2431 0 : err = mAttributeCache->Get<RegulatoryConfig::TypeInfo>(kRootEndpointId, info.general.currentRegulatoryLocation);
2432 0 : if (err != CHIP_NO_ERROR)
2433 : {
2434 0 : ChipLogError(Controller, "Failed to read RegulatoryConfig: %" CHIP_ERROR_FORMAT, err.Format());
2435 0 : return_err = err;
2436 : }
2437 :
2438 0 : err = mAttributeCache->Get<LocationCapability::TypeInfo>(kRootEndpointId, info.general.locationCapability);
2439 0 : if (err != CHIP_NO_ERROR)
2440 : {
2441 0 : ChipLogError(Controller, "Failed to read LocationCapability: %" CHIP_ERROR_FORMAT, err.Format());
2442 0 : return_err = err;
2443 : }
2444 :
2445 0 : err = mAttributeCache->Get<Breadcrumb::TypeInfo>(kRootEndpointId, info.general.breadcrumb);
2446 0 : if (err != CHIP_NO_ERROR)
2447 : {
2448 0 : ChipLogError(Controller, "Failed to read Breadcrumb: %" CHIP_ERROR_FORMAT, err.Format());
2449 0 : return_err = err;
2450 : }
2451 :
2452 0 : err = mAttributeCache->Get<SupportsConcurrentConnection::TypeInfo>(kRootEndpointId, info.supportsConcurrentConnection);
2453 0 : if (err != CHIP_NO_ERROR)
2454 : {
2455 0 : ChipLogError(Controller, "Ignoring failure to read SupportsConcurrentConnection: %" CHIP_ERROR_FORMAT, err.Format());
2456 0 : info.supportsConcurrentConnection = true; // default to true (concurrent), not a fatal error
2457 : }
2458 :
2459 0 : return return_err;
2460 : }
2461 :
2462 0 : CHIP_ERROR DeviceCommissioner::ParseBasicInformation(ReadCommissioningInfo & info)
2463 : {
2464 : using namespace BasicInformation::Attributes;
2465 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2466 : CHIP_ERROR err;
2467 :
2468 0 : err = mAttributeCache->Get<VendorID::TypeInfo>(kRootEndpointId, info.basic.vendorId);
2469 0 : if (err != CHIP_NO_ERROR)
2470 : {
2471 0 : ChipLogError(Controller, "Failed to read VendorID: %" CHIP_ERROR_FORMAT, err.Format());
2472 0 : return_err = err;
2473 : }
2474 :
2475 0 : err = mAttributeCache->Get<ProductID::TypeInfo>(kRootEndpointId, info.basic.productId);
2476 0 : if (err != CHIP_NO_ERROR)
2477 : {
2478 0 : ChipLogError(Controller, "Failed to read ProductID: %" CHIP_ERROR_FORMAT, err.Format());
2479 0 : return_err = err;
2480 : }
2481 :
2482 0 : return return_err;
2483 : }
2484 :
2485 0 : CHIP_ERROR DeviceCommissioner::ParseNetworkCommissioningInfo(ReadCommissioningInfo & info)
2486 : {
2487 : using namespace NetworkCommissioning::Attributes;
2488 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2489 : CHIP_ERROR err;
2490 :
2491 : // Set the network cluster endpoints first so we can match up the connection
2492 : // times. Note that here we don't know what endpoints the network
2493 : // commissioning clusters might be on.
2494 0 : err = mAttributeCache->ForEachAttribute(NetworkCommissioning::Id, [this, &info](const ConcreteAttributePath & path) {
2495 0 : VerifyOrReturnError(path.mAttributeId == FeatureMap::Id, CHIP_NO_ERROR);
2496 0 : BitFlags<NetworkCommissioning::Feature> features;
2497 0 : if (mAttributeCache->Get<FeatureMap::TypeInfo>(path, *features.RawStorage()) == CHIP_NO_ERROR)
2498 : {
2499 0 : if (features.Has(NetworkCommissioning::Feature::kWiFiNetworkInterface))
2500 : {
2501 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has WiFi. endpointid = %u", path.mEndpointId);
2502 0 : info.network.wifi.endpoint = path.mEndpointId;
2503 : }
2504 0 : else if (features.Has(NetworkCommissioning::Feature::kThreadNetworkInterface))
2505 : {
2506 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has Thread. endpointid = %u", path.mEndpointId);
2507 0 : info.network.thread.endpoint = path.mEndpointId;
2508 : }
2509 0 : else if (features.Has(NetworkCommissioning::Feature::kEthernetNetworkInterface))
2510 : {
2511 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has Ethernet. endpointid = %u", path.mEndpointId);
2512 0 : info.network.eth.endpoint = path.mEndpointId;
2513 : }
2514 : }
2515 0 : return CHIP_NO_ERROR;
2516 : });
2517 0 : AccumulateErrors(return_err, err);
2518 :
2519 0 : if (info.network.thread.endpoint != kInvalidEndpointId)
2520 : {
2521 0 : err = mAttributeCache->Get<ConnectMaxTimeSeconds::TypeInfo>(info.network.thread.endpoint,
2522 0 : info.network.thread.minConnectionTime);
2523 0 : if (err != CHIP_NO_ERROR)
2524 : {
2525 0 : ChipLogError(Controller, "Failed to read Thread ConnectMaxTimeSeconds (endpoint %u): %" CHIP_ERROR_FORMAT,
2526 : info.network.thread.endpoint, err.Format());
2527 0 : return_err = err;
2528 : }
2529 : }
2530 :
2531 0 : if (info.network.wifi.endpoint != kInvalidEndpointId)
2532 : {
2533 0 : err =
2534 0 : mAttributeCache->Get<ConnectMaxTimeSeconds::TypeInfo>(info.network.wifi.endpoint, info.network.wifi.minConnectionTime);
2535 0 : if (err != CHIP_NO_ERROR)
2536 : {
2537 0 : ChipLogError(Controller, "Failed to read Wi-Fi ConnectMaxTimeSeconds (endpoint %u): %" CHIP_ERROR_FORMAT,
2538 : info.network.wifi.endpoint, err.Format());
2539 0 : return_err = err;
2540 : }
2541 : }
2542 :
2543 0 : if (return_err != CHIP_NO_ERROR)
2544 : {
2545 0 : ChipLogError(Controller, "Failed to parsing Network Commissioning information: %" CHIP_ERROR_FORMAT, return_err.Format());
2546 : }
2547 0 : return return_err;
2548 : }
2549 :
2550 0 : CHIP_ERROR DeviceCommissioner::ParseTimeSyncInfo(ReadCommissioningInfo & info)
2551 : {
2552 : using namespace TimeSynchronization::Attributes;
2553 : CHIP_ERROR err;
2554 :
2555 : // If we fail to get the feature map, there's no viable time cluster, don't set anything.
2556 0 : BitFlags<TimeSynchronization::Feature> featureMap;
2557 0 : err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
2558 0 : if (err != CHIP_NO_ERROR)
2559 : {
2560 0 : info.requiresUTC = false;
2561 0 : info.requiresTimeZone = false;
2562 0 : info.requiresDefaultNTP = false;
2563 0 : info.requiresTrustedTimeSource = false;
2564 0 : return CHIP_NO_ERROR;
2565 : }
2566 0 : info.requiresUTC = true;
2567 0 : info.requiresTimeZone = featureMap.Has(TimeSynchronization::Feature::kTimeZone);
2568 0 : info.requiresDefaultNTP = featureMap.Has(TimeSynchronization::Feature::kNTPClient);
2569 0 : info.requiresTrustedTimeSource = featureMap.Has(TimeSynchronization::Feature::kTimeSyncClient);
2570 :
2571 0 : if (info.requiresTimeZone)
2572 : {
2573 0 : err = mAttributeCache->Get<TimeZoneListMaxSize::TypeInfo>(kRootEndpointId, info.maxTimeZoneSize);
2574 0 : if (err != CHIP_NO_ERROR)
2575 : {
2576 : // This information should be available, let's do our best with what we have, but we can't set
2577 : // the time zone without this information
2578 0 : info.requiresTimeZone = false;
2579 : }
2580 0 : err = mAttributeCache->Get<DSTOffsetListMaxSize::TypeInfo>(kRootEndpointId, info.maxDSTSize);
2581 0 : if (err != CHIP_NO_ERROR)
2582 : {
2583 0 : info.requiresTimeZone = false;
2584 : }
2585 : }
2586 0 : if (info.requiresDefaultNTP)
2587 : {
2588 0 : DefaultNTP::TypeInfo::DecodableType defaultNTP;
2589 0 : err = mAttributeCache->Get<DefaultNTP::TypeInfo>(kRootEndpointId, defaultNTP);
2590 0 : if (err == CHIP_NO_ERROR && (!defaultNTP.IsNull()) && (defaultNTP.Value().size() != 0))
2591 : {
2592 0 : info.requiresDefaultNTP = false;
2593 : }
2594 : }
2595 0 : if (info.requiresTrustedTimeSource)
2596 : {
2597 0 : TrustedTimeSource::TypeInfo::DecodableType trustedTimeSource;
2598 0 : err = mAttributeCache->Get<TrustedTimeSource::TypeInfo>(kRootEndpointId, trustedTimeSource);
2599 0 : if (err == CHIP_NO_ERROR && !trustedTimeSource.IsNull())
2600 : {
2601 0 : info.requiresTrustedTimeSource = false;
2602 : }
2603 : }
2604 :
2605 0 : return CHIP_NO_ERROR;
2606 : }
2607 :
2608 0 : CHIP_ERROR DeviceCommissioner::ParseFabrics(ReadCommissioningInfo & info)
2609 : {
2610 : using namespace OperationalCredentials::Attributes;
2611 : CHIP_ERROR err;
2612 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2613 :
2614 : // We might not have requested a Fabrics attribute at all, so not having a
2615 : // value for it is not an error.
2616 0 : err = mAttributeCache->ForEachAttribute(OperationalCredentials::Id, [this, &info](const ConcreteAttributePath & path) {
2617 : using namespace chip::app::Clusters::OperationalCredentials::Attributes;
2618 : // this code is checking if the device is already on the commissioner's fabric.
2619 : // if a matching fabric is found, then remember the nodeId so that the commissioner
2620 : // can, if it decides to, cancel commissioning (before it fails in AddNoc) and know
2621 : // the device's nodeId on its fabric.
2622 0 : switch (path.mAttributeId)
2623 : {
2624 0 : case Fabrics::Id: {
2625 0 : Fabrics::TypeInfo::DecodableType fabrics;
2626 0 : ReturnErrorOnFailure(this->mAttributeCache->Get<Fabrics::TypeInfo>(path, fabrics));
2627 : // this is a best effort attempt to find a matching fabric, so no error checking on iter
2628 0 : auto iter = fabrics.begin();
2629 0 : while (iter.Next())
2630 : {
2631 0 : auto & fabricDescriptor = iter.GetValue();
2632 0 : ChipLogProgress(Controller,
2633 : "DeviceCommissioner::OnDone - fabric.vendorId=0x%04X fabric.fabricId=0x" ChipLogFormatX64
2634 : " fabric.nodeId=0x" ChipLogFormatX64,
2635 : fabricDescriptor.vendorID, ChipLogValueX64(fabricDescriptor.fabricID),
2636 : ChipLogValueX64(fabricDescriptor.nodeID));
2637 0 : if (GetFabricId() == fabricDescriptor.fabricID)
2638 : {
2639 0 : ChipLogProgress(Controller, "DeviceCommissioner::OnDone - found a matching fabric id");
2640 0 : chip::ByteSpan rootKeySpan = fabricDescriptor.rootPublicKey;
2641 0 : if (rootKeySpan.size() != Crypto::kP256_PublicKey_Length)
2642 : {
2643 0 : ChipLogError(Controller, "DeviceCommissioner::OnDone - fabric root key size mismatch %u != %u",
2644 : static_cast<unsigned>(rootKeySpan.size()),
2645 : static_cast<unsigned>(Crypto::kP256_PublicKey_Length));
2646 0 : continue;
2647 : }
2648 0 : P256PublicKeySpan rootPubKeySpan(rootKeySpan.data());
2649 0 : Crypto::P256PublicKey deviceRootPublicKey(rootPubKeySpan);
2650 :
2651 0 : Crypto::P256PublicKey commissionerRootPublicKey;
2652 0 : if (CHIP_NO_ERROR != GetRootPublicKey(commissionerRootPublicKey))
2653 : {
2654 0 : ChipLogError(Controller, "DeviceCommissioner::OnDone - error reading commissioner root public key");
2655 : }
2656 0 : else if (commissionerRootPublicKey.Matches(deviceRootPublicKey))
2657 : {
2658 0 : ChipLogProgress(Controller, "DeviceCommissioner::OnDone - fabric root keys match");
2659 0 : info.remoteNodeId = fabricDescriptor.nodeID;
2660 : }
2661 0 : }
2662 : }
2663 :
2664 0 : return CHIP_NO_ERROR;
2665 : }
2666 0 : default:
2667 0 : return CHIP_NO_ERROR;
2668 : }
2669 : });
2670 :
2671 0 : if (mPairingDelegate != nullptr)
2672 : {
2673 0 : mPairingDelegate->OnFabricCheck(info.remoteNodeId);
2674 : }
2675 :
2676 0 : return return_err;
2677 : }
2678 :
2679 0 : CHIP_ERROR DeviceCommissioner::ParseICDInfo(ReadCommissioningInfo & info)
2680 : {
2681 : using namespace IcdManagement::Attributes;
2682 : CHIP_ERROR err;
2683 :
2684 0 : bool hasUserActiveModeTrigger = false;
2685 0 : bool isICD = false;
2686 :
2687 0 : BitFlags<IcdManagement::Feature> featureMap;
2688 0 : err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
2689 0 : if (err == CHIP_NO_ERROR)
2690 : {
2691 0 : info.icd.isLIT = featureMap.Has(IcdManagement::Feature::kLongIdleTimeSupport);
2692 0 : info.icd.checkInProtocolSupport = featureMap.Has(IcdManagement::Feature::kCheckInProtocolSupport);
2693 0 : hasUserActiveModeTrigger = featureMap.Has(IcdManagement::Feature::kUserActiveModeTrigger);
2694 0 : isICD = true;
2695 : }
2696 0 : else if (err == CHIP_ERROR_KEY_NOT_FOUND)
2697 : {
2698 : // This key is optional so not an error
2699 0 : info.icd.isLIT = false;
2700 0 : err = CHIP_NO_ERROR;
2701 : }
2702 0 : else if (err == CHIP_ERROR_IM_STATUS_CODE_RECEIVED)
2703 : {
2704 0 : app::StatusIB statusIB;
2705 0 : err = mAttributeCache->GetStatus(app::ConcreteAttributePath(kRootEndpointId, IcdManagement::Id, FeatureMap::Id), statusIB);
2706 0 : if (err == CHIP_NO_ERROR)
2707 : {
2708 0 : if (statusIB.mStatus == Protocols::InteractionModel::Status::UnsupportedCluster)
2709 : {
2710 0 : info.icd.isLIT = false;
2711 : }
2712 : else
2713 : {
2714 0 : err = statusIB.ToChipError();
2715 : }
2716 : }
2717 : }
2718 :
2719 0 : ReturnErrorOnFailure(err);
2720 :
2721 0 : info.icd.userActiveModeTriggerHint.ClearAll();
2722 0 : info.icd.userActiveModeTriggerInstruction = CharSpan();
2723 :
2724 0 : if (hasUserActiveModeTrigger)
2725 : {
2726 : // Intentionally ignore errors since they are not mandatory.
2727 0 : bool activeModeTriggerInstructionRequired = false;
2728 :
2729 0 : err = mAttributeCache->Get<UserActiveModeTriggerHint::TypeInfo>(kRootEndpointId, info.icd.userActiveModeTriggerHint);
2730 0 : if (err != CHIP_NO_ERROR)
2731 : {
2732 0 : ChipLogError(Controller, "IcdManagement.UserActiveModeTriggerHint expected, but failed to read.");
2733 0 : return err;
2734 : }
2735 :
2736 : using IcdManagement::UserActiveModeTriggerBitmap;
2737 0 : activeModeTriggerInstructionRequired = info.icd.userActiveModeTriggerHint.HasAny(
2738 0 : UserActiveModeTriggerBitmap::kCustomInstruction, UserActiveModeTriggerBitmap::kActuateSensorSeconds,
2739 0 : UserActiveModeTriggerBitmap::kActuateSensorTimes, UserActiveModeTriggerBitmap::kActuateSensorLightsBlink,
2740 0 : UserActiveModeTriggerBitmap::kResetButtonLightsBlink, UserActiveModeTriggerBitmap::kResetButtonSeconds,
2741 0 : UserActiveModeTriggerBitmap::kResetButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonSeconds,
2742 0 : UserActiveModeTriggerBitmap::kSetupButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonTimes,
2743 0 : UserActiveModeTriggerBitmap::kAppDefinedButton);
2744 :
2745 0 : if (activeModeTriggerInstructionRequired)
2746 : {
2747 0 : err = mAttributeCache->Get<UserActiveModeTriggerInstruction::TypeInfo>(kRootEndpointId,
2748 0 : info.icd.userActiveModeTriggerInstruction);
2749 0 : if (err != CHIP_NO_ERROR)
2750 : {
2751 0 : ChipLogError(Controller,
2752 : "IcdManagement.UserActiveModeTriggerInstruction expected for given active mode trigger hint, but "
2753 : "failed to read.");
2754 0 : return err;
2755 : }
2756 : }
2757 : }
2758 :
2759 0 : if (!isICD)
2760 : {
2761 0 : info.icd.idleModeDuration = 0;
2762 0 : info.icd.activeModeDuration = 0;
2763 0 : info.icd.activeModeThreshold = 0;
2764 0 : return CHIP_NO_ERROR;
2765 : }
2766 :
2767 0 : err = mAttributeCache->Get<IdleModeDuration::TypeInfo>(kRootEndpointId, info.icd.idleModeDuration);
2768 0 : if (err != CHIP_NO_ERROR)
2769 : {
2770 0 : ChipLogError(Controller, "IcdManagement.IdleModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT, err.Format());
2771 0 : return err;
2772 : }
2773 :
2774 0 : err = mAttributeCache->Get<ActiveModeDuration::TypeInfo>(kRootEndpointId, info.icd.activeModeDuration);
2775 0 : if (err != CHIP_NO_ERROR)
2776 : {
2777 0 : ChipLogError(Controller, "IcdManagement.ActiveModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT,
2778 : err.Format());
2779 0 : return err;
2780 : }
2781 :
2782 0 : err = mAttributeCache->Get<ActiveModeThreshold::TypeInfo>(kRootEndpointId, info.icd.activeModeThreshold);
2783 0 : if (err != CHIP_NO_ERROR)
2784 : {
2785 0 : ChipLogError(Controller, "IcdManagement.ActiveModeThreshold expected, but failed to read: %" CHIP_ERROR_FORMAT,
2786 : err.Format());
2787 : }
2788 :
2789 0 : return err;
2790 : }
2791 :
2792 : #if CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
2793 : CHIP_ERROR DeviceCommissioner::ParseJFAdministratorInfo(ReadCommissioningInfo & info)
2794 : {
2795 : using namespace JointFabricAdministrator::Attributes;
2796 : using namespace OperationalCredentials::Attributes;
2797 : ByteSpan rootKeySpan;
2798 :
2799 : CHIP_ERROR err = CHIP_NO_ERROR;
2800 :
2801 : err = mAttributeCache->ForEachAttribute(JointFabricAdministrator::Id, [this, &info](const ConcreteAttributePath & path) {
2802 : using namespace chip::app::Clusters::JointFabricAdministrator::Attributes;
2803 : AdministratorFabricIndex::TypeInfo::DecodableType administratorFabricIndex;
2804 :
2805 : VerifyOrReturnError(path.mAttributeId == AdministratorFabricIndex::Id, CHIP_NO_ERROR);
2806 : ReturnErrorOnFailure(this->mAttributeCache->Get<AdministratorFabricIndex::TypeInfo>(path, administratorFabricIndex));
2807 :
2808 : if (!administratorFabricIndex.IsNull())
2809 : {
2810 : ChipLogProgress(Controller, "JCM: AdministratorFabricIndex: %d", administratorFabricIndex.Value());
2811 : info.JFAdministratorFabricIndex = administratorFabricIndex.Value();
2812 : info.JFAdminEndpointId = path.mEndpointId;
2813 : }
2814 : else
2815 : {
2816 : ChipLogError(Controller, "JCM: AdministratorFabricIndex attribute@JF Administrator Cluster not found!");
2817 : return CHIP_ERROR_NOT_FOUND;
2818 : }
2819 : return CHIP_NO_ERROR;
2820 : });
2821 :
2822 : if ((info.JFAdministratorFabricIndex == kUndefinedFabricIndex) || (err != CHIP_NO_ERROR))
2823 : {
2824 : info.JFAdministratorFabricIndex = kUndefinedFabricIndex;
2825 : return err;
2826 : }
2827 :
2828 : err = mAttributeCache->ForEachAttribute(
2829 : OperationalCredentials::Id, [this, &info, &rootKeySpan](const ConcreteAttributePath & path) {
2830 : using namespace chip::app::Clusters::OperationalCredentials::Attributes;
2831 :
2832 : switch (path.mAttributeId)
2833 : {
2834 : case Fabrics::Id: {
2835 : Fabrics::TypeInfo::DecodableType fabrics;
2836 : ReturnErrorOnFailure(this->mAttributeCache->Get<Fabrics::TypeInfo>(path, fabrics));
2837 : bool foundMatchingFabricIndex = false;
2838 :
2839 : auto iter = fabrics.begin();
2840 : while (iter.Next())
2841 : {
2842 : auto & fabricDescriptor = iter.GetValue();
2843 : if (fabricDescriptor.fabricIndex == info.JFAdministratorFabricIndex)
2844 : {
2845 : if (fabricDescriptor.rootPublicKey.size() != Crypto::kP256_PublicKey_Length)
2846 : {
2847 : ChipLogError(Controller,
2848 : "JCM: DeviceCommissioner::ParseJFAdministratorInfo - fabric root key size mismatch");
2849 : return CHIP_ERROR_KEY_NOT_FOUND;
2850 : }
2851 : rootKeySpan = fabricDescriptor.rootPublicKey;
2852 : info.JFAdminFabricTable.vendorId = fabricDescriptor.vendorID;
2853 : info.JFAdminFabricTable.fabricId = fabricDescriptor.fabricID;
2854 :
2855 : if (fabricDescriptor.VIDVerificationStatement.HasValue())
2856 : {
2857 : ChipLogError(Controller, "JCM: Per-home RCAC are not supported by JF for now!");
2858 : return CHIP_ERROR_CANCELLED;
2859 : }
2860 : foundMatchingFabricIndex = true;
2861 : ChipLogProgress(Controller, "JCM: Successfully parsed the Administrator Fabric Table");
2862 : break;
2863 : }
2864 : }
2865 : if (!foundMatchingFabricIndex)
2866 : {
2867 : return CHIP_ERROR_NOT_FOUND;
2868 : }
2869 : return CHIP_NO_ERROR;
2870 : }
2871 : case NOCs::Id: {
2872 : NOCs::TypeInfo::DecodableType nocs;
2873 : ReturnErrorOnFailure(this->mAttributeCache->Get<NOCs::TypeInfo>(path, nocs));
2874 :
2875 : auto iter = nocs.begin();
2876 : while (iter.Next())
2877 : {
2878 : auto & nocStruct = iter.GetValue();
2879 :
2880 : if (nocStruct.fabricIndex == info.JFAdministratorFabricIndex)
2881 : {
2882 : info.JFAdminNOC = nocStruct.noc;
2883 :
2884 : if (!nocStruct.icac.IsNull())
2885 : {
2886 : info.JFAdminICAC = nocStruct.icac.Value();
2887 : }
2888 : else
2889 : {
2890 : ChipLogError(Controller, "JCM: ICAC not present!");
2891 : return CHIP_ERROR_CERT_NOT_FOUND;
2892 : }
2893 : ChipLogProgress(Controller, "JCM: Successfully parsed the Administrator NOC and ICAC");
2894 : break;
2895 : }
2896 : }
2897 : return CHIP_NO_ERROR;
2898 : }
2899 : default:
2900 : return CHIP_NO_ERROR;
2901 : }
2902 :
2903 : return CHIP_NO_ERROR;
2904 : });
2905 :
2906 : if (!rootKeySpan.size() || (info.JFAdminFabricTable.fabricId == kUndefinedFabricId) || !info.JFAdminNOC.size() ||
2907 : !info.JFAdminICAC.size() || (err != CHIP_NO_ERROR))
2908 : {
2909 : info.JFAdministratorFabricIndex = kUndefinedFabricIndex;
2910 : return err;
2911 : }
2912 :
2913 : err = mAttributeCache->ForEachAttribute(
2914 : OperationalCredentials::Id, [this, &info, &rootKeySpan](const ConcreteAttributePath & path) {
2915 : using namespace chip::app::Clusters::OperationalCredentials::Attributes;
2916 : bool foundMatchingRcac = false;
2917 :
2918 : switch (path.mAttributeId)
2919 : {
2920 : case TrustedRootCertificates::Id: {
2921 : TrustedRootCertificates::TypeInfo::DecodableType trustedCAs;
2922 : ReturnErrorOnFailure(this->mAttributeCache->Get<TrustedRootCertificates::TypeInfo>(path, trustedCAs));
2923 :
2924 : auto iter = trustedCAs.begin();
2925 : while (iter.Next())
2926 : {
2927 : auto & trustedCA = iter.GetValue();
2928 : P256PublicKeySpan trustedCAPublicKeySpan;
2929 :
2930 : ReturnErrorOnFailure(ExtractPublicKeyFromChipCert(trustedCA, trustedCAPublicKeySpan));
2931 : Crypto::P256PublicKey trustedCAPublicKey{ trustedCAPublicKeySpan };
2932 :
2933 : P256PublicKeySpan rootPubKeySpan(rootKeySpan.data());
2934 : Crypto::P256PublicKey fabricTableRootPublicKey{ rootPubKeySpan };
2935 :
2936 : if (trustedCAPublicKey.Matches(fabricTableRootPublicKey))
2937 : {
2938 : info.JFAdminRCAC = trustedCA;
2939 : ChipLogProgress(Controller, "JCM: Successfully parsed the Administrator RCAC");
2940 : foundMatchingRcac = true;
2941 : break;
2942 : }
2943 : }
2944 : if (!foundMatchingRcac)
2945 : {
2946 : ChipLogError(Controller, "JCM: Cannot found a matching RCAC!");
2947 : return CHIP_ERROR_CERT_NOT_FOUND;
2948 : }
2949 : return CHIP_NO_ERROR;
2950 : }
2951 : default:
2952 : return CHIP_NO_ERROR;
2953 : }
2954 : return CHIP_NO_ERROR;
2955 : });
2956 :
2957 : if (!info.JFAdminRCAC.size())
2958 : {
2959 : info.JFAdministratorFabricIndex = kUndefinedFabricIndex;
2960 : }
2961 :
2962 : return err;
2963 : }
2964 :
2965 : CHIP_ERROR DeviceCommissioner::ValidateJFAdminNOC(const ByteSpan & adminNOC)
2966 : {
2967 : CATValues cats;
2968 :
2969 : ExtractCATsFromOpCert(adminNOC, cats);
2970 :
2971 : if (!cats.ContainsIdentifier(kAdminCATIdentifier))
2972 : {
2973 : return CHIP_ERROR_NOT_FOUND;
2974 : }
2975 :
2976 : return CHIP_NO_ERROR;
2977 : }
2978 :
2979 : #endif // CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
2980 :
2981 0 : void DeviceCommissioner::OnArmFailSafe(void * context,
2982 : const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2983 : {
2984 0 : CommissioningDelegate::CommissioningReport report;
2985 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2986 :
2987 0 : ChipLogProgress(Controller, "Received ArmFailSafe response errorCode=%u", to_underlying(data.errorCode));
2988 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2989 : {
2990 0 : err = CHIP_ERROR_INTERNAL;
2991 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2992 : }
2993 :
2994 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2995 0 : commissioner->CommissioningStageComplete(err, report);
2996 0 : }
2997 :
2998 0 : void DeviceCommissioner::OnSetRegulatoryConfigResponse(
2999 : void * context, const GeneralCommissioning::Commands::SetRegulatoryConfigResponse::DecodableType & data)
3000 : {
3001 0 : CommissioningDelegate::CommissioningReport report;
3002 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3003 :
3004 0 : ChipLogProgress(Controller, "Received SetRegulatoryConfig response errorCode=%u", to_underlying(data.errorCode));
3005 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
3006 : {
3007 0 : err = CHIP_ERROR_INTERNAL;
3008 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
3009 : }
3010 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3011 0 : commissioner->CommissioningStageComplete(err, report);
3012 0 : }
3013 :
3014 0 : void DeviceCommissioner::OnSetTCAcknowledgementsResponse(
3015 : void * context, const GeneralCommissioning::Commands::SetTCAcknowledgementsResponse::DecodableType & data)
3016 : {
3017 0 : CommissioningDelegate::CommissioningReport report;
3018 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3019 :
3020 0 : ChipLogProgress(Controller, "Received SetTCAcknowledgements response errorCode=%u", to_underlying(data.errorCode));
3021 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
3022 : {
3023 0 : err = CHIP_ERROR_INTERNAL;
3024 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
3025 : }
3026 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3027 0 : commissioner->CommissioningStageComplete(err, report);
3028 0 : }
3029 :
3030 0 : void DeviceCommissioner::OnSetTimeZoneResponse(void * context,
3031 : const TimeSynchronization::Commands::SetTimeZoneResponse::DecodableType & data)
3032 : {
3033 0 : CommissioningDelegate::CommissioningReport report;
3034 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3035 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3036 : TimeZoneResponseInfo info;
3037 0 : info.requiresDSTOffsets = data.DSTOffsetRequired;
3038 0 : report.Set<TimeZoneResponseInfo>(info);
3039 0 : commissioner->CommissioningStageComplete(err, report);
3040 0 : }
3041 :
3042 0 : void DeviceCommissioner::OnSetUTCError(void * context, CHIP_ERROR error)
3043 : {
3044 : // For SetUTCTime, we don't actually care if the commissionee didn't want out time, that's its choice
3045 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3046 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
3047 0 : }
3048 :
3049 0 : void DeviceCommissioner::OnScanNetworksFailure(void * context, CHIP_ERROR error)
3050 : {
3051 0 : ChipLogProgress(Controller, "Received ScanNetworks failure response %" CHIP_ERROR_FORMAT, error.Format());
3052 :
3053 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3054 :
3055 : // advance to the kNeedsNetworkCreds waiting step
3056 : // clear error so that we don't abort the commissioning when ScanNetworks fails
3057 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
3058 :
3059 0 : if (commissioner->GetPairingDelegate() != nullptr)
3060 : {
3061 0 : commissioner->GetPairingDelegate()->OnScanNetworksFailure(error);
3062 : }
3063 0 : }
3064 :
3065 0 : void DeviceCommissioner::OnScanNetworksResponse(void * context,
3066 : const NetworkCommissioning::Commands::ScanNetworksResponse::DecodableType & data)
3067 : {
3068 0 : CommissioningDelegate::CommissioningReport report;
3069 :
3070 0 : ChipLogProgress(Controller, "Received ScanNetwork response, networkingStatus=%u debugText=%s",
3071 : to_underlying(data.networkingStatus),
3072 : (data.debugText.HasValue() ? std::string(data.debugText.Value().data(), data.debugText.Value().size()).c_str()
3073 : : "none provided"));
3074 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3075 :
3076 : // advance to the kNeedsNetworkCreds waiting step
3077 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
3078 :
3079 0 : if (commissioner->GetPairingDelegate() != nullptr)
3080 : {
3081 0 : commissioner->GetPairingDelegate()->OnScanNetworksSuccess(data);
3082 : }
3083 0 : }
3084 :
3085 0 : CHIP_ERROR DeviceCommissioner::NetworkCredentialsReady()
3086 : {
3087 0 : VerifyOrReturnError(mCommissioningStage == CommissioningStage::kNeedsNetworkCreds, CHIP_ERROR_INCORRECT_STATE);
3088 :
3089 : // need to advance to next step
3090 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3091 :
3092 0 : return CHIP_NO_ERROR;
3093 : }
3094 :
3095 0 : CHIP_ERROR DeviceCommissioner::ICDRegistrationInfoReady()
3096 : {
3097 0 : VerifyOrReturnError(mCommissioningStage == CommissioningStage::kICDGetRegistrationInfo, CHIP_ERROR_INCORRECT_STATE);
3098 :
3099 : // need to advance to next step
3100 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3101 :
3102 0 : return CHIP_NO_ERROR;
3103 : }
3104 :
3105 0 : void DeviceCommissioner::OnNetworkConfigResponse(void * context,
3106 : const NetworkCommissioning::Commands::NetworkConfigResponse::DecodableType & data)
3107 : {
3108 0 : CommissioningDelegate::CommissioningReport report;
3109 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3110 :
3111 0 : ChipLogProgress(Controller, "Received NetworkConfig response, networkingStatus=%u", to_underlying(data.networkingStatus));
3112 0 : if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
3113 : {
3114 0 : err = CHIP_ERROR_INTERNAL;
3115 0 : report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
3116 : }
3117 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3118 0 : commissioner->CommissioningStageComplete(err, report);
3119 0 : }
3120 :
3121 0 : void DeviceCommissioner::OnConnectNetworkResponse(
3122 : void * context, const NetworkCommissioning::Commands::ConnectNetworkResponse::DecodableType & data)
3123 : {
3124 0 : CommissioningDelegate::CommissioningReport report;
3125 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3126 :
3127 0 : ChipLogProgress(Controller, "Received ConnectNetwork response, networkingStatus=%u", to_underlying(data.networkingStatus));
3128 0 : if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
3129 : {
3130 0 : err = CHIP_ERROR_INTERNAL;
3131 0 : report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
3132 : }
3133 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3134 0 : commissioner->CommissioningStageComplete(err, report);
3135 0 : }
3136 :
3137 0 : void DeviceCommissioner::OnCommissioningCompleteResponse(
3138 : void * context, const GeneralCommissioning::Commands::CommissioningCompleteResponse::DecodableType & data)
3139 : {
3140 0 : CommissioningDelegate::CommissioningReport report;
3141 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3142 :
3143 0 : ChipLogProgress(Controller, "Received CommissioningComplete response, errorCode=%u", to_underlying(data.errorCode));
3144 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
3145 : {
3146 0 : err = CHIP_ERROR_INTERNAL;
3147 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
3148 : }
3149 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3150 0 : commissioner->CommissioningStageComplete(err, report);
3151 0 : }
3152 :
3153 : template <typename RequestObjectT>
3154 : CHIP_ERROR
3155 0 : DeviceCommissioner::SendCommissioningCommand(DeviceProxy * device, const RequestObjectT & request,
3156 : CommandResponseSuccessCallback<typename RequestObjectT::ResponseType> successCb,
3157 : CommandResponseFailureCallback failureCb, EndpointId endpoint,
3158 : Optional<System::Clock::Timeout> timeout, bool fireAndForget)
3159 :
3160 : {
3161 : // Default behavior is to make sequential, cancellable calls tracked via mInvokeCancelFn.
3162 : // Fire-and-forget calls are not cancellable and don't receive `this` as context in callbacks.
3163 0 : VerifyOrDie(fireAndForget || !mInvokeCancelFn); // we don't make parallel (cancellable) calls
3164 :
3165 0 : void * context = (!fireAndForget) ? this : nullptr;
3166 0 : auto onSuccessCb = [context, successCb](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
3167 : const typename RequestObjectT::ResponseType & responseData) {
3168 0 : successCb(context, responseData);
3169 : };
3170 0 : auto onFailureCb = [context, failureCb](CHIP_ERROR aError) { failureCb(context, aError); };
3171 :
3172 0 : return InvokeCommandRequest(device->GetExchangeManager(), device->GetSecureSession().Value(), endpoint, request, onSuccessCb,
3173 0 : onFailureCb, NullOptional, timeout, (!fireAndForget) ? &mInvokeCancelFn : nullptr);
3174 : }
3175 :
3176 : template <typename AttrType>
3177 : CHIP_ERROR DeviceCommissioner::SendCommissioningWriteRequest(DeviceProxy * device, EndpointId endpoint, ClusterId cluster,
3178 : AttributeId attribute, const AttrType & requestData,
3179 : WriteResponseSuccessCallback successCb,
3180 : WriteResponseFailureCallback failureCb)
3181 : {
3182 : VerifyOrDie(!mWriteCancelFn); // we don't make parallel (cancellable) calls
3183 : auto onSuccessCb = [this, successCb](const app::ConcreteAttributePath & aPath) { successCb(this); };
3184 : auto onFailureCb = [this, failureCb](const app::ConcreteAttributePath * aPath, CHIP_ERROR aError) { failureCb(this, aError); };
3185 : return WriteAttribute(device->GetSecureSession().Value(), endpoint, cluster, attribute, requestData, onSuccessCb, onFailureCb,
3186 : /* aTimedWriteTimeoutMs = */ NullOptional, /* onDoneCb = */ nullptr, /* aDataVersion = */ NullOptional,
3187 : /* outCancelFn = */ &mWriteCancelFn);
3188 : }
3189 :
3190 0 : void DeviceCommissioner::SendCommissioningReadRequest(DeviceProxy * proxy, Optional<System::Clock::Timeout> timeout,
3191 : app::AttributePathParams * readPaths, size_t readPathsSize)
3192 : {
3193 0 : VerifyOrDie(!mReadClient); // we don't perform parallel reads
3194 :
3195 0 : app::InteractionModelEngine * engine = app::InteractionModelEngine::GetInstance();
3196 0 : app::ReadPrepareParams readParams(proxy->GetSecureSession().Value());
3197 0 : readParams.mIsFabricFiltered = false;
3198 0 : if (timeout.HasValue())
3199 : {
3200 0 : readParams.mTimeout = timeout.Value();
3201 : }
3202 0 : readParams.mpAttributePathParamsList = readPaths;
3203 0 : readParams.mAttributePathParamsListSize = readPathsSize;
3204 :
3205 : // Take ownership of the attribute cache, so it can be released if SendRequest fails.
3206 0 : auto attributeCache = std::move(mAttributeCache);
3207 : auto readClient = chip::Platform::MakeUnique<app::ReadClient>(
3208 0 : engine, proxy->GetExchangeManager(), attributeCache->GetBufferedCallback(), app::ReadClient::InteractionType::Read);
3209 0 : CHIP_ERROR err = readClient->SendRequest(readParams);
3210 0 : if (err != CHIP_NO_ERROR)
3211 : {
3212 0 : ChipLogError(Controller, "Failed to send read request: %" CHIP_ERROR_FORMAT, err.Format());
3213 0 : CommissioningStageComplete(err);
3214 0 : return;
3215 : }
3216 0 : mAttributeCache = std::move(attributeCache);
3217 0 : mReadClient = std::move(readClient);
3218 0 : }
3219 :
3220 0 : void DeviceCommissioner::PerformCommissioningStep(DeviceProxy * proxy, CommissioningStage step, CommissioningParameters & params,
3221 : CommissioningDelegate * delegate, EndpointId endpoint,
3222 : Optional<System::Clock::Timeout> timeout)
3223 :
3224 : {
3225 : MATTER_LOG_METRIC(kMetricDeviceCommissionerCommissionStage, step);
3226 : MATTER_LOG_METRIC_BEGIN(MetricKeyForCommissioningStage(step));
3227 :
3228 0 : if (params.GetCompletionStatus().err == CHIP_NO_ERROR)
3229 : {
3230 0 : ChipLogProgress(Controller, "Performing next commissioning step '%s'", StageToString(step));
3231 : }
3232 : else
3233 : {
3234 0 : ChipLogProgress(Controller, "Performing next commissioning step '%s' with completion status = '%s'", StageToString(step),
3235 : params.GetCompletionStatus().err.AsString());
3236 : }
3237 :
3238 0 : mCommissioningStepTimeout = timeout;
3239 0 : mCommissioningStage = step;
3240 0 : mCommissioningDelegate = delegate;
3241 0 : mDeviceBeingCommissioned = proxy;
3242 :
3243 : // TODO: Extend timeouts to the DAC and Opcert requests.
3244 : // TODO(cecille): We probably want something better than this for breadcrumbs.
3245 0 : uint64_t breadcrumb = static_cast<uint64_t>(step);
3246 :
3247 0 : switch (step)
3248 : {
3249 0 : case CommissioningStage::kArmFailsafe: {
3250 0 : VerifyOrDie(endpoint == kRootEndpointId);
3251 : // Make sure the fail-safe value we set here actually ends up being used
3252 : // no matter what.
3253 0 : proxy->SetFailSafeExpirationTimestamp(System::Clock::kZero);
3254 0 : VerifyOrDie(ExtendArmFailSafeInternal(proxy, step, params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout),
3255 : timeout, OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false));
3256 : }
3257 0 : break;
3258 0 : case CommissioningStage::kReadCommissioningInfo: {
3259 0 : VerifyOrDie(endpoint == kRootEndpointId);
3260 0 : ChipLogProgress(Controller, "Sending read requests for commissioning information");
3261 :
3262 : // Allocate a ClusterStateCache to collect the data from our read requests.
3263 : // The cache will be released in:
3264 : // - SendCommissioningReadRequest when failing to send a read request.
3265 : // - FinishReadingCommissioningInfo when the ReadCommissioningInfo stage is completed.
3266 : // - CancelCommissioningInteractions
3267 0 : mAttributeCache = Platform::MakeUnique<app::ClusterStateCache>(*this);
3268 :
3269 : // Generally we need to make more than one read request, because as per spec a server only
3270 : // supports a limited number of paths per Read Interaction. Because the actual number of
3271 : // interactions we end up performing is dynamic, we track all of them within a single
3272 : // commissioning stage.
3273 0 : mReadCommissioningInfoProgress = 0;
3274 0 : ContinueReadingCommissioningInfo(params); // Note: assume params == delegate.GetCommissioningParameters()
3275 0 : break;
3276 : }
3277 0 : case CommissioningStage::kConfigureUTCTime: {
3278 0 : TimeSynchronization::Commands::SetUTCTime::Type request;
3279 0 : uint64_t kChipEpochUsSinceUnixEpoch = static_cast<uint64_t>(kChipEpochSecondsSinceUnixEpoch) * chip::kMicrosecondsPerSecond;
3280 : System::Clock::Microseconds64 utcTime;
3281 0 : if (System::SystemClock().GetClock_RealTime(utcTime) != CHIP_NO_ERROR || utcTime.count() <= kChipEpochUsSinceUnixEpoch)
3282 : {
3283 : // We have no time to give, but that's OK, just complete this stage
3284 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3285 0 : return;
3286 : }
3287 :
3288 0 : request.UTCTime = utcTime.count() - kChipEpochUsSinceUnixEpoch;
3289 : // For now, we assume a seconds granularity
3290 0 : request.granularity = TimeSynchronization::GranularityEnum::kSecondsGranularity;
3291 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnSetUTCError, endpoint, timeout);
3292 0 : if (err != CHIP_NO_ERROR)
3293 : {
3294 : // We won't get any async callbacks here, so just complete our stage.
3295 0 : ChipLogError(Controller, "Failed to send SetUTCTime command: %" CHIP_ERROR_FORMAT, err.Format());
3296 0 : CommissioningStageComplete(err);
3297 0 : return;
3298 : }
3299 0 : break;
3300 : }
3301 0 : case CommissioningStage::kConfigureTimeZone: {
3302 0 : if (!params.GetTimeZone().HasValue())
3303 : {
3304 0 : ChipLogError(Controller, "ConfigureTimeZone stage called with no time zone data");
3305 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3306 0 : return;
3307 : }
3308 0 : TimeSynchronization::Commands::SetTimeZone::Type request;
3309 0 : request.timeZone = params.GetTimeZone().Value();
3310 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetTimeZoneResponse, OnBasicFailure, endpoint, timeout);
3311 0 : if (err != CHIP_NO_ERROR)
3312 : {
3313 : // We won't get any async callbacks here, so just complete our stage.
3314 0 : ChipLogError(Controller, "Failed to send SetTimeZone command: %" CHIP_ERROR_FORMAT, err.Format());
3315 0 : CommissioningStageComplete(err);
3316 0 : return;
3317 : }
3318 0 : break;
3319 : }
3320 0 : case CommissioningStage::kConfigureDSTOffset: {
3321 0 : if (!params.GetDSTOffsets().HasValue())
3322 : {
3323 0 : ChipLogError(Controller, "ConfigureDSTOffset stage called with no DST data");
3324 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3325 0 : return;
3326 : }
3327 0 : TimeSynchronization::Commands::SetDSTOffset::Type request;
3328 0 : request.DSTOffset = params.GetDSTOffsets().Value();
3329 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3330 0 : if (err != CHIP_NO_ERROR)
3331 : {
3332 : // We won't get any async callbacks here, so just complete our stage.
3333 0 : ChipLogError(Controller, "Failed to send SetDSTOffset command: %" CHIP_ERROR_FORMAT, err.Format());
3334 0 : CommissioningStageComplete(err);
3335 0 : return;
3336 : }
3337 0 : break;
3338 : }
3339 0 : case CommissioningStage::kConfigureDefaultNTP: {
3340 0 : if (!params.GetDefaultNTP().HasValue())
3341 : {
3342 0 : ChipLogError(Controller, "ConfigureDefaultNTP stage called with no default NTP data");
3343 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3344 0 : return;
3345 : }
3346 0 : TimeSynchronization::Commands::SetDefaultNTP::Type request;
3347 0 : request.defaultNTP = params.GetDefaultNTP().Value();
3348 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3349 0 : if (err != CHIP_NO_ERROR)
3350 : {
3351 : // We won't get any async callbacks here, so just complete our stage.
3352 0 : ChipLogError(Controller, "Failed to send SetDefaultNTP command: %" CHIP_ERROR_FORMAT, err.Format());
3353 0 : CommissioningStageComplete(err);
3354 0 : return;
3355 : }
3356 0 : break;
3357 : }
3358 0 : case CommissioningStage::kScanNetworks: {
3359 0 : NetworkCommissioning::Commands::ScanNetworks::Type request;
3360 0 : if (params.GetWiFiCredentials().HasValue())
3361 : {
3362 0 : request.ssid.Emplace(params.GetWiFiCredentials().Value().ssid);
3363 : }
3364 0 : request.breadcrumb.Emplace(breadcrumb);
3365 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnScanNetworksResponse, OnScanNetworksFailure, endpoint, timeout);
3366 0 : if (err != CHIP_NO_ERROR)
3367 : {
3368 : // We won't get any async callbacks here, so just complete our stage.
3369 0 : ChipLogError(Controller, "Failed to send ScanNetworks command: %" CHIP_ERROR_FORMAT, err.Format());
3370 0 : CommissioningStageComplete(err);
3371 0 : return;
3372 : }
3373 0 : break;
3374 : }
3375 0 : case CommissioningStage::kNeedsNetworkCreds: {
3376 : // nothing to do, the OnScanNetworksSuccess and OnScanNetworksFailure callbacks provide indication to the
3377 : // DevicePairingDelegate that network credentials are needed.
3378 0 : break;
3379 : }
3380 0 : case CommissioningStage::kConfigRegulatory: {
3381 : // TODO(cecille): Worthwhile to keep this around as part of the class?
3382 : // TODO(cecille): Where is the country config actually set?
3383 0 : ChipLogProgress(Controller, "Setting Regulatory Config");
3384 : auto capability =
3385 0 : params.GetLocationCapability().ValueOr(app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor);
3386 : app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum regulatoryConfig;
3387 : // Value is only switchable on the devices with indoor/outdoor capability
3388 0 : if (capability == app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kIndoorOutdoor)
3389 : {
3390 : // If the device supports indoor and outdoor configs, use the setting from the commissioner, otherwise fall back to
3391 : // the current device setting then to outdoor (most restrictive)
3392 0 : if (params.GetDeviceRegulatoryLocation().HasValue())
3393 : {
3394 0 : regulatoryConfig = params.GetDeviceRegulatoryLocation().Value();
3395 0 : ChipLogProgress(Controller, "Setting regulatory config to %u from commissioner override",
3396 : static_cast<uint8_t>(regulatoryConfig));
3397 : }
3398 0 : else if (params.GetDefaultRegulatoryLocation().HasValue())
3399 : {
3400 0 : regulatoryConfig = params.GetDefaultRegulatoryLocation().Value();
3401 0 : ChipLogProgress(Controller, "No regulatory config supplied by controller, leaving as device default (%u)",
3402 : static_cast<uint8_t>(regulatoryConfig));
3403 : }
3404 : else
3405 : {
3406 0 : regulatoryConfig = app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor;
3407 0 : ChipLogProgress(Controller, "No overrride or device regulatory config supplied, setting to outdoor");
3408 : }
3409 : }
3410 : else
3411 : {
3412 0 : ChipLogProgress(Controller, "Device does not support configurable regulatory location");
3413 0 : regulatoryConfig = capability;
3414 : }
3415 :
3416 0 : CharSpan countryCode;
3417 0 : const auto & providedCountryCode = params.GetCountryCode();
3418 0 : if (providedCountryCode.HasValue())
3419 : {
3420 0 : countryCode = providedCountryCode.Value();
3421 : }
3422 : else
3423 : {
3424 : // Default to "XX", for lack of anything better.
3425 0 : countryCode = "XX"_span;
3426 : }
3427 :
3428 0 : GeneralCommissioning::Commands::SetRegulatoryConfig::Type request;
3429 0 : request.newRegulatoryConfig = regulatoryConfig;
3430 0 : request.countryCode = countryCode;
3431 0 : request.breadcrumb = breadcrumb;
3432 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetRegulatoryConfigResponse, OnBasicFailure, endpoint, timeout);
3433 0 : if (err != CHIP_NO_ERROR)
3434 : {
3435 : // We won't get any async callbacks here, so just complete our stage.
3436 0 : ChipLogError(Controller, "Failed to send SetRegulatoryConfig command: %" CHIP_ERROR_FORMAT, err.Format());
3437 0 : CommissioningStageComplete(err);
3438 0 : return;
3439 : }
3440 : }
3441 0 : break;
3442 0 : case CommissioningStage::kConfigureTCAcknowledgments: {
3443 0 : ChipLogProgress(Controller, "Setting Terms and Conditions");
3444 :
3445 0 : if (!params.GetTermsAndConditionsAcknowledgement().HasValue())
3446 : {
3447 0 : ChipLogProgress(Controller, "Setting Terms and Conditions: Skipped");
3448 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3449 0 : return;
3450 : }
3451 :
3452 0 : GeneralCommissioning::Commands::SetTCAcknowledgements::Type request;
3453 0 : TermsAndConditionsAcknowledgement termsAndConditionsAcknowledgement = params.GetTermsAndConditionsAcknowledgement().Value();
3454 0 : request.TCUserResponse = termsAndConditionsAcknowledgement.acceptedTermsAndConditions;
3455 0 : request.TCVersion = termsAndConditionsAcknowledgement.acceptedTermsAndConditionsVersion;
3456 :
3457 0 : ChipLogProgress(Controller, "Setting Terms and Conditions: %hu, %hu", request.TCUserResponse, request.TCVersion);
3458 : CHIP_ERROR err =
3459 0 : SendCommissioningCommand(proxy, request, OnSetTCAcknowledgementsResponse, OnBasicFailure, endpoint, timeout);
3460 0 : if (err != CHIP_NO_ERROR)
3461 : {
3462 0 : ChipLogError(Controller, "Failed to send SetTCAcknowledgements command: %" CHIP_ERROR_FORMAT, err.Format());
3463 0 : CommissioningStageComplete(err);
3464 0 : return;
3465 : }
3466 0 : break;
3467 : }
3468 0 : case CommissioningStage::kSendPAICertificateRequest: {
3469 0 : ChipLogProgress(Controller, "Sending request for PAI certificate");
3470 0 : CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kPAI, timeout);
3471 0 : if (err != CHIP_NO_ERROR)
3472 : {
3473 : // We won't get any async callbacks here, so just complete our stage.
3474 0 : ChipLogError(Controller, "Failed to send CertificateChainRequest command to get PAI: %" CHIP_ERROR_FORMAT,
3475 : err.Format());
3476 0 : CommissioningStageComplete(err);
3477 0 : return;
3478 : }
3479 0 : break;
3480 : }
3481 0 : case CommissioningStage::kSendDACCertificateRequest: {
3482 0 : ChipLogProgress(Controller, "Sending request for DAC certificate");
3483 0 : CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kDAC, timeout);
3484 0 : if (err != CHIP_NO_ERROR)
3485 : {
3486 : // We won't get any async callbacks here, so just complete our stage.
3487 0 : ChipLogError(Controller, "Failed to send CertificateChainRequest command to get DAC: %" CHIP_ERROR_FORMAT,
3488 : err.Format());
3489 0 : CommissioningStageComplete(err);
3490 0 : return;
3491 : }
3492 0 : break;
3493 : }
3494 0 : case CommissioningStage::kSendAttestationRequest: {
3495 0 : ChipLogProgress(Controller, "Sending Attestation Request to the device.");
3496 0 : if (!params.GetAttestationNonce().HasValue())
3497 : {
3498 0 : ChipLogError(Controller, "No attestation nonce found");
3499 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3500 0 : return;
3501 : }
3502 0 : CHIP_ERROR err = SendAttestationRequestCommand(proxy, params.GetAttestationNonce().Value(), timeout);
3503 0 : if (err != CHIP_NO_ERROR)
3504 : {
3505 : // We won't get any async callbacks here, so just complete our stage.
3506 0 : ChipLogError(Controller, "Failed to send AttestationRequest command: %" CHIP_ERROR_FORMAT, err.Format());
3507 0 : CommissioningStageComplete(err);
3508 0 : return;
3509 : }
3510 0 : break;
3511 : }
3512 0 : case CommissioningStage::kAttestationVerification: {
3513 0 : ChipLogProgress(Controller, "Verifying attestation");
3514 0 : if (IsAttestationInformationMissing(params))
3515 : {
3516 0 : ChipLogError(Controller, "Missing attestation information");
3517 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3518 0 : return;
3519 : }
3520 :
3521 : DeviceAttestationVerifier::AttestationInfo info(
3522 0 : params.GetAttestationElements().Value(),
3523 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
3524 0 : params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
3525 0 : params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
3526 :
3527 0 : if (ValidateAttestationInfo(info) != CHIP_NO_ERROR)
3528 : {
3529 0 : ChipLogError(Controller, "Error validating attestation information");
3530 0 : CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
3531 0 : return;
3532 : }
3533 : }
3534 0 : break;
3535 0 : case CommissioningStage::kAttestationRevocationCheck: {
3536 0 : ChipLogProgress(Controller, "Verifying device's DAC chain revocation status");
3537 0 : if (IsAttestationInformationMissing(params))
3538 : {
3539 0 : ChipLogError(Controller, "Missing attestation information");
3540 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3541 0 : return;
3542 : }
3543 :
3544 : DeviceAttestationVerifier::AttestationInfo info(
3545 0 : params.GetAttestationElements().Value(),
3546 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
3547 0 : params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
3548 0 : params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
3549 :
3550 0 : if (CheckForRevokedDACChain(info) != CHIP_NO_ERROR)
3551 : {
3552 0 : ChipLogError(Controller, "Error validating device's DAC chain revocation status");
3553 0 : CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
3554 0 : return;
3555 : }
3556 : }
3557 0 : break;
3558 :
3559 0 : case CommissioningStage::kJFValidateNOC:
3560 : #if CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
3561 : {
3562 : if (!params.GetJFAdministratorFabricIndex().HasValue() || !params.GetJFAdminNOC().HasValue() ||
3563 : params.GetJFAdministratorFabricIndex().Value() == kUndefinedFabricIndex)
3564 : {
3565 : ChipLogError(Controller, "JCM: No JF Admin Values found");
3566 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3567 : return;
3568 : }
3569 :
3570 : CHIP_ERROR err = ValidateJFAdminNOC(params.GetJFAdminNOC().Value());
3571 :
3572 : if (err != CHIP_NO_ERROR)
3573 : {
3574 : ChipLogError(Controller, "JCM: Cannot validate JFAdminNOC");
3575 : }
3576 :
3577 : CommissioningStageComplete(err);
3578 :
3579 : break;
3580 : }
3581 : #endif
3582 :
3583 : case CommissioningStage::kSendVIDVerificationRequest:
3584 : #if CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
3585 : {
3586 : /* TODO: send SignVidVerificationRequest */
3587 : CommissioningStageComplete(CHIP_NO_ERROR);
3588 : break;
3589 : }
3590 : #endif
3591 :
3592 : case CommissioningStage::kSendOpCertSigningRequest: {
3593 0 : if (!params.GetCSRNonce().HasValue())
3594 : {
3595 0 : ChipLogError(Controller, "No CSR nonce found");
3596 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3597 0 : return;
3598 : }
3599 0 : CHIP_ERROR err = SendOperationalCertificateSigningRequestCommand(proxy, params.GetCSRNonce().Value(), timeout);
3600 0 : if (err != CHIP_NO_ERROR)
3601 : {
3602 : // We won't get any async callbacks here, so just complete our stage.
3603 0 : ChipLogError(Controller, "Failed to send CSR request: %" CHIP_ERROR_FORMAT, err.Format());
3604 0 : CommissioningStageComplete(err);
3605 0 : return;
3606 : }
3607 0 : break;
3608 : }
3609 0 : case CommissioningStage::kValidateCSR: {
3610 0 : if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetCSRNonce().HasValue())
3611 : {
3612 0 : ChipLogError(Controller, "Unable to validate CSR");
3613 0 : return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3614 : }
3615 : // This is non-blocking, so send the callback immediately.
3616 0 : CHIP_ERROR err = ValidateCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
3617 0 : params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
3618 0 : params.GetCSRNonce().Value());
3619 0 : if (err != CHIP_NO_ERROR)
3620 : {
3621 0 : ChipLogError(Controller, "Unable to validate CSR");
3622 : }
3623 0 : CommissioningStageComplete(err);
3624 0 : return;
3625 : }
3626 : break;
3627 0 : case CommissioningStage::kGenerateNOCChain: {
3628 0 : if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
3629 0 : !params.GetCSRNonce().HasValue())
3630 : {
3631 0 : ChipLogError(Controller, "Unable to generate NOC chain parameters");
3632 0 : return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3633 : }
3634 0 : CHIP_ERROR err = ProcessCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
3635 0 : params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
3636 0 : params.GetPAI().Value(), params.GetCSRNonce().Value());
3637 0 : if (err != CHIP_NO_ERROR)
3638 : {
3639 0 : ChipLogError(Controller, "Unable to process Op CSR");
3640 : // Handle error, and notify session failure to the commissioner application.
3641 0 : ChipLogError(Controller, "Failed to process the certificate signing request");
3642 : // TODO: Map error status to correct error code
3643 0 : CommissioningStageComplete(err);
3644 0 : return;
3645 : }
3646 : }
3647 0 : break;
3648 0 : case CommissioningStage::kSendTrustedRootCert: {
3649 0 : if (!params.GetRootCert().HasValue() || !params.GetNoc().HasValue())
3650 : {
3651 0 : ChipLogError(Controller, "No trusted root cert or NOC specified");
3652 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3653 0 : return;
3654 : }
3655 0 : CHIP_ERROR err = SendTrustedRootCertificate(proxy, params.GetRootCert().Value(), timeout);
3656 0 : if (err != CHIP_NO_ERROR)
3657 : {
3658 0 : ChipLogError(Controller, "Error sending trusted root certificate: %" CHIP_ERROR_FORMAT, err.Format());
3659 0 : CommissioningStageComplete(err);
3660 0 : return;
3661 : }
3662 :
3663 0 : err = proxy->SetPeerId(params.GetRootCert().Value(), params.GetNoc().Value());
3664 0 : if (err != CHIP_NO_ERROR)
3665 : {
3666 0 : ChipLogError(Controller, "Error setting peer id: %s", err.AsString());
3667 0 : CommissioningStageComplete(err);
3668 0 : return;
3669 : }
3670 0 : if (!IsOperationalNodeId(proxy->GetDeviceId()))
3671 : {
3672 0 : ChipLogError(Controller, "Given node ID is not an operational node ID");
3673 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3674 0 : return;
3675 : }
3676 : }
3677 0 : break;
3678 0 : case CommissioningStage::kSendNOC: {
3679 0 : if (!params.GetNoc().HasValue() || !params.GetIpk().HasValue() || !params.GetAdminSubject().HasValue())
3680 : {
3681 0 : ChipLogError(Controller, "AddNOC contents not specified");
3682 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3683 0 : return;
3684 : }
3685 0 : CHIP_ERROR err = SendOperationalCertificate(proxy, params.GetNoc().Value(), params.GetIcac(), params.GetIpk().Value(),
3686 0 : params.GetAdminSubject().Value(), timeout);
3687 0 : if (err != CHIP_NO_ERROR)
3688 : {
3689 : // We won't get any async callbacks here, so just complete our stage.
3690 0 : ChipLogError(Controller, "Error sending operational certificate: %" CHIP_ERROR_FORMAT, err.Format());
3691 0 : CommissioningStageComplete(err);
3692 0 : return;
3693 : }
3694 0 : break;
3695 : }
3696 0 : case CommissioningStage::kConfigureTrustedTimeSource: {
3697 0 : if (!params.GetTrustedTimeSource().HasValue())
3698 : {
3699 0 : ChipLogError(Controller, "ConfigureTrustedTimeSource stage called with no trusted time source data");
3700 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3701 0 : return;
3702 : }
3703 0 : TimeSynchronization::Commands::SetTrustedTimeSource::Type request;
3704 0 : request.trustedTimeSource = params.GetTrustedTimeSource().Value();
3705 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3706 0 : if (err != CHIP_NO_ERROR)
3707 : {
3708 : // We won't get any async callbacks here, so just complete our stage.
3709 0 : ChipLogError(Controller, "Failed to send SendTrustedTimeSource command: %" CHIP_ERROR_FORMAT, err.Format());
3710 0 : CommissioningStageComplete(err);
3711 0 : return;
3712 : }
3713 0 : break;
3714 : }
3715 0 : case CommissioningStage::kWiFiNetworkSetup: {
3716 0 : if (!params.GetWiFiCredentials().HasValue())
3717 : {
3718 0 : ChipLogError(Controller, "No wifi credentials specified");
3719 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3720 0 : return;
3721 : }
3722 :
3723 0 : NetworkCommissioning::Commands::AddOrUpdateWiFiNetwork::Type request;
3724 0 : request.ssid = params.GetWiFiCredentials().Value().ssid;
3725 0 : request.credentials = params.GetWiFiCredentials().Value().credentials;
3726 0 : request.breadcrumb.Emplace(breadcrumb);
3727 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3728 0 : if (err != CHIP_NO_ERROR)
3729 : {
3730 : // We won't get any async callbacks here, so just complete our stage.
3731 0 : ChipLogError(Controller, "Failed to send AddOrUpdateWiFiNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3732 0 : CommissioningStageComplete(err);
3733 0 : return;
3734 : }
3735 : }
3736 0 : break;
3737 0 : case CommissioningStage::kThreadNetworkSetup: {
3738 0 : if (!params.GetThreadOperationalDataset().HasValue())
3739 : {
3740 0 : ChipLogError(Controller, "No thread credentials specified");
3741 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3742 0 : return;
3743 : }
3744 0 : NetworkCommissioning::Commands::AddOrUpdateThreadNetwork::Type request;
3745 0 : request.operationalDataset = params.GetThreadOperationalDataset().Value();
3746 0 : request.breadcrumb.Emplace(breadcrumb);
3747 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3748 0 : if (err != CHIP_NO_ERROR)
3749 : {
3750 : // We won't get any async callbacks here, so just complete our stage.
3751 0 : ChipLogError(Controller, "Failed to send AddOrUpdateThreadNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3752 0 : CommissioningStageComplete(err);
3753 0 : return;
3754 : }
3755 : }
3756 0 : break;
3757 0 : case CommissioningStage::kFailsafeBeforeWiFiEnable:
3758 : FALLTHROUGH;
3759 : case CommissioningStage::kFailsafeBeforeThreadEnable:
3760 : // Before we try to do network enablement, make sure that our fail-safe
3761 : // is set far enough out that we can later try to do operational
3762 : // discovery without it timing out.
3763 0 : ExtendFailsafeBeforeNetworkEnable(proxy, params, step);
3764 0 : break;
3765 0 : case CommissioningStage::kWiFiNetworkEnable: {
3766 0 : if (!params.GetWiFiCredentials().HasValue())
3767 : {
3768 0 : ChipLogError(Controller, "No wifi credentials specified");
3769 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3770 0 : return;
3771 : }
3772 0 : NetworkCommissioning::Commands::ConnectNetwork::Type request;
3773 0 : request.networkID = params.GetWiFiCredentials().Value().ssid;
3774 0 : request.breadcrumb.Emplace(breadcrumb);
3775 :
3776 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3777 0 : ChipLogProgress(Controller, "SendCommand kWiFiNetworkEnable, supportsConcurrentConnection=%s",
3778 : params.GetSupportsConcurrentConnection().HasValue()
3779 : ? (params.GetSupportsConcurrentConnection().Value() ? "true" : "false")
3780 : : "missing");
3781 0 : err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
3782 :
3783 0 : if (err != CHIP_NO_ERROR)
3784 : {
3785 : // We won't get any async callbacks here, so just complete our stage.
3786 0 : ChipLogError(Controller, "Failed to send WiFi ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3787 0 : CommissioningStageComplete(err);
3788 0 : return;
3789 : }
3790 : }
3791 0 : break;
3792 0 : case CommissioningStage::kThreadNetworkEnable: {
3793 0 : ByteSpan extendedPanId;
3794 0 : chip::Thread::OperationalDataset operationalDataset;
3795 0 : if (!params.GetThreadOperationalDataset().HasValue() ||
3796 0 : operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
3797 0 : operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
3798 : {
3799 0 : ChipLogError(Controller, "Unable to get extended pan ID for thread operational dataset\n");
3800 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3801 0 : return;
3802 : }
3803 0 : NetworkCommissioning::Commands::ConnectNetwork::Type request;
3804 0 : request.networkID = extendedPanId;
3805 0 : request.breadcrumb.Emplace(breadcrumb);
3806 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
3807 0 : if (err != CHIP_NO_ERROR)
3808 : {
3809 : // We won't get any async callbacks here, so just complete our stage.
3810 0 : ChipLogError(Controller, "Failed to send Thread ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3811 0 : CommissioningStageComplete(err);
3812 0 : return;
3813 : }
3814 : }
3815 0 : break;
3816 0 : case CommissioningStage::kICDGetRegistrationInfo: {
3817 0 : GetPairingDelegate()->OnICDRegistrationInfoRequired();
3818 0 : return;
3819 : }
3820 : break;
3821 0 : case CommissioningStage::kICDRegistration: {
3822 0 : IcdManagement::Commands::RegisterClient::Type request;
3823 :
3824 0 : if (!(params.GetICDCheckInNodeId().HasValue() && params.GetICDMonitoredSubject().HasValue() &&
3825 0 : params.GetICDSymmetricKey().HasValue()))
3826 : {
3827 0 : ChipLogError(Controller, "No ICD Registration information provided!");
3828 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE);
3829 0 : return;
3830 : }
3831 :
3832 0 : request.checkInNodeID = params.GetICDCheckInNodeId().Value();
3833 0 : request.monitoredSubject = params.GetICDMonitoredSubject().Value();
3834 0 : request.key = params.GetICDSymmetricKey().Value();
3835 :
3836 : CHIP_ERROR err =
3837 0 : SendCommissioningCommand(proxy, request, OnICDManagementRegisterClientResponse, OnBasicFailure, endpoint, timeout);
3838 0 : if (err != CHIP_NO_ERROR)
3839 : {
3840 : // We won't get any async callbacks here, so just complete our stage.
3841 0 : ChipLogError(Controller, "Failed to send IcdManagement.RegisterClient command: %" CHIP_ERROR_FORMAT, err.Format());
3842 0 : CommissioningStageComplete(err);
3843 0 : return;
3844 : }
3845 : }
3846 0 : break;
3847 0 : case CommissioningStage::kEvictPreviousCaseSessions: {
3848 0 : auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
3849 :
3850 : // If we ever had a commissioned device with this node ID before, we may
3851 : // have stale sessions to it. Make sure we don't re-use any of those,
3852 : // because clearly they are not related to this new device we are
3853 : // commissioning. We only care about sessions we might reuse, so just
3854 : // clearing the ones associated with our fabric index is good enough and
3855 : // we don't need to worry about ExpireAllSessionsOnLogicalFabric.
3856 0 : mSystemState->SessionMgr()->ExpireAllSessions(scopedPeerId);
3857 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3858 0 : return;
3859 : }
3860 0 : case CommissioningStage::kFindOperationalForStayActive:
3861 : case CommissioningStage::kFindOperationalForCommissioningComplete: {
3862 : // If there is an error, CommissioningStageComplete will be called from OnDeviceConnectionFailureFn.
3863 0 : auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
3864 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissioningOperationalSetup);
3865 0 : mSystemState->CASESessionMgr()->FindOrEstablishSession(scopedPeerId, &mOnDeviceConnectedCallback,
3866 : &mOnDeviceConnectionFailureCallback
3867 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
3868 : ,
3869 : /* attemptCount = */ 3, &mOnDeviceConnectionRetryCallback
3870 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
3871 : );
3872 : }
3873 0 : break;
3874 0 : case CommissioningStage::kPrimaryOperationalNetworkFailed: {
3875 : // nothing to do. This stage indicates that the primary operational network failed and the network config should be
3876 : // removed later.
3877 0 : break;
3878 : }
3879 0 : case CommissioningStage::kRemoveWiFiNetworkConfig: {
3880 0 : NetworkCommissioning::Commands::RemoveNetwork::Type request;
3881 0 : request.networkID = params.GetWiFiCredentials().Value().ssid;
3882 0 : request.breadcrumb.Emplace(breadcrumb);
3883 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3884 0 : if (err != CHIP_NO_ERROR)
3885 : {
3886 : // We won't get any async callbacks here, so just complete our stage.
3887 0 : ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3888 0 : CommissioningStageComplete(err);
3889 0 : return;
3890 : }
3891 0 : break;
3892 : }
3893 0 : case CommissioningStage::kRemoveThreadNetworkConfig: {
3894 0 : ByteSpan extendedPanId;
3895 0 : chip::Thread::OperationalDataset operationalDataset;
3896 0 : if (!params.GetThreadOperationalDataset().HasValue() ||
3897 0 : operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
3898 0 : operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
3899 : {
3900 0 : ChipLogError(Controller, "Unable to get extended pan ID for thread operational dataset\n");
3901 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3902 0 : return;
3903 : }
3904 0 : NetworkCommissioning::Commands::RemoveNetwork::Type request;
3905 0 : request.networkID = extendedPanId;
3906 0 : request.breadcrumb.Emplace(breadcrumb);
3907 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3908 0 : if (err != CHIP_NO_ERROR)
3909 : {
3910 : // We won't get any async callbacks here, so just complete our stage.
3911 0 : ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3912 0 : CommissioningStageComplete(err);
3913 0 : return;
3914 : }
3915 0 : break;
3916 : }
3917 0 : case CommissioningStage::kICDSendStayActive: {
3918 0 : if (!(params.GetICDStayActiveDurationMsec().HasValue()))
3919 : {
3920 0 : ChipLogProgress(Controller, "Skipping kICDSendStayActive");
3921 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3922 0 : return;
3923 : }
3924 :
3925 : // StayActive Command happens over CASE Connection
3926 0 : IcdManagement::Commands::StayActiveRequest::Type request;
3927 0 : request.stayActiveDuration = params.GetICDStayActiveDurationMsec().Value();
3928 0 : ChipLogError(Controller, "Send ICD StayActive with Duration %u", request.stayActiveDuration);
3929 : CHIP_ERROR err =
3930 0 : SendCommissioningCommand(proxy, request, OnICDManagementStayActiveResponse, OnBasicFailure, endpoint, timeout);
3931 0 : if (err != CHIP_NO_ERROR)
3932 : {
3933 : // We won't get any async callbacks here, so just complete our stage.
3934 0 : ChipLogError(Controller, "Failed to send IcdManagement.StayActive command: %" CHIP_ERROR_FORMAT, err.Format());
3935 0 : CommissioningStageComplete(err);
3936 0 : return;
3937 : }
3938 : }
3939 0 : break;
3940 0 : case CommissioningStage::kSendComplete: {
3941 : // CommissioningComplete command happens over the CASE connection.
3942 : GeneralCommissioning::Commands::CommissioningComplete::Type request;
3943 : CHIP_ERROR err =
3944 0 : SendCommissioningCommand(proxy, request, OnCommissioningCompleteResponse, OnBasicFailure, endpoint, timeout);
3945 0 : if (err != CHIP_NO_ERROR)
3946 : {
3947 : // We won't get any async callbacks here, so just complete our stage.
3948 0 : ChipLogError(Controller, "Failed to send CommissioningComplete command: %" CHIP_ERROR_FORMAT, err.Format());
3949 0 : CommissioningStageComplete(err);
3950 0 : return;
3951 : }
3952 : }
3953 0 : break;
3954 0 : case CommissioningStage::kCleanup:
3955 0 : CleanupCommissioning(proxy, proxy->GetDeviceId(), params.GetCompletionStatus());
3956 0 : break;
3957 0 : case CommissioningStage::kError:
3958 0 : mCommissioningStage = CommissioningStage::kSecurePairing;
3959 0 : break;
3960 0 : case CommissioningStage::kSecurePairing:
3961 0 : break;
3962 : }
3963 : }
3964 :
3965 0 : void DeviceCommissioner::ExtendFailsafeBeforeNetworkEnable(DeviceProxy * device, CommissioningParameters & params,
3966 : CommissioningStage step)
3967 : {
3968 0 : auto * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
3969 0 : if (device != commissioneeDevice)
3970 : {
3971 : // Not a commissionee device; just return.
3972 0 : ChipLogError(Controller, "Trying to extend fail-safe for an unknown commissionee with device id " ChipLogFormatX64,
3973 : ChipLogValueX64(device->GetDeviceId()));
3974 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE, CommissioningDelegate::CommissioningReport());
3975 0 : return;
3976 : }
3977 :
3978 : // Try to make sure we have at least enough time for our expected
3979 : // commissioning bits plus the MRP retries for a Sigma1.
3980 0 : uint16_t failSafeTimeoutSecs = params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout);
3981 0 : auto sigma1Timeout = CASESession::ComputeSigma1ResponseTimeout(commissioneeDevice->GetPairing().GetRemoteMRPConfig());
3982 0 : uint16_t sigma1TimeoutSecs = std::chrono::duration_cast<System::Clock::Seconds16>(sigma1Timeout).count();
3983 0 : if (UINT16_MAX - failSafeTimeoutSecs < sigma1TimeoutSecs)
3984 : {
3985 0 : failSafeTimeoutSecs = UINT16_MAX;
3986 : }
3987 : else
3988 : {
3989 0 : failSafeTimeoutSecs = static_cast<uint16_t>(failSafeTimeoutSecs + sigma1TimeoutSecs);
3990 : }
3991 :
3992 0 : if (!ExtendArmFailSafeInternal(commissioneeDevice, step, failSafeTimeoutSecs, MakeOptional(kMinimumCommissioningStepTimeout),
3993 : OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false))
3994 : {
3995 : // A false return is fine; we don't want to make the fail-safe shorter here.
3996 0 : CommissioningStageComplete(CHIP_NO_ERROR, CommissioningDelegate::CommissioningReport());
3997 : }
3998 : }
3999 :
4000 0 : bool DeviceCommissioner::IsAttestationInformationMissing(const CommissioningParameters & params)
4001 : {
4002 0 : if (!params.GetAttestationElements().HasValue() || !params.GetAttestationSignature().HasValue() ||
4003 0 : !params.GetAttestationNonce().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
4004 0 : !params.GetRemoteVendorId().HasValue() || !params.GetRemoteProductId().HasValue())
4005 : {
4006 0 : return true;
4007 : }
4008 :
4009 0 : return false;
4010 : }
4011 :
4012 0 : CHIP_ERROR DeviceController::GetCompressedFabricIdBytes(MutableByteSpan & outBytes) const
4013 : {
4014 0 : const auto * fabricInfo = GetFabricInfo();
4015 0 : VerifyOrReturnError(fabricInfo != nullptr, CHIP_ERROR_INVALID_FABRIC_INDEX);
4016 0 : return fabricInfo->GetCompressedFabricIdBytes(outBytes);
4017 : }
4018 :
4019 0 : CHIP_ERROR DeviceController::GetRootPublicKey(Crypto::P256PublicKey & outRootPublicKey) const
4020 : {
4021 0 : const auto * fabricTable = GetFabricTable();
4022 0 : VerifyOrReturnError(fabricTable != nullptr, CHIP_ERROR_INCORRECT_STATE);
4023 0 : return fabricTable->FetchRootPubkey(mFabricIndex, outRootPublicKey);
4024 : }
4025 :
4026 : } // namespace Controller
4027 : } // namespace chip
|