Line data Source code
1 : /*
2 : *
3 : * Copyright (c) 2020-2022 Project CHIP Authors
4 : * Copyright (c) 2013-2017 Nest Labs, Inc.
5 : * All rights reserved.
6 : *
7 : * Licensed under the Apache License, Version 2.0 (the "License");
8 : * you may not use this file except in compliance with the License.
9 : * You may obtain a copy of the License at
10 : *
11 : * http://www.apache.org/licenses/LICENSE-2.0
12 : *
13 : * Unless required by applicable law or agreed to in writing, software
14 : * distributed under the License is distributed on an "AS IS" BASIS,
15 : * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 : * See the License for the specific language governing permissions and
17 : * limitations under the License.
18 : */
19 :
20 : /**
21 : * @file
22 : * Implementation of CHIP Device Controller, a common class
23 : * that implements discovery, pairing and provisioning of CHIP
24 : * devices.
25 : *
26 : */
27 :
28 : // module header, comes first
29 : #include <controller/CHIPDeviceController.h>
30 :
31 : #include <app-common/zap-generated/ids/Attributes.h>
32 : #include <app-common/zap-generated/ids/Clusters.h>
33 :
34 : #include <app/InteractionModelEngine.h>
35 : #include <app/OperationalSessionSetup.h>
36 : #include <app/server/Dnssd.h>
37 : #include <controller/CurrentFabricRemover.h>
38 : #include <controller/InvokeInteraction.h>
39 : #include <controller/WriteInteraction.h>
40 : #include <credentials/CHIPCert.h>
41 : #include <credentials/DeviceAttestationCredsProvider.h>
42 : #include <crypto/CHIPCryptoPAL.h>
43 : #include <lib/core/CHIPCore.h>
44 : #include <lib/core/CHIPEncoding.h>
45 : #include <lib/core/CHIPSafeCasts.h>
46 : #include <lib/core/ErrorStr.h>
47 : #include <lib/core/NodeId.h>
48 : #include <lib/support/Base64.h>
49 : #include <lib/support/CHIPArgParser.hpp>
50 : #include <lib/support/CHIPMem.h>
51 : #include <lib/support/CodeUtils.h>
52 : #include <lib/support/PersistentStorageMacros.h>
53 : #include <lib/support/SafeInt.h>
54 : #include <lib/support/ScopedBuffer.h>
55 : #include <lib/support/ThreadOperationalDataset.h>
56 : #include <lib/support/TimeUtils.h>
57 : #include <lib/support/logging/CHIPLogging.h>
58 : #include <messaging/ExchangeContext.h>
59 : #include <platform/LockTracker.h>
60 : #include <protocols/secure_channel/MessageCounterManager.h>
61 : #include <setup_payload/QRCodeSetupPayloadParser.h>
62 : #include <tracing/macros.h>
63 : #include <tracing/metric_event.h>
64 :
65 : #if CONFIG_NETWORK_LAYER_BLE
66 : #include <ble/Ble.h>
67 : #include <transport/raw/BLE.h>
68 : #endif
69 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
70 : #include <transport/raw/WiFiPAF.h>
71 : #endif
72 :
73 : #include <algorithm>
74 : #include <array>
75 : #include <errno.h>
76 : #include <inttypes.h>
77 : #include <limits>
78 : #include <memory>
79 : #include <stdint.h>
80 : #include <stdlib.h>
81 : #include <string>
82 : #include <time.h>
83 :
84 : using namespace chip::app;
85 : using namespace chip::app::Clusters;
86 : using namespace chip::Inet;
87 : using namespace chip::System;
88 : using namespace chip::Transport;
89 : using namespace chip::Credentials;
90 : using namespace chip::Crypto;
91 : using namespace chip::Tracing;
92 :
93 : namespace chip {
94 : namespace Controller {
95 :
96 : using namespace chip::Encoding;
97 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
98 : using namespace chip::Protocols::UserDirectedCommissioning;
99 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
100 :
101 88 : DeviceController::DeviceController()
102 : {
103 8 : mState = State::NotInitialized;
104 8 : }
105 :
106 0 : CHIP_ERROR DeviceController::Init(ControllerInitParams params)
107 : {
108 0 : assertChipStackLockedByCurrentThread();
109 :
110 0 : VerifyOrReturnError(mState == State::NotInitialized, CHIP_ERROR_INCORRECT_STATE);
111 0 : VerifyOrReturnError(params.systemState != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
112 :
113 0 : VerifyOrReturnError(params.systemState->SystemLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
114 0 : VerifyOrReturnError(params.systemState->UDPEndPointManager() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
115 :
116 : #if CONFIG_NETWORK_LAYER_BLE
117 0 : VerifyOrReturnError(params.systemState->BleLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
118 : #endif
119 :
120 0 : VerifyOrReturnError(params.systemState->TransportMgr() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
121 :
122 0 : ReturnErrorOnFailure(mDNSResolver.Init(params.systemState->UDPEndPointManager()));
123 0 : mDNSResolver.SetDiscoveryDelegate(this);
124 0 : RegisterDeviceDiscoveryDelegate(params.deviceDiscoveryDelegate);
125 :
126 0 : mVendorId = params.controllerVendorId;
127 0 : if (params.operationalKeypair != nullptr || !params.controllerNOC.empty() || !params.controllerRCAC.empty())
128 : {
129 0 : ReturnErrorOnFailure(InitControllerNOCChain(params));
130 : }
131 0 : else if (params.fabricIndex.HasValue())
132 : {
133 0 : VerifyOrReturnError(params.systemState->Fabrics()->FabricCount() > 0, CHIP_ERROR_INVALID_ARGUMENT);
134 0 : if (params.systemState->Fabrics()->FindFabricWithIndex(params.fabricIndex.Value()) != nullptr)
135 : {
136 0 : mFabricIndex = params.fabricIndex.Value();
137 : }
138 : else
139 : {
140 0 : ChipLogError(Controller, "There is no fabric corresponding to the given fabricIndex");
141 0 : return CHIP_ERROR_INVALID_ARGUMENT;
142 : }
143 : }
144 :
145 0 : mSystemState = params.systemState->Retain();
146 0 : mState = State::Initialized;
147 :
148 0 : mRemoveFromFabricTableOnShutdown = params.removeFromFabricTableOnShutdown;
149 0 : mDeleteFromFabricTableOnShutdown = params.deleteFromFabricTableOnShutdown;
150 :
151 0 : if (GetFabricIndex() != kUndefinedFabricIndex)
152 : {
153 0 : ChipLogProgress(Controller,
154 : "Joined the fabric at index %d. Fabric ID is 0x" ChipLogFormatX64
155 : " (Compressed Fabric ID: " ChipLogFormatX64 ")",
156 : GetFabricIndex(), ChipLogValueX64(GetFabricId()), ChipLogValueX64(GetCompressedFabricId()));
157 : }
158 :
159 0 : return CHIP_NO_ERROR;
160 : }
161 :
162 0 : CHIP_ERROR DeviceController::InitControllerNOCChain(const ControllerInitParams & params)
163 : {
164 0 : FabricInfo newFabric;
165 0 : constexpr uint32_t chipCertAllocatedLen = kMaxCHIPCertLength;
166 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> rcacBuf;
167 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> icacBuf;
168 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> nocBuf;
169 0 : Credentials::P256PublicKeySpan rootPublicKeySpan;
170 : FabricId fabricId;
171 : NodeId nodeId;
172 0 : bool hasExternallyOwnedKeypair = false;
173 0 : Crypto::P256Keypair * externalOperationalKeypair = nullptr;
174 0 : VendorId newFabricVendorId = params.controllerVendorId;
175 :
176 : // There are three possibilities here in terms of what happens with our
177 : // operational key:
178 : // 1) We have an externally owned operational keypair.
179 : // 2) We have an operational keypair that the fabric table should clone via
180 : // serialize/deserialize.
181 : // 3) We have no keypair at all, and the fabric table has been initialized
182 : // with a key store.
183 0 : if (params.operationalKeypair != nullptr)
184 : {
185 0 : hasExternallyOwnedKeypair = params.hasExternallyOwnedOperationalKeypair;
186 0 : externalOperationalKeypair = params.operationalKeypair;
187 : }
188 :
189 0 : VerifyOrReturnError(rcacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
190 0 : VerifyOrReturnError(icacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
191 0 : VerifyOrReturnError(nocBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
192 :
193 0 : MutableByteSpan rcacSpan(rcacBuf.Get(), chipCertAllocatedLen);
194 :
195 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerRCAC, rcacSpan));
196 0 : ReturnErrorOnFailure(Credentials::ExtractPublicKeyFromChipCert(rcacSpan, rootPublicKeySpan));
197 0 : Crypto::P256PublicKey rootPublicKey{ rootPublicKeySpan };
198 :
199 0 : MutableByteSpan icacSpan;
200 0 : if (params.controllerICAC.empty())
201 : {
202 0 : ChipLogProgress(Controller, "Intermediate CA is not needed");
203 : }
204 : else
205 : {
206 0 : icacSpan = MutableByteSpan(icacBuf.Get(), chipCertAllocatedLen);
207 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerICAC, icacSpan));
208 : }
209 :
210 0 : MutableByteSpan nocSpan = MutableByteSpan(nocBuf.Get(), chipCertAllocatedLen);
211 :
212 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerNOC, nocSpan));
213 0 : ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(nocSpan, &nodeId, &fabricId));
214 :
215 0 : auto * fabricTable = params.systemState->Fabrics();
216 0 : const FabricInfo * fabricInfo = nullptr;
217 :
218 : //
219 : // When multiple controllers are permitted on the same fabric, we need to find fabrics with
220 : // nodeId as an extra discriminant since we can have multiple FabricInfo objects that all
221 : // collide on the same fabric. Not doing so may result in a match with an existing FabricInfo
222 : // instance that matches the fabric in the provided NOC but is associated with a different NodeId
223 : // that is already in use by another active controller instance. That will effectively cause it
224 : // to change its identity inadvertently, which is not acceptable.
225 : //
226 : // TODO: Figure out how to clean up unreclaimed FabricInfos restored from persistent
227 : // storage that are not in use by active DeviceController instances. Also, figure out
228 : // how to reclaim FabricInfo slots when a DeviceController instance is deleted.
229 : //
230 0 : if (params.permitMultiControllerFabrics)
231 : {
232 0 : fabricInfo = fabricTable->FindIdentity(rootPublicKey, fabricId, nodeId);
233 : }
234 : else
235 : {
236 0 : fabricInfo = fabricTable->FindFabric(rootPublicKey, fabricId);
237 : }
238 :
239 0 : bool fabricFoundInTable = (fabricInfo != nullptr);
240 :
241 0 : FabricIndex fabricIndex = fabricFoundInTable ? fabricInfo->GetFabricIndex() : kUndefinedFabricIndex;
242 :
243 0 : CHIP_ERROR err = CHIP_NO_ERROR;
244 :
245 0 : auto advertiseOperational =
246 0 : params.enableServerInteractions ? FabricTable::AdvertiseIdentity::Yes : FabricTable::AdvertiseIdentity::No;
247 :
248 : //
249 : // We permit colliding fabrics when multiple controllers are present on the same logical fabric
250 : // since each controller is associated with a unique FabricInfo 'identity' object and consequently,
251 : // a unique FabricIndex.
252 : //
253 : // This sets a flag that will be cleared automatically when the fabric is committed/reverted later
254 : // in this function.
255 : //
256 0 : if (params.permitMultiControllerFabrics)
257 : {
258 0 : fabricTable->PermitCollidingFabrics();
259 : }
260 :
261 : // We have 4 cases to handle legacy usage of direct operational key injection
262 0 : if (externalOperationalKeypair)
263 : {
264 : // Cases 1 and 2: Injected operational keys
265 :
266 : // CASE 1: Fabric update with injected key
267 0 : if (fabricFoundInTable)
268 : {
269 0 : err = fabricTable->UpdatePendingFabricWithProvidedOpKey(fabricIndex, nocSpan, icacSpan, externalOperationalKeypair,
270 : hasExternallyOwnedKeypair, advertiseOperational);
271 : }
272 : else
273 : // CASE 2: New fabric with injected key
274 : {
275 0 : err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
276 0 : if (err == CHIP_NO_ERROR)
277 : {
278 0 : err = fabricTable->AddNewPendingFabricWithProvidedOpKey(nocSpan, icacSpan, newFabricVendorId,
279 : externalOperationalKeypair, hasExternallyOwnedKeypair,
280 : &fabricIndex, advertiseOperational);
281 : }
282 : }
283 : }
284 : else
285 : {
286 : // Cases 3 and 4: OperationalKeystore has the keys
287 :
288 : // CASE 3: Fabric update with operational keystore
289 0 : if (fabricFoundInTable)
290 : {
291 0 : VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(fabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
292 :
293 0 : err = fabricTable->UpdatePendingFabricWithOperationalKeystore(fabricIndex, nocSpan, icacSpan, advertiseOperational);
294 : }
295 : else
296 : // CASE 4: New fabric with operational keystore
297 : {
298 0 : err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
299 0 : if (err == CHIP_NO_ERROR)
300 : {
301 0 : err = fabricTable->AddNewPendingFabricWithOperationalKeystore(nocSpan, icacSpan, newFabricVendorId, &fabricIndex,
302 : advertiseOperational);
303 : }
304 :
305 0 : if (err == CHIP_NO_ERROR)
306 : {
307 : // Now that we know our planned fabric index, verify that the
308 : // keystore has a key for it.
309 0 : if (!fabricTable->HasOperationalKeyForFabric(fabricIndex))
310 : {
311 0 : err = CHIP_ERROR_KEY_NOT_FOUND;
312 : }
313 : }
314 : }
315 : }
316 :
317 : // Commit after setup, error-out on failure.
318 0 : if (err == CHIP_NO_ERROR)
319 : {
320 : // No need to revert on error: CommitPendingFabricData reverts internally on *any* error.
321 0 : err = fabricTable->CommitPendingFabricData();
322 : }
323 : else
324 : {
325 0 : fabricTable->RevertPendingFabricData();
326 : }
327 :
328 0 : ReturnErrorOnFailure(err);
329 0 : VerifyOrReturnError(fabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
330 :
331 0 : mFabricIndex = fabricIndex;
332 0 : mAdvertiseIdentity = advertiseOperational;
333 0 : return CHIP_NO_ERROR;
334 0 : }
335 :
336 0 : CHIP_ERROR DeviceController::UpdateControllerNOCChain(const ByteSpan & noc, const ByteSpan & icac,
337 : Crypto::P256Keypair * operationalKeypair,
338 : bool operationalKeypairExternalOwned)
339 : {
340 0 : VerifyOrReturnError(mFabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
341 0 : VerifyOrReturnError(mSystemState != nullptr, CHIP_ERROR_INTERNAL);
342 0 : FabricTable * fabricTable = mSystemState->Fabrics();
343 0 : CHIP_ERROR err = CHIP_NO_ERROR;
344 : FabricId fabricId;
345 : NodeId nodeId;
346 0 : CATValues oldCats;
347 0 : CATValues newCats;
348 0 : ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(noc, &nodeId, &fabricId));
349 0 : ReturnErrorOnFailure(fabricTable->FetchCATs(mFabricIndex, oldCats));
350 0 : ReturnErrorOnFailure(ExtractCATsFromOpCert(noc, newCats));
351 :
352 0 : bool needCloseSession = true;
353 0 : if (GetFabricInfo()->GetNodeId() == nodeId && oldCats == newCats)
354 : {
355 0 : needCloseSession = false;
356 : }
357 :
358 0 : if (operationalKeypair != nullptr)
359 : {
360 0 : err = fabricTable->UpdatePendingFabricWithProvidedOpKey(mFabricIndex, noc, icac, operationalKeypair,
361 : operationalKeypairExternalOwned, mAdvertiseIdentity);
362 : }
363 : else
364 : {
365 0 : VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(mFabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
366 0 : err = fabricTable->UpdatePendingFabricWithOperationalKeystore(mFabricIndex, noc, icac, mAdvertiseIdentity);
367 : }
368 :
369 0 : if (err == CHIP_NO_ERROR)
370 : {
371 0 : err = fabricTable->CommitPendingFabricData();
372 : }
373 : else
374 : {
375 0 : fabricTable->RevertPendingFabricData();
376 : }
377 :
378 0 : ReturnErrorOnFailure(err);
379 0 : if (needCloseSession)
380 : {
381 : // If the node id or CATs have changed, our existing CASE sessions are no longer valid,
382 : // because the other side will think anything coming over those sessions comes from our
383 : // old node ID, and the new CATs might not satisfy the ACL requirements of the other side.
384 0 : mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
385 : }
386 0 : ChipLogProgress(Controller, "Controller NOC chain has updated");
387 0 : return CHIP_NO_ERROR;
388 : }
389 :
390 0 : void DeviceController::Shutdown()
391 : {
392 0 : assertChipStackLockedByCurrentThread();
393 :
394 0 : VerifyOrReturn(mState != State::NotInitialized);
395 :
396 : // If our state is initialialized it means mSystemState is valid,
397 : // and we can use it below before we release our reference to it.
398 0 : ChipLogDetail(Controller, "Shutting down the controller");
399 0 : mState = State::NotInitialized;
400 :
401 0 : if (mFabricIndex != kUndefinedFabricIndex)
402 : {
403 : // Shut down any subscription clients for this fabric.
404 0 : app::InteractionModelEngine::GetInstance()->ShutdownSubscriptions(mFabricIndex);
405 :
406 : // Shut down any ongoing CASE session activity we have. We're going to
407 : // assume that all sessions for our fabric belong to us here.
408 0 : mSystemState->CASESessionMgr()->ReleaseSessionsForFabric(mFabricIndex);
409 :
410 : // Shut down any bdx transfers we're acting as the server for.
411 0 : mSystemState->BDXTransferServer()->AbortTransfersForFabric(mFabricIndex);
412 :
413 : // TODO: The CASE session manager does not shut down existing CASE
414 : // sessions. It just shuts down any ongoing CASE session establishment
415 : // we're in the middle of as initiator. Maybe it should shut down
416 : // existing sessions too?
417 0 : mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
418 :
419 0 : if (mDeleteFromFabricTableOnShutdown)
420 : {
421 0 : mSystemState->Fabrics()->Delete(mFabricIndex);
422 : }
423 0 : else if (mRemoveFromFabricTableOnShutdown)
424 : {
425 0 : mSystemState->Fabrics()->Forget(mFabricIndex);
426 : }
427 : }
428 :
429 0 : mSystemState->Release();
430 0 : mSystemState = nullptr;
431 :
432 0 : mDNSResolver.Shutdown();
433 0 : mDeviceDiscoveryDelegate = nullptr;
434 : }
435 :
436 0 : CHIP_ERROR DeviceController::GetPeerAddressAndPort(NodeId peerId, Inet::IPAddress & addr, uint16_t & port)
437 : {
438 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
439 0 : Transport::PeerAddress peerAddr;
440 0 : ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(peerId), peerAddr));
441 0 : addr = peerAddr.GetIPAddress();
442 0 : port = peerAddr.GetPort();
443 0 : return CHIP_NO_ERROR;
444 : }
445 :
446 0 : CHIP_ERROR DeviceController::GetPeerAddress(NodeId nodeId, Transport::PeerAddress & addr)
447 : {
448 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
449 0 : ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(nodeId), addr));
450 :
451 0 : return CHIP_NO_ERROR;
452 : }
453 :
454 0 : CHIP_ERROR DeviceController::ComputePASEVerifier(uint32_t iterations, uint32_t setupPincode, const ByteSpan & salt,
455 : Spake2pVerifier & outVerifier)
456 : {
457 0 : ReturnErrorOnFailure(PASESession::GeneratePASEVerifier(outVerifier, iterations, salt, /* useRandomPIN= */ false, setupPincode));
458 :
459 0 : return CHIP_NO_ERROR;
460 : }
461 :
462 0 : ControllerDeviceInitParams DeviceController::GetControllerDeviceInitParams()
463 : {
464 : return ControllerDeviceInitParams{
465 0 : .sessionManager = mSystemState->SessionMgr(),
466 0 : .exchangeMgr = mSystemState->ExchangeMgr(),
467 0 : };
468 : }
469 :
470 0 : DeviceCommissioner::DeviceCommissioner() :
471 0 : mOnDeviceConnectedCallback(OnDeviceConnectedFn, this), mOnDeviceConnectionFailureCallback(OnDeviceConnectionFailureFn, this),
472 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
473 0 : mOnDeviceConnectionRetryCallback(OnDeviceConnectionRetryFn, this),
474 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
475 0 : mDeviceAttestationInformationVerificationCallback(OnDeviceAttestationInformationVerification, this),
476 0 : mDeviceNOCChainCallback(OnDeviceNOCChainGeneration, this), mSetUpCodePairer(this)
477 0 : {}
478 :
479 0 : DeviceCommissioner::~DeviceCommissioner()
480 : {
481 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
482 : DeviceLayer::ConnectivityMgr().WiFiPAFCancelConnect();
483 : #endif
484 0 : }
485 :
486 0 : CHIP_ERROR DeviceCommissioner::Init(CommissionerInitParams params)
487 : {
488 0 : VerifyOrReturnError(params.operationalCredentialsDelegate != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
489 0 : mOperationalCredentialsDelegate = params.operationalCredentialsDelegate;
490 0 : ReturnErrorOnFailure(DeviceController::Init(params));
491 :
492 0 : mPairingDelegate = params.pairingDelegate;
493 :
494 : // Configure device attestation validation
495 0 : mDeviceAttestationVerifier = params.deviceAttestationVerifier;
496 0 : if (mDeviceAttestationVerifier == nullptr)
497 : {
498 0 : mDeviceAttestationVerifier = Credentials::GetDeviceAttestationVerifier();
499 0 : if (mDeviceAttestationVerifier == nullptr)
500 : {
501 0 : ChipLogError(Controller,
502 : "Missing DeviceAttestationVerifier configuration at DeviceCommissioner init and none set with "
503 : "Credentials::SetDeviceAttestationVerifier()!");
504 0 : return CHIP_ERROR_INVALID_ARGUMENT;
505 : }
506 :
507 : // We fell back on a default from singleton accessor.
508 0 : ChipLogProgress(Controller,
509 : "*** Missing DeviceAttestationVerifier configuration at DeviceCommissioner init: using global default, "
510 : "consider passing one in CommissionerInitParams.");
511 : }
512 :
513 0 : if (params.defaultCommissioner != nullptr)
514 : {
515 0 : mDefaultCommissioner = params.defaultCommissioner;
516 : }
517 : else
518 : {
519 0 : mDefaultCommissioner = &mAutoCommissioner;
520 : }
521 :
522 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
523 : mUdcTransportMgr = chip::Platform::New<UdcTransportMgr>();
524 : ReturnErrorOnFailure(mUdcTransportMgr->Init(Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
525 : .SetAddressType(Inet::IPAddressType::kIPv6)
526 : .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
527 : #if INET_CONFIG_ENABLE_IPV4
528 : ,
529 : Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
530 : .SetAddressType(Inet::IPAddressType::kIPv4)
531 : .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
532 : #endif // INET_CONFIG_ENABLE_IPV4
533 : ));
534 :
535 : mUdcServer = chip::Platform::New<UserDirectedCommissioningServer>();
536 : mUdcTransportMgr->SetSessionManager(mUdcServer);
537 : mUdcServer->SetTransportManager(mUdcTransportMgr);
538 :
539 : mUdcServer->SetInstanceNameResolver(this);
540 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
541 :
542 0 : mSetUpCodePairer.SetSystemLayer(mSystemState->SystemLayer());
543 : #if CONFIG_NETWORK_LAYER_BLE
544 0 : mSetUpCodePairer.SetBleLayer(mSystemState->BleLayer());
545 : #endif // CONFIG_NETWORK_LAYER_BLE
546 :
547 0 : return CHIP_NO_ERROR;
548 : }
549 :
550 0 : void DeviceCommissioner::Shutdown()
551 : {
552 0 : VerifyOrReturn(mState != State::NotInitialized);
553 :
554 0 : ChipLogDetail(Controller, "Shutting down the commissioner");
555 :
556 0 : mSetUpCodePairer.StopPairing();
557 :
558 : // Check to see if pairing in progress before shutting down
559 0 : CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
560 0 : if (device != nullptr && device->IsSessionSetupInProgress())
561 : {
562 0 : ChipLogDetail(Controller, "Setup in progress, stopping setup before shutting down");
563 0 : OnSessionEstablishmentError(CHIP_ERROR_CONNECTION_ABORTED);
564 : }
565 :
566 0 : CancelCommissioningInteractions();
567 :
568 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
569 : if (mUdcTransportMgr != nullptr)
570 : {
571 : chip::Platform::Delete(mUdcTransportMgr);
572 : mUdcTransportMgr = nullptr;
573 : }
574 : if (mUdcServer != nullptr)
575 : {
576 : mUdcServer->SetInstanceNameResolver(nullptr);
577 : chip::Platform::Delete(mUdcServer);
578 : mUdcServer = nullptr;
579 : }
580 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
581 :
582 : // Release everything from the commissionee device pool here.
583 : // Make sure to use ReleaseCommissioneeDevice so we don't keep dangling
584 : // pointers to the device objects.
585 0 : mCommissioneeDevicePool.ForEachActiveObject([this](auto * commissioneeDevice) {
586 0 : ReleaseCommissioneeDevice(commissioneeDevice);
587 0 : return Loop::Continue;
588 : });
589 :
590 0 : DeviceController::Shutdown();
591 : }
592 :
593 0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(NodeId id)
594 : {
595 : MATTER_TRACE_SCOPE("FindCommissioneeDevice", "DeviceCommissioner");
596 0 : CommissioneeDeviceProxy * foundDevice = nullptr;
597 0 : mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
598 0 : if (deviceProxy->GetDeviceId() == id)
599 : {
600 0 : foundDevice = deviceProxy;
601 0 : return Loop::Break;
602 : }
603 0 : return Loop::Continue;
604 : });
605 :
606 0 : return foundDevice;
607 : }
608 :
609 0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(const Transport::PeerAddress & peerAddress)
610 : {
611 0 : CommissioneeDeviceProxy * foundDevice = nullptr;
612 0 : mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
613 0 : if (deviceProxy->GetPeerAddress() == peerAddress)
614 : {
615 0 : foundDevice = deviceProxy;
616 0 : return Loop::Break;
617 : }
618 0 : return Loop::Continue;
619 : });
620 :
621 0 : return foundDevice;
622 : }
623 :
624 0 : void DeviceCommissioner::ReleaseCommissioneeDevice(CommissioneeDeviceProxy * device)
625 : {
626 : #if CONFIG_NETWORK_LAYER_BLE
627 0 : if (mSystemState->BleLayer() != nullptr && device->GetDeviceTransportType() == Transport::Type::kBle)
628 : {
629 : // We only support one BLE connection, so if this is BLE, close it
630 0 : ChipLogProgress(Discovery, "Closing all BLE connections");
631 0 : mSystemState->BleLayer()->CloseAllBleConnections();
632 : }
633 : #endif
634 : // Make sure that there will be no dangling pointer
635 0 : if (mDeviceInPASEEstablishment == device)
636 : {
637 0 : mDeviceInPASEEstablishment = nullptr;
638 : }
639 0 : if (mDeviceBeingCommissioned == device)
640 : {
641 0 : mDeviceBeingCommissioned = nullptr;
642 : }
643 :
644 : // Release the commissionee device after we have nulled out our pointers,
645 : // because that can call back in to us with error notifications as the
646 : // session is released.
647 0 : mCommissioneeDevicePool.ReleaseObject(device);
648 0 : }
649 :
650 0 : CHIP_ERROR DeviceCommissioner::GetDeviceBeingCommissioned(NodeId deviceId, CommissioneeDeviceProxy ** out_device)
651 : {
652 0 : VerifyOrReturnError(out_device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
653 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(deviceId);
654 :
655 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
656 :
657 0 : *out_device = device;
658 :
659 0 : return CHIP_NO_ERROR;
660 : }
661 :
662 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, const CommissioningParameters & params,
663 : DiscoveryType discoveryType, Optional<Dnssd::CommonResolutionData> resolutionData)
664 : {
665 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
666 :
667 0 : if (mDefaultCommissioner == nullptr)
668 : {
669 0 : ChipLogError(Controller, "No default commissioner is specified");
670 0 : return CHIP_ERROR_INCORRECT_STATE;
671 : }
672 0 : ReturnErrorOnFailure(mDefaultCommissioner->SetCommissioningParameters(params));
673 :
674 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
675 0 : resolutionData);
676 : }
677 :
678 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
679 : Optional<Dnssd::CommonResolutionData> resolutionData)
680 : {
681 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
682 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
683 0 : resolutionData);
684 : }
685 :
686 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & params)
687 : {
688 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
689 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, params));
690 0 : auto errorCode = Commission(remoteDeviceId);
691 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
692 0 : return errorCode;
693 : }
694 :
695 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & rendezvousParams,
696 : CommissioningParameters & commissioningParams)
697 : {
698 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
699 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, rendezvousParams));
700 0 : auto errorCode = Commission(remoteDeviceId, commissioningParams);
701 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
702 0 : return errorCode;
703 : }
704 :
705 0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
706 : Optional<Dnssd::CommonResolutionData> resolutionData)
707 : {
708 : MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
709 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kPaseOnly, discoveryType,
710 0 : resolutionData);
711 : }
712 :
713 0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, RendezvousParameters & params)
714 : {
715 : MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
716 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerPASESession);
717 :
718 0 : CHIP_ERROR err = CHIP_NO_ERROR;
719 0 : CommissioneeDeviceProxy * device = nullptr;
720 0 : CommissioneeDeviceProxy * current = nullptr;
721 0 : Transport::PeerAddress peerAddress = Transport::PeerAddress::UDP(Inet::IPAddress::Any);
722 :
723 0 : Messaging::ExchangeContext * exchangeCtxt = nullptr;
724 0 : Optional<SessionHandle> session;
725 :
726 0 : VerifyOrExit(mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
727 0 : VerifyOrExit(mDeviceInPASEEstablishment == nullptr, err = CHIP_ERROR_INCORRECT_STATE);
728 :
729 : // TODO(#13940): We need to specify the peer address for BLE transport in bindings.
730 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle ||
731 0 : params.GetPeerAddress().GetTransportType() == Transport::Type::kUndefined)
732 : {
733 : #if CONFIG_NETWORK_LAYER_BLE
734 : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
735 : ConnectBleTransportToSelf();
736 : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
737 0 : if (!params.HasBleLayer())
738 : {
739 0 : params.SetPeerAddress(Transport::PeerAddress::BLE());
740 : }
741 0 : peerAddress = Transport::PeerAddress::BLE();
742 : #endif // CONFIG_NETWORK_LAYER_BLE
743 : }
744 0 : else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kTcp ||
745 0 : params.GetPeerAddress().GetTransportType() == Transport::Type::kUdp)
746 : {
747 0 : peerAddress = Transport::PeerAddress::UDP(params.GetPeerAddress().GetIPAddress(), params.GetPeerAddress().GetPort(),
748 0 : params.GetPeerAddress().GetInterface());
749 : }
750 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
751 : else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
752 : {
753 : peerAddress = Transport::PeerAddress::WiFiPAF(remoteDeviceId);
754 : }
755 : #endif // CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
756 :
757 0 : current = FindCommissioneeDevice(peerAddress);
758 0 : if (current != nullptr)
759 : {
760 0 : if (current->GetDeviceId() == remoteDeviceId)
761 : {
762 : // We might be able to just reuse its connection if it has one or is
763 : // working on one.
764 0 : if (current->IsSecureConnected())
765 : {
766 0 : if (mPairingDelegate)
767 : {
768 : // We already have an open secure session to this device, call the callback immediately and early return.
769 0 : mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR);
770 : }
771 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
772 0 : return CHIP_NO_ERROR;
773 : }
774 0 : if (current->IsSessionSetupInProgress())
775 : {
776 : // We're not connected yet, but we're in the process of connecting. Pairing delegate will get a callback when
777 : // connection completes
778 0 : return CHIP_NO_ERROR;
779 : }
780 : }
781 :
782 : // Either the consumer wants to assign a different device id to this
783 : // peer address now (so we can't reuse the commissionee device we have
784 : // already) or something has gone strange. Delete the old device, try
785 : // again.
786 0 : ChipLogError(Controller, "Found unconnected device, removing");
787 0 : ReleaseCommissioneeDevice(current);
788 : }
789 :
790 0 : device = mCommissioneeDevicePool.CreateObject();
791 0 : VerifyOrExit(device != nullptr, err = CHIP_ERROR_NO_MEMORY);
792 :
793 0 : mDeviceInPASEEstablishment = device;
794 0 : device->Init(GetControllerDeviceInitParams(), remoteDeviceId, peerAddress);
795 0 : device->UpdateDeviceData(params.GetPeerAddress(), params.GetMRPConfig());
796 :
797 : #if CONFIG_NETWORK_LAYER_BLE
798 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle)
799 : {
800 0 : if (params.HasConnectionObject())
801 : {
802 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetConnectionObject()));
803 : }
804 0 : else if (params.HasDiscoveredObject())
805 : {
806 : // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
807 : // for later.
808 0 : mRendezvousParametersForDeviceDiscoveredOverBle = params;
809 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetDiscoveredObject(), this,
810 : OnDiscoveredDeviceOverBleSuccess,
811 : OnDiscoveredDeviceOverBleError));
812 0 : ExitNow(CHIP_NO_ERROR);
813 : }
814 0 : else if (params.HasDiscriminator())
815 : {
816 : // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
817 : // for later.
818 0 : mRendezvousParametersForDeviceDiscoveredOverBle = params;
819 :
820 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByDiscriminator(params.GetSetupDiscriminator().value(),
821 : this, OnDiscoveredDeviceOverBleSuccess,
822 : OnDiscoveredDeviceOverBleError));
823 0 : ExitNow(CHIP_NO_ERROR);
824 : }
825 : else
826 : {
827 0 : ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
828 : }
829 : }
830 : #endif
831 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
832 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
833 : {
834 : if (DeviceLayer::ConnectivityMgr().GetWiFiPAF()->GetWiFiPAFState() != Transport::WiFiPAFBase::State::kConnected)
835 : {
836 : ChipLogProgress(Controller, "WiFi-PAF: Subscribing the NAN-USD devices");
837 : if (!DeviceLayer::ConnectivityMgrImpl().IsWiFiManagementStarted())
838 : {
839 : ChipLogError(Controller, "Wi-Fi Management should have be started now.");
840 : ExitNow(CHIP_ERROR_INTERNAL);
841 : }
842 : mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = params;
843 : DeviceLayer::ConnectivityMgr().WiFiPAFConnect(params.GetSetupDiscriminator().value(), (void *) this,
844 : OnWiFiPAFSubscribeComplete, OnWiFiPAFSubscribeError);
845 : ExitNow(CHIP_NO_ERROR);
846 : }
847 : }
848 : #endif
849 0 : session = mSystemState->SessionMgr()->CreateUnauthenticatedSession(params.GetPeerAddress(), params.GetMRPConfig());
850 0 : VerifyOrExit(session.HasValue(), err = CHIP_ERROR_NO_MEMORY);
851 :
852 : // Allocate the exchange immediately before calling PASESession::Pair.
853 : //
854 : // PASESession::Pair takes ownership of the exchange and will free it on
855 : // error, but can only do this if it is actually called. Allocating the
856 : // exchange context right before calling Pair ensures that if allocation
857 : // succeeds, PASESession has taken ownership.
858 0 : exchangeCtxt = mSystemState->ExchangeMgr()->NewContext(session.Value(), &device->GetPairing());
859 0 : VerifyOrExit(exchangeCtxt != nullptr, err = CHIP_ERROR_INTERNAL);
860 :
861 0 : err = device->GetPairing().Pair(*mSystemState->SessionMgr(), params.GetSetupPINCode(), GetLocalMRPConfig(), exchangeCtxt, this);
862 0 : SuccessOrExit(err);
863 :
864 0 : exit:
865 0 : if (err != CHIP_NO_ERROR)
866 : {
867 0 : if (device != nullptr)
868 : {
869 0 : ReleaseCommissioneeDevice(device);
870 : }
871 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
872 : }
873 :
874 0 : return err;
875 0 : }
876 :
877 : #if CONFIG_NETWORK_LAYER_BLE
878 0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleSuccess(void * appState, BLE_CONNECTION_OBJECT connObj)
879 : {
880 0 : auto self = static_cast<DeviceCommissioner *>(appState);
881 0 : auto device = self->mDeviceInPASEEstablishment;
882 :
883 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
884 : {
885 0 : auto remoteId = device->GetDeviceId();
886 :
887 0 : auto params = self->mRendezvousParametersForDeviceDiscoveredOverBle;
888 0 : params.SetConnectionObject(connObj);
889 0 : self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
890 :
891 0 : self->ReleaseCommissioneeDevice(device);
892 0 : LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
893 0 : }
894 0 : }
895 :
896 0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleError(void * appState, CHIP_ERROR err)
897 : {
898 0 : auto self = static_cast<DeviceCommissioner *>(appState);
899 0 : auto device = self->mDeviceInPASEEstablishment;
900 :
901 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
902 : {
903 0 : self->ReleaseCommissioneeDevice(device);
904 0 : self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
905 :
906 : // Callback is required when BLE discovery fails, otherwise the caller will always be in a suspended state
907 : // A better way to handle it should define a new error code
908 0 : if (self->mPairingDelegate != nullptr)
909 : {
910 0 : self->mPairingDelegate->OnPairingComplete(err);
911 : }
912 : }
913 0 : }
914 : #endif // CONFIG_NETWORK_LAYER_BLE
915 :
916 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
917 : void DeviceCommissioner::OnWiFiPAFSubscribeComplete(void * appState)
918 : {
919 : auto self = (DeviceCommissioner *) appState;
920 : auto device = self->mDeviceInPASEEstablishment;
921 :
922 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
923 : {
924 : ChipLogProgress(Controller, "WiFi-PAF: Subscription Completed, dev_id = %lu", device->GetDeviceId());
925 : auto remoteId = device->GetDeviceId();
926 : auto params = self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF;
927 :
928 : self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
929 : self->ReleaseCommissioneeDevice(device);
930 : LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
931 : }
932 : }
933 :
934 : void DeviceCommissioner::OnWiFiPAFSubscribeError(void * appState, CHIP_ERROR err)
935 : {
936 : auto self = (DeviceCommissioner *) appState;
937 : auto device = self->mDeviceInPASEEstablishment;
938 :
939 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
940 : {
941 : ChipLogError(Controller, "WiFi-PAF: Subscription Error, id = %lu, err = %" CHIP_ERROR_FORMAT, device->GetDeviceId(),
942 : err.Format());
943 : self->ReleaseCommissioneeDevice(device);
944 : self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
945 : if (self->mPairingDelegate != nullptr)
946 : {
947 : self->mPairingDelegate->OnPairingComplete(err);
948 : }
949 : }
950 : }
951 : #endif
952 :
953 0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId, CommissioningParameters & params)
954 : {
955 0 : if (mDefaultCommissioner == nullptr)
956 : {
957 0 : ChipLogError(Controller, "No default commissioner is specified");
958 0 : return CHIP_ERROR_INCORRECT_STATE;
959 : }
960 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, mDefaultCommissioner->SetCommissioningParameters(params));
961 0 : auto errorCode = Commission(remoteDeviceId);
962 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
963 0 : return errorCode;
964 : }
965 :
966 0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId)
967 : {
968 : MATTER_TRACE_SCOPE("Commission", "DeviceCommissioner");
969 :
970 0 : if (mDefaultCommissioner == nullptr)
971 : {
972 0 : ChipLogError(Controller, "No default commissioner is specified");
973 0 : return CHIP_ERROR_INCORRECT_STATE;
974 : }
975 :
976 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
977 0 : if (device == nullptr || (!device->IsSecureConnected() && !device->IsSessionSetupInProgress()))
978 : {
979 0 : ChipLogError(Controller, "Invalid device for commissioning " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
980 0 : return CHIP_ERROR_INCORRECT_STATE;
981 : }
982 0 : if (!device->IsSecureConnected() && device != mDeviceInPASEEstablishment)
983 : {
984 : // We should not end up in this state because we won't attempt to establish more than one connection at a time.
985 0 : ChipLogError(Controller, "Device is not connected and not being paired " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
986 0 : return CHIP_ERROR_INCORRECT_STATE;
987 : }
988 :
989 0 : if (mCommissioningStage != CommissioningStage::kSecurePairing)
990 : {
991 0 : ChipLogError(Controller, "Commissioning already in progress (stage '%s') - not restarting",
992 : StageToString(mCommissioningStage));
993 0 : return CHIP_ERROR_INCORRECT_STATE;
994 : }
995 :
996 0 : ChipLogProgress(Controller, "Commission called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
997 :
998 0 : mDefaultCommissioner->SetOperationalCredentialsDelegate(mOperationalCredentialsDelegate);
999 0 : if (device->IsSecureConnected())
1000 : {
1001 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
1002 0 : mDefaultCommissioner->StartCommissioning(this, device);
1003 : }
1004 : else
1005 : {
1006 0 : mRunCommissioningAfterConnection = true;
1007 : }
1008 0 : return CHIP_NO_ERROR;
1009 : }
1010 :
1011 : CHIP_ERROR
1012 0 : DeviceCommissioner::ContinueCommissioningAfterDeviceAttestation(DeviceProxy * device,
1013 : Credentials::AttestationVerificationResult attestationResult)
1014 : {
1015 : MATTER_TRACE_SCOPE("continueCommissioningDevice", "DeviceCommissioner");
1016 :
1017 0 : if (mDefaultCommissioner == nullptr)
1018 : {
1019 0 : ChipLogError(Controller, "No default commissioner is specified");
1020 0 : return CHIP_ERROR_INCORRECT_STATE;
1021 : }
1022 :
1023 0 : if (device == nullptr || device != mDeviceBeingCommissioned)
1024 : {
1025 0 : ChipLogError(Controller, "Invalid device for commissioning %p", device);
1026 0 : return CHIP_ERROR_INCORRECT_STATE;
1027 : }
1028 0 : CommissioneeDeviceProxy * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
1029 0 : if (commissioneeDevice == nullptr)
1030 : {
1031 0 : ChipLogError(Controller, "Couldn't find commissionee device");
1032 0 : return CHIP_ERROR_INCORRECT_STATE;
1033 : }
1034 0 : if (!commissioneeDevice->IsSecureConnected() || commissioneeDevice != mDeviceBeingCommissioned)
1035 : {
1036 0 : ChipLogError(Controller, "Invalid device for commissioning after attestation failure: 0x" ChipLogFormatX64,
1037 : ChipLogValueX64(commissioneeDevice->GetDeviceId()));
1038 0 : return CHIP_ERROR_INCORRECT_STATE;
1039 : }
1040 :
1041 0 : if (mCommissioningStage != CommissioningStage::kAttestationRevocationCheck)
1042 : {
1043 0 : ChipLogError(Controller, "Commissioning is not attestation verification phase");
1044 0 : return CHIP_ERROR_INCORRECT_STATE;
1045 : }
1046 :
1047 0 : ChipLogProgress(Controller, "Continuing commissioning after attestation failure for device ID 0x" ChipLogFormatX64,
1048 : ChipLogValueX64(commissioneeDevice->GetDeviceId()));
1049 :
1050 0 : if (attestationResult != AttestationVerificationResult::kSuccess)
1051 : {
1052 0 : ChipLogError(Controller, "Client selected error: %u for failed 'Attestation Information' for device",
1053 : to_underlying(attestationResult));
1054 :
1055 0 : CommissioningDelegate::CommissioningReport report;
1056 0 : report.Set<AttestationErrorInfo>(attestationResult);
1057 0 : CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1058 0 : }
1059 : else
1060 : {
1061 0 : ChipLogProgress(Controller, "Overriding attestation failure per client and continuing commissioning");
1062 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1063 : }
1064 0 : return CHIP_NO_ERROR;
1065 : }
1066 :
1067 0 : CHIP_ERROR DeviceCommissioner::StopPairing(NodeId remoteDeviceId)
1068 : {
1069 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1070 0 : VerifyOrReturnError(remoteDeviceId != kUndefinedNodeId, CHIP_ERROR_INVALID_ARGUMENT);
1071 :
1072 0 : ChipLogProgress(Controller, "StopPairing called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
1073 :
1074 : // If we're still in the process of discovering the device, just stop the SetUpCodePairer
1075 0 : if (mSetUpCodePairer.StopPairing(remoteDeviceId))
1076 : {
1077 0 : mRunCommissioningAfterConnection = false;
1078 0 : return CHIP_NO_ERROR;
1079 : }
1080 :
1081 : // Otherwise we might be pairing and / or commissioning it.
1082 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
1083 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR);
1084 :
1085 0 : if (mDeviceBeingCommissioned == device)
1086 : {
1087 0 : CancelCommissioningInteractions();
1088 0 : CommissioningStageComplete(CHIP_ERROR_CANCELLED);
1089 : }
1090 : else
1091 : {
1092 0 : ReleaseCommissioneeDevice(device);
1093 : }
1094 0 : return CHIP_NO_ERROR;
1095 : }
1096 :
1097 0 : void DeviceCommissioner::CancelCommissioningInteractions()
1098 : {
1099 0 : if (mReadClient)
1100 : {
1101 0 : ChipLogDetail(Controller, "Cancelling read request for step '%s'", StageToString(mCommissioningStage));
1102 0 : mReadClient.reset(); // destructor cancels
1103 0 : mAttributeCache.reset();
1104 : }
1105 0 : if (mInvokeCancelFn)
1106 : {
1107 0 : ChipLogDetail(Controller, "Cancelling command invocation for step '%s'", StageToString(mCommissioningStage));
1108 0 : mInvokeCancelFn();
1109 0 : mInvokeCancelFn = nullptr;
1110 : }
1111 0 : if (mWriteCancelFn)
1112 : {
1113 0 : ChipLogDetail(Controller, "Cancelling write request for step '%s'", StageToString(mCommissioningStage));
1114 0 : mWriteCancelFn();
1115 0 : mWriteCancelFn = nullptr;
1116 : }
1117 0 : if (mOnDeviceConnectedCallback.IsRegistered())
1118 : {
1119 0 : ChipLogDetail(Controller, "Cancelling CASE setup for step '%s'", StageToString(mCommissioningStage));
1120 0 : CancelCASECallbacks();
1121 : }
1122 0 : }
1123 :
1124 0 : void DeviceCommissioner::CancelCASECallbacks()
1125 : {
1126 0 : mOnDeviceConnectedCallback.Cancel();
1127 0 : mOnDeviceConnectionFailureCallback.Cancel();
1128 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
1129 0 : mOnDeviceConnectionRetryCallback.Cancel();
1130 : #endif
1131 0 : }
1132 :
1133 0 : CHIP_ERROR DeviceCommissioner::UnpairDevice(NodeId remoteDeviceId)
1134 : {
1135 : MATTER_TRACE_SCOPE("UnpairDevice", "DeviceCommissioner");
1136 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1137 :
1138 0 : return AutoCurrentFabricRemover::RemoveCurrentFabric(this, remoteDeviceId);
1139 : }
1140 :
1141 0 : void DeviceCommissioner::RendezvousCleanup(CHIP_ERROR status)
1142 : {
1143 0 : if (mDeviceInPASEEstablishment != nullptr)
1144 : {
1145 : // Release the commissionee device. For BLE, this is stored,
1146 : // for IP commissioning, we have taken a reference to the
1147 : // operational node to send the completion command.
1148 0 : ReleaseCommissioneeDevice(mDeviceInPASEEstablishment);
1149 :
1150 0 : if (mPairingDelegate != nullptr)
1151 : {
1152 0 : mPairingDelegate->OnPairingComplete(status);
1153 : }
1154 : }
1155 0 : }
1156 :
1157 0 : void DeviceCommissioner::OnSessionEstablishmentError(CHIP_ERROR err)
1158 : {
1159 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
1160 :
1161 0 : if (mPairingDelegate != nullptr)
1162 : {
1163 0 : mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingFailed);
1164 : }
1165 :
1166 0 : RendezvousCleanup(err);
1167 0 : }
1168 :
1169 0 : void DeviceCommissioner::OnSessionEstablished(const SessionHandle & session)
1170 : {
1171 : // PASE session established.
1172 0 : CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
1173 :
1174 : // We are in the callback for this pairing. Reset so we can pair another device.
1175 0 : mDeviceInPASEEstablishment = nullptr;
1176 :
1177 0 : VerifyOrReturn(device != nullptr, OnSessionEstablishmentError(CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR));
1178 :
1179 0 : CHIP_ERROR err = device->SetConnected(session);
1180 0 : if (err != CHIP_NO_ERROR)
1181 : {
1182 0 : ChipLogError(Controller, "Failed in setting up secure channel: err %s", ErrorStr(err));
1183 0 : OnSessionEstablishmentError(err);
1184 0 : return;
1185 : }
1186 :
1187 0 : ChipLogDetail(Controller, "Remote device completed SPAKE2+ handshake");
1188 :
1189 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
1190 0 : if (mPairingDelegate != nullptr)
1191 : {
1192 0 : mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR);
1193 : }
1194 :
1195 0 : if (mRunCommissioningAfterConnection)
1196 : {
1197 0 : mRunCommissioningAfterConnection = false;
1198 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
1199 0 : mDefaultCommissioner->StartCommissioning(this, device);
1200 : }
1201 : }
1202 :
1203 0 : CHIP_ERROR DeviceCommissioner::SendCertificateChainRequestCommand(DeviceProxy * device,
1204 : Credentials::CertificateType certificateType,
1205 : Optional<System::Clock::Timeout> timeout)
1206 : {
1207 : MATTER_TRACE_SCOPE("SendCertificateChainRequestCommand", "DeviceCommissioner");
1208 0 : ChipLogDetail(Controller, "Sending Certificate Chain request to %p device", device);
1209 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1210 :
1211 0 : OperationalCredentials::Commands::CertificateChainRequest::Type request;
1212 0 : request.certificateType = static_cast<OperationalCredentials::CertificateChainTypeEnum>(certificateType);
1213 0 : return SendCommissioningCommand(device, request, OnCertificateChainResponse, OnCertificateChainFailureResponse, kRootEndpointId,
1214 0 : timeout);
1215 : }
1216 :
1217 0 : void DeviceCommissioner::OnCertificateChainFailureResponse(void * context, CHIP_ERROR error)
1218 : {
1219 : MATTER_TRACE_SCOPE("OnCertificateChainFailureResponse", "DeviceCommissioner");
1220 0 : ChipLogProgress(Controller, "Device failed to receive the Certificate Chain request Response: %s", chip::ErrorStr(error));
1221 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1222 0 : commissioner->CommissioningStageComplete(error);
1223 0 : }
1224 :
1225 0 : void DeviceCommissioner::OnCertificateChainResponse(
1226 : void * context, const chip::app::Clusters::OperationalCredentials::Commands::CertificateChainResponse::DecodableType & response)
1227 : {
1228 : MATTER_TRACE_SCOPE("OnCertificateChainResponse", "DeviceCommissioner");
1229 0 : ChipLogProgress(Controller, "Received certificate chain from the device");
1230 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1231 :
1232 0 : CommissioningDelegate::CommissioningReport report;
1233 0 : report.Set<RequestedCertificate>(RequestedCertificate(response.certificate));
1234 :
1235 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1236 0 : }
1237 :
1238 0 : CHIP_ERROR DeviceCommissioner::SendAttestationRequestCommand(DeviceProxy * device, const ByteSpan & attestationNonce,
1239 : Optional<System::Clock::Timeout> timeout)
1240 : {
1241 : MATTER_TRACE_SCOPE("SendAttestationRequestCommand", "DeviceCommissioner");
1242 0 : ChipLogDetail(Controller, "Sending Attestation request to %p device", device);
1243 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1244 :
1245 0 : OperationalCredentials::Commands::AttestationRequest::Type request;
1246 0 : request.attestationNonce = attestationNonce;
1247 :
1248 0 : ReturnErrorOnFailure(
1249 : SendCommissioningCommand(device, request, OnAttestationResponse, OnAttestationFailureResponse, kRootEndpointId, timeout));
1250 0 : ChipLogDetail(Controller, "Sent Attestation request, waiting for the Attestation Information");
1251 0 : return CHIP_NO_ERROR;
1252 : }
1253 :
1254 0 : void DeviceCommissioner::OnAttestationFailureResponse(void * context, CHIP_ERROR error)
1255 : {
1256 : MATTER_TRACE_SCOPE("OnAttestationFailureResponse", "DeviceCommissioner");
1257 0 : ChipLogProgress(Controller, "Device failed to receive the Attestation Information Response: %s", chip::ErrorStr(error));
1258 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1259 0 : commissioner->CommissioningStageComplete(error);
1260 0 : }
1261 :
1262 0 : void DeviceCommissioner::OnAttestationResponse(void * context,
1263 : const OperationalCredentials::Commands::AttestationResponse::DecodableType & data)
1264 : {
1265 : MATTER_TRACE_SCOPE("OnAttestationResponse", "DeviceCommissioner");
1266 0 : ChipLogProgress(Controller, "Received Attestation Information from the device");
1267 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1268 :
1269 0 : CommissioningDelegate::CommissioningReport report;
1270 0 : report.Set<AttestationResponse>(AttestationResponse(data.attestationElements, data.attestationSignature));
1271 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1272 0 : }
1273 :
1274 0 : void DeviceCommissioner::OnDeviceAttestationInformationVerification(
1275 : void * context, const Credentials::DeviceAttestationVerifier::AttestationInfo & info, AttestationVerificationResult result)
1276 : {
1277 : MATTER_TRACE_SCOPE("OnDeviceAttestationInformationVerification", "DeviceCommissioner");
1278 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1279 :
1280 0 : if (commissioner->mCommissioningStage == CommissioningStage::kAttestationVerification)
1281 : {
1282 : // Check for revoked DAC Chain before calling delegate. Enter next stage.
1283 :
1284 0 : CommissioningDelegate::CommissioningReport report;
1285 0 : report.Set<AttestationErrorInfo>(result);
1286 :
1287 0 : return commissioner->CommissioningStageComplete(
1288 0 : result == AttestationVerificationResult::kSuccess ? CHIP_NO_ERROR : CHIP_ERROR_INTERNAL, report);
1289 0 : }
1290 :
1291 0 : if (!commissioner->mDeviceBeingCommissioned)
1292 : {
1293 0 : ChipLogError(Controller, "Device attestation verification result received when we're not commissioning a device");
1294 0 : return;
1295 : }
1296 :
1297 0 : auto & params = commissioner->mDefaultCommissioner->GetCommissioningParameters();
1298 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1299 :
1300 0 : if (params.GetCompletionStatus().attestationResult.HasValue())
1301 : {
1302 0 : auto previousResult = params.GetCompletionStatus().attestationResult.Value();
1303 0 : if (previousResult != AttestationVerificationResult::kSuccess)
1304 : {
1305 0 : result = previousResult;
1306 : }
1307 : }
1308 :
1309 0 : if (result != AttestationVerificationResult::kSuccess)
1310 : {
1311 0 : CommissioningDelegate::CommissioningReport report;
1312 0 : report.Set<AttestationErrorInfo>(result);
1313 0 : if (result == AttestationVerificationResult::kNotImplemented)
1314 : {
1315 0 : ChipLogError(Controller,
1316 : "Failed in verifying 'Attestation Information' command received from the device due to default "
1317 : "DeviceAttestationVerifier Class not being overridden by a real implementation.");
1318 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_NOT_IMPLEMENTED, report);
1319 0 : return;
1320 : }
1321 :
1322 0 : ChipLogError(Controller,
1323 : "Failed in verifying 'Attestation Information' command received from the device: err %hu. Look at "
1324 : "AttestationVerificationResult enum to understand the errors",
1325 : static_cast<uint16_t>(result));
1326 : // Go look at AttestationVerificationResult enum in src/credentials/attestation_verifier/DeviceAttestationVerifier.h to
1327 : // understand the errors.
1328 :
1329 : // If a device attestation status delegate is installed, delegate handling of failure to the client and let them
1330 : // decide on whether to proceed further or not.
1331 0 : if (deviceAttestationDelegate)
1332 : {
1333 0 : commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
1334 : }
1335 : else
1336 : {
1337 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1338 : }
1339 0 : }
1340 : else
1341 : {
1342 0 : if (deviceAttestationDelegate && deviceAttestationDelegate->ShouldWaitAfterDeviceAttestation())
1343 : {
1344 0 : commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
1345 : }
1346 : else
1347 : {
1348 0 : ChipLogProgress(Controller, "Successfully validated 'Attestation Information' command received from the device.");
1349 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1350 : }
1351 : }
1352 : }
1353 :
1354 0 : void DeviceCommissioner::OnArmFailSafeExtendedForDeviceAttestation(
1355 : void * context, const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType &)
1356 : {
1357 0 : ChipLogProgress(Controller, "Successfully extended fail-safe timer to handle DA failure");
1358 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1359 :
1360 : // We have completed our command invoke, but we're not going to finish the
1361 : // commissioning step until our client examines the attestation
1362 : // information. Clear out mInvokeCancelFn (which points at the
1363 : // CommandSender we just finished using) now, so it's not dangling.
1364 0 : commissioner->mInvokeCancelFn = nullptr;
1365 :
1366 0 : commissioner->HandleDeviceAttestationCompleted();
1367 0 : }
1368 :
1369 0 : void DeviceCommissioner::HandleDeviceAttestationCompleted()
1370 : {
1371 0 : if (!mDeviceBeingCommissioned)
1372 : {
1373 0 : return;
1374 : }
1375 :
1376 0 : auto & params = mDefaultCommissioner->GetCommissioningParameters();
1377 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1378 0 : if (deviceAttestationDelegate)
1379 : {
1380 0 : ChipLogProgress(Controller, "Device attestation completed, delegating continuation to client");
1381 0 : deviceAttestationDelegate->OnDeviceAttestationCompleted(this, mDeviceBeingCommissioned, *mAttestationDeviceInfo,
1382 : mAttestationResult);
1383 : }
1384 : else
1385 : {
1386 0 : ChipLogProgress(Controller, "Device attestation failed and no delegate set, failing commissioning");
1387 0 : CommissioningDelegate::CommissioningReport report;
1388 0 : report.Set<AttestationErrorInfo>(mAttestationResult);
1389 0 : CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1390 0 : }
1391 : }
1392 :
1393 0 : void DeviceCommissioner::OnFailedToExtendedArmFailSafeDeviceAttestation(void * context, CHIP_ERROR error)
1394 : {
1395 0 : ChipLogProgress(Controller, "Failed to extend fail-safe timer to handle attestation failure %s", chip::ErrorStr(error));
1396 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1397 :
1398 0 : CommissioningDelegate::CommissioningReport report;
1399 0 : report.Set<AttestationErrorInfo>(commissioner->mAttestationResult);
1400 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1401 0 : }
1402 :
1403 0 : void DeviceCommissioner::OnICDManagementRegisterClientResponse(
1404 : void * context, const app::Clusters::IcdManagement::Commands::RegisterClientResponse::DecodableType & data)
1405 : {
1406 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1407 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1408 0 : VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
1409 0 : VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDRegistration, err = CHIP_ERROR_INCORRECT_STATE);
1410 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1411 :
1412 0 : if (commissioner->mPairingDelegate != nullptr)
1413 : {
1414 0 : commissioner->mPairingDelegate->OnICDRegistrationComplete(
1415 0 : ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()), data.ICDCounter);
1416 : }
1417 :
1418 0 : exit:
1419 0 : CommissioningDelegate::CommissioningReport report;
1420 0 : commissioner->CommissioningStageComplete(err, report);
1421 0 : }
1422 :
1423 0 : void DeviceCommissioner::OnICDManagementStayActiveResponse(
1424 : void * context, const app::Clusters::IcdManagement::Commands::StayActiveResponse::DecodableType & data)
1425 : {
1426 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1427 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1428 0 : VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
1429 0 : VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDSendStayActive, err = CHIP_ERROR_INCORRECT_STATE);
1430 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1431 :
1432 0 : if (commissioner->mPairingDelegate != nullptr)
1433 : {
1434 0 : commissioner->mPairingDelegate->OnICDStayActiveComplete(
1435 :
1436 0 : ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()),
1437 0 : data.promisedActiveDuration);
1438 : }
1439 :
1440 0 : exit:
1441 0 : CommissioningDelegate::CommissioningReport report;
1442 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1443 0 : }
1444 :
1445 0 : bool DeviceCommissioner::ExtendArmFailSafeInternal(DeviceProxy * proxy, CommissioningStage step, uint16_t armFailSafeTimeout,
1446 : Optional<System::Clock::Timeout> commandTimeout,
1447 : OnExtendFailsafeSuccess onSuccess, OnExtendFailsafeFailure onFailure,
1448 : bool fireAndForget)
1449 : {
1450 : using namespace System;
1451 : using namespace System::Clock;
1452 0 : auto now = SystemClock().GetMonotonicTimestamp();
1453 0 : auto newFailSafeTimeout = now + Seconds16(armFailSafeTimeout);
1454 0 : if (newFailSafeTimeout < proxy->GetFailSafeExpirationTimestamp())
1455 : {
1456 0 : ChipLogProgress(
1457 : Controller, "Skipping arming failsafe: new time (%u seconds from now) before old time (%u seconds from now)",
1458 : armFailSafeTimeout, std::chrono::duration_cast<Seconds16>(proxy->GetFailSafeExpirationTimestamp() - now).count());
1459 0 : return false;
1460 : }
1461 :
1462 0 : uint64_t breadcrumb = static_cast<uint64_t>(step);
1463 0 : GeneralCommissioning::Commands::ArmFailSafe::Type request;
1464 0 : request.expiryLengthSeconds = armFailSafeTimeout;
1465 0 : request.breadcrumb = breadcrumb;
1466 0 : ChipLogProgress(Controller, "Arming failsafe (%u seconds)", request.expiryLengthSeconds);
1467 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, onSuccess, onFailure, kRootEndpointId, commandTimeout, fireAndForget);
1468 0 : if (err != CHIP_NO_ERROR)
1469 : {
1470 0 : onFailure((!fireAndForget) ? this : nullptr, err);
1471 0 : return true; // we have called onFailure already
1472 : }
1473 :
1474 : // Note: The stored timestamp may become invalid if we fail asynchronously
1475 0 : proxy->SetFailSafeExpirationTimestamp(newFailSafeTimeout);
1476 0 : return true;
1477 : }
1478 :
1479 0 : void DeviceCommissioner::ExtendArmFailSafeForDeviceAttestation(const Credentials::DeviceAttestationVerifier::AttestationInfo & info,
1480 : Credentials::AttestationVerificationResult result)
1481 : {
1482 0 : mAttestationResult = result;
1483 :
1484 0 : auto & params = mDefaultCommissioner->GetCommissioningParameters();
1485 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1486 :
1487 0 : mAttestationDeviceInfo = Platform::MakeUnique<Credentials::DeviceAttestationVerifier::AttestationDeviceInfo>(info);
1488 :
1489 0 : auto expiryLengthSeconds = deviceAttestationDelegate->FailSafeExpiryTimeoutSecs();
1490 0 : bool waitForFailsafeExtension = expiryLengthSeconds.HasValue();
1491 0 : if (waitForFailsafeExtension)
1492 : {
1493 0 : ChipLogProgress(Controller, "Changing fail-safe timer to %u seconds to handle DA failure", expiryLengthSeconds.Value());
1494 : // Per spec, anything we do with the fail-safe armed must not time out
1495 : // in less than kMinimumCommissioningStepTimeout.
1496 : waitForFailsafeExtension =
1497 0 : ExtendArmFailSafeInternal(mDeviceBeingCommissioned, mCommissioningStage, expiryLengthSeconds.Value(),
1498 0 : MakeOptional(kMinimumCommissioningStepTimeout), OnArmFailSafeExtendedForDeviceAttestation,
1499 : OnFailedToExtendedArmFailSafeDeviceAttestation, /* fireAndForget = */ false);
1500 : }
1501 : else
1502 : {
1503 0 : ChipLogProgress(Controller, "Proceeding without changing fail-safe timer value as delegate has not set it");
1504 : }
1505 :
1506 0 : if (!waitForFailsafeExtension)
1507 : {
1508 0 : HandleDeviceAttestationCompleted();
1509 : }
1510 0 : }
1511 :
1512 0 : CHIP_ERROR DeviceCommissioner::ValidateAttestationInfo(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
1513 : {
1514 : MATTER_TRACE_SCOPE("ValidateAttestationInfo", "DeviceCommissioner");
1515 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1516 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1517 :
1518 0 : mDeviceAttestationVerifier->VerifyAttestationInformation(info, &mDeviceAttestationInformationVerificationCallback);
1519 :
1520 : // TODO: Validate Firmware Information
1521 :
1522 0 : return CHIP_NO_ERROR;
1523 : }
1524 :
1525 : CHIP_ERROR
1526 0 : DeviceCommissioner::CheckForRevokedDACChain(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
1527 : {
1528 : MATTER_TRACE_SCOPE("CheckForRevokedDACChain", "DeviceCommissioner");
1529 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1530 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1531 :
1532 0 : mDeviceAttestationVerifier->CheckForRevokedDACChain(info, &mDeviceAttestationInformationVerificationCallback);
1533 :
1534 0 : return CHIP_NO_ERROR;
1535 : }
1536 :
1537 0 : CHIP_ERROR DeviceCommissioner::ValidateCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
1538 : const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & csrNonce)
1539 : {
1540 : MATTER_TRACE_SCOPE("ValidateCSR", "DeviceCommissioner");
1541 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1542 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1543 :
1544 0 : P256PublicKey dacPubkey;
1545 0 : ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
1546 :
1547 : // Retrieve attestation challenge
1548 : ByteSpan attestationChallenge =
1549 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
1550 :
1551 : // The operational CA should also verify this on its end during NOC generation, if end-to-end attestation is desired.
1552 0 : return mDeviceAttestationVerifier->VerifyNodeOperationalCSRInformation(NOCSRElements, attestationChallenge,
1553 0 : AttestationSignature, dacPubkey, csrNonce);
1554 0 : }
1555 :
1556 0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificateSigningRequestCommand(DeviceProxy * device, const ByteSpan & csrNonce,
1557 : Optional<System::Clock::Timeout> timeout)
1558 : {
1559 : MATTER_TRACE_SCOPE("SendOperationalCertificateSigningRequestCommand", "DeviceCommissioner");
1560 0 : ChipLogDetail(Controller, "Sending CSR request to %p device", device);
1561 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1562 :
1563 0 : OperationalCredentials::Commands::CSRRequest::Type request;
1564 0 : request.CSRNonce = csrNonce;
1565 :
1566 0 : ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateSigningRequest, OnCSRFailureResponse,
1567 : kRootEndpointId, timeout));
1568 0 : ChipLogDetail(Controller, "Sent CSR request, waiting for the CSR");
1569 0 : return CHIP_NO_ERROR;
1570 0 : }
1571 :
1572 0 : void DeviceCommissioner::OnCSRFailureResponse(void * context, CHIP_ERROR error)
1573 : {
1574 : MATTER_TRACE_SCOPE("OnCSRFailureResponse", "DeviceCommissioner");
1575 0 : ChipLogProgress(Controller, "Device failed to receive the CSR request Response: %s", chip::ErrorStr(error));
1576 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1577 0 : commissioner->CommissioningStageComplete(error);
1578 0 : }
1579 :
1580 0 : void DeviceCommissioner::OnOperationalCertificateSigningRequest(
1581 : void * context, const OperationalCredentials::Commands::CSRResponse::DecodableType & data)
1582 : {
1583 : MATTER_TRACE_SCOPE("OnOperationalCertificateSigningRequest", "DeviceCommissioner");
1584 0 : ChipLogProgress(Controller, "Received certificate signing request from the device");
1585 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1586 :
1587 0 : CommissioningDelegate::CommissioningReport report;
1588 0 : report.Set<CSRResponse>(CSRResponse(data.NOCSRElements, data.attestationSignature));
1589 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1590 0 : }
1591 :
1592 0 : void DeviceCommissioner::OnDeviceNOCChainGeneration(void * context, CHIP_ERROR status, const ByteSpan & noc, const ByteSpan & icac,
1593 : const ByteSpan & rcac, Optional<IdentityProtectionKeySpan> ipk,
1594 : Optional<NodeId> adminSubject)
1595 : {
1596 : MATTER_TRACE_SCOPE("OnDeviceNOCChainGeneration", "DeviceCommissioner");
1597 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1598 :
1599 : // The placeholder IPK is not satisfactory, but is there to fill the NocChain struct on error. It will still fail.
1600 0 : const uint8_t placeHolderIpk[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1601 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1602 0 : if (status == CHIP_NO_ERROR && !ipk.HasValue())
1603 : {
1604 0 : ChipLogError(Controller, "Did not have an IPK from the OperationalCredentialsIssuer! Cannot commission.");
1605 0 : status = CHIP_ERROR_INVALID_ARGUMENT;
1606 : }
1607 :
1608 0 : ChipLogProgress(Controller, "Received callback from the CA for NOC Chain generation. Status %s", ErrorStr(status));
1609 0 : if (status == CHIP_NO_ERROR && commissioner->mState != State::Initialized)
1610 : {
1611 0 : status = CHIP_ERROR_INCORRECT_STATE;
1612 : }
1613 0 : if (status != CHIP_NO_ERROR)
1614 : {
1615 0 : ChipLogError(Controller, "Failed in generating device's operational credentials. Error %s", ErrorStr(status));
1616 : }
1617 :
1618 : // TODO - Verify that the generated root cert matches with commissioner's root cert
1619 0 : CommissioningDelegate::CommissioningReport report;
1620 0 : report.Set<NocChain>(NocChain(noc, icac, rcac, ipk.HasValue() ? ipk.Value() : IdentityProtectionKeySpan(placeHolderIpk),
1621 0 : adminSubject.HasValue() ? adminSubject.Value() : commissioner->GetNodeId()));
1622 0 : commissioner->CommissioningStageComplete(status, report);
1623 0 : }
1624 :
1625 0 : CHIP_ERROR DeviceCommissioner::IssueNOCChain(const ByteSpan & NOCSRElements, NodeId nodeId,
1626 : chip::Callback::Callback<OnNOCChainGeneration> * callback)
1627 : {
1628 : MATTER_TRACE_SCOPE("IssueNOCChain", "DeviceCommissioner");
1629 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1630 :
1631 0 : ChipLogProgress(Controller, "Getting certificate chain for the device on fabric idx %u", static_cast<unsigned>(mFabricIndex));
1632 :
1633 0 : mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(nodeId);
1634 :
1635 0 : if (mFabricIndex != kUndefinedFabricIndex)
1636 : {
1637 0 : mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
1638 : }
1639 :
1640 : // Note: we don't have attestationSignature, attestationChallenge, DAC, PAI so we are just providing an empty ByteSpan
1641 : // for those arguments.
1642 0 : return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, ByteSpan(), ByteSpan(), ByteSpan(), ByteSpan(),
1643 0 : ByteSpan(), callback);
1644 : }
1645 :
1646 0 : CHIP_ERROR DeviceCommissioner::ProcessCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
1647 : const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & pai,
1648 : const ByteSpan & csrNonce)
1649 : {
1650 : MATTER_TRACE_SCOPE("ProcessOpCSR", "DeviceCommissioner");
1651 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1652 :
1653 0 : ChipLogProgress(Controller, "Getting certificate chain for the device from the issuer");
1654 :
1655 0 : P256PublicKey dacPubkey;
1656 0 : ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
1657 :
1658 : // Retrieve attestation challenge
1659 : ByteSpan attestationChallenge =
1660 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
1661 :
1662 0 : mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(proxy->GetDeviceId());
1663 :
1664 0 : if (mFabricIndex != kUndefinedFabricIndex)
1665 : {
1666 0 : mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
1667 : }
1668 :
1669 0 : return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, csrNonce, AttestationSignature, attestationChallenge,
1670 0 : dac, pai, &mDeviceNOCChainCallback);
1671 0 : }
1672 :
1673 0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificate(DeviceProxy * device, const ByteSpan & nocCertBuf,
1674 : const Optional<ByteSpan> & icaCertBuf,
1675 : const IdentityProtectionKeySpan ipk, const NodeId adminSubject,
1676 : Optional<System::Clock::Timeout> timeout)
1677 : {
1678 : MATTER_TRACE_SCOPE("SendOperationalCertificate", "DeviceCommissioner");
1679 :
1680 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1681 :
1682 0 : OperationalCredentials::Commands::AddNOC::Type request;
1683 0 : request.NOCValue = nocCertBuf;
1684 0 : request.ICACValue = icaCertBuf;
1685 0 : request.IPKValue = ipk;
1686 0 : request.caseAdminSubject = adminSubject;
1687 0 : request.adminVendorId = mVendorId;
1688 :
1689 0 : ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateAddResponse, OnAddNOCFailureResponse,
1690 : kRootEndpointId, timeout));
1691 :
1692 0 : ChipLogProgress(Controller, "Sent operational certificate to the device");
1693 :
1694 0 : return CHIP_NO_ERROR;
1695 0 : }
1696 :
1697 0 : CHIP_ERROR DeviceCommissioner::ConvertFromOperationalCertStatus(OperationalCredentials::NodeOperationalCertStatusEnum err)
1698 : {
1699 : using OperationalCredentials::NodeOperationalCertStatusEnum;
1700 0 : switch (err)
1701 : {
1702 0 : case NodeOperationalCertStatusEnum::kOk:
1703 0 : return CHIP_NO_ERROR;
1704 0 : case NodeOperationalCertStatusEnum::kInvalidPublicKey:
1705 0 : return CHIP_ERROR_INVALID_PUBLIC_KEY;
1706 0 : case NodeOperationalCertStatusEnum::kInvalidNodeOpId:
1707 0 : return CHIP_ERROR_WRONG_NODE_ID;
1708 0 : case NodeOperationalCertStatusEnum::kInvalidNOC:
1709 0 : return CHIP_ERROR_UNSUPPORTED_CERT_FORMAT;
1710 0 : case NodeOperationalCertStatusEnum::kMissingCsr:
1711 0 : return CHIP_ERROR_INCORRECT_STATE;
1712 0 : case NodeOperationalCertStatusEnum::kTableFull:
1713 0 : return CHIP_ERROR_NO_MEMORY;
1714 0 : case NodeOperationalCertStatusEnum::kInvalidAdminSubject:
1715 0 : return CHIP_ERROR_INVALID_ADMIN_SUBJECT;
1716 0 : case NodeOperationalCertStatusEnum::kFabricConflict:
1717 0 : return CHIP_ERROR_FABRIC_EXISTS;
1718 0 : case NodeOperationalCertStatusEnum::kLabelConflict:
1719 0 : return CHIP_ERROR_INVALID_ARGUMENT;
1720 0 : case NodeOperationalCertStatusEnum::kInvalidFabricIndex:
1721 0 : return CHIP_ERROR_INVALID_FABRIC_INDEX;
1722 0 : case NodeOperationalCertStatusEnum::kUnknownEnumValue:
1723 : // Is this a reasonable value?
1724 0 : return CHIP_ERROR_CERT_LOAD_FAILED;
1725 : }
1726 :
1727 0 : return CHIP_ERROR_CERT_LOAD_FAILED;
1728 : }
1729 :
1730 0 : void DeviceCommissioner::OnAddNOCFailureResponse(void * context, CHIP_ERROR error)
1731 : {
1732 : MATTER_TRACE_SCOPE("OnAddNOCFailureResponse", "DeviceCommissioner");
1733 0 : ChipLogProgress(Controller, "Device failed to receive the operational certificate Response: %s", chip::ErrorStr(error));
1734 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1735 0 : commissioner->CommissioningStageComplete(error);
1736 0 : }
1737 :
1738 0 : void DeviceCommissioner::OnOperationalCertificateAddResponse(
1739 : void * context, const OperationalCredentials::Commands::NOCResponse::DecodableType & data)
1740 : {
1741 : MATTER_TRACE_SCOPE("OnOperationalCertificateAddResponse", "DeviceCommissioner");
1742 0 : ChipLogProgress(Controller, "Device returned status %d on receiving the NOC", to_underlying(data.statusCode));
1743 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1744 :
1745 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1746 :
1747 0 : VerifyOrExit(commissioner->mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
1748 :
1749 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1750 :
1751 0 : err = ConvertFromOperationalCertStatus(data.statusCode);
1752 0 : SuccessOrExit(err);
1753 :
1754 0 : err = commissioner->OnOperationalCredentialsProvisioningCompletion(commissioner->mDeviceBeingCommissioned);
1755 :
1756 0 : exit:
1757 0 : if (err != CHIP_NO_ERROR)
1758 : {
1759 0 : ChipLogProgress(Controller, "Add NOC failed with error %s", ErrorStr(err));
1760 0 : commissioner->CommissioningStageComplete(err);
1761 : }
1762 0 : }
1763 :
1764 0 : CHIP_ERROR DeviceCommissioner::SendTrustedRootCertificate(DeviceProxy * device, const ByteSpan & rcac,
1765 : Optional<System::Clock::Timeout> timeout)
1766 : {
1767 : MATTER_TRACE_SCOPE("SendTrustedRootCertificate", "DeviceCommissioner");
1768 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1769 :
1770 0 : ChipLogProgress(Controller, "Sending root certificate to the device");
1771 :
1772 0 : OperationalCredentials::Commands::AddTrustedRootCertificate::Type request;
1773 0 : request.rootCACertificate = rcac;
1774 0 : ReturnErrorOnFailure(
1775 : SendCommissioningCommand(device, request, OnRootCertSuccessResponse, OnRootCertFailureResponse, kRootEndpointId, timeout));
1776 :
1777 0 : ChipLogProgress(Controller, "Sent root certificate to the device");
1778 :
1779 0 : return CHIP_NO_ERROR;
1780 : }
1781 :
1782 0 : void DeviceCommissioner::OnRootCertSuccessResponse(void * context, const chip::app::DataModel::NullObjectType &)
1783 : {
1784 : MATTER_TRACE_SCOPE("OnRootCertSuccessResponse", "DeviceCommissioner");
1785 0 : ChipLogProgress(Controller, "Device confirmed that it has received the root certificate");
1786 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1787 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1788 0 : }
1789 :
1790 0 : void DeviceCommissioner::OnRootCertFailureResponse(void * context, CHIP_ERROR error)
1791 : {
1792 : MATTER_TRACE_SCOPE("OnRootCertFailureResponse", "DeviceCommissioner");
1793 0 : ChipLogProgress(Controller, "Device failed to receive the root certificate Response: %s", chip::ErrorStr(error));
1794 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1795 0 : commissioner->CommissioningStageComplete(error);
1796 0 : }
1797 :
1798 0 : CHIP_ERROR DeviceCommissioner::OnOperationalCredentialsProvisioningCompletion(DeviceProxy * device)
1799 : {
1800 : MATTER_TRACE_SCOPE("OnOperationalCredentialsProvisioningCompletion", "DeviceCommissioner");
1801 0 : ChipLogProgress(Controller, "Operational credentials provisioned on device %p", device);
1802 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1803 :
1804 0 : if (mPairingDelegate != nullptr)
1805 : {
1806 0 : mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingSuccess);
1807 : }
1808 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1809 :
1810 0 : return CHIP_NO_ERROR;
1811 : }
1812 :
1813 : #if CONFIG_NETWORK_LAYER_BLE
1814 : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
1815 : void DeviceCommissioner::ConnectBleTransportToSelf()
1816 : {
1817 : Transport::BLEBase & transport = std::get<Transport::BLE<1>>(mSystemState->TransportMgr()->GetTransport().GetTransports());
1818 : if (!transport.IsBleLayerTransportSetToSelf())
1819 : {
1820 : transport.SetBleLayerTransportToSelf();
1821 : }
1822 : }
1823 : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
1824 :
1825 0 : void DeviceCommissioner::CloseBleConnection()
1826 : {
1827 : // It is fine since we can only commission one device at the same time.
1828 : // We should be able to distinguish different BLE connections if we want
1829 : // to commission multiple devices at the same time over BLE.
1830 0 : mSystemState->BleLayer()->CloseAllBleConnections();
1831 0 : }
1832 : #endif
1833 :
1834 0 : CHIP_ERROR DeviceCommissioner::DiscoverCommissionableNodes(Dnssd::DiscoveryFilter filter)
1835 : {
1836 0 : ReturnErrorOnFailure(SetUpNodeDiscovery());
1837 0 : return mDNSResolver.DiscoverCommissionableNodes(filter);
1838 : }
1839 :
1840 0 : CHIP_ERROR DeviceCommissioner::StopCommissionableDiscovery()
1841 : {
1842 0 : return mDNSResolver.StopDiscovery();
1843 : }
1844 :
1845 0 : const Dnssd::CommissionNodeData * DeviceCommissioner::GetDiscoveredDevice(int idx)
1846 : {
1847 0 : return GetDiscoveredNode(idx);
1848 : }
1849 :
1850 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
1851 :
1852 : CHIP_ERROR DeviceCommissioner::SetUdcListenPort(uint16_t listenPort)
1853 : {
1854 : if (mState == State::Initialized)
1855 : {
1856 : return CHIP_ERROR_INCORRECT_STATE;
1857 : }
1858 :
1859 : mUdcListenPort = listenPort;
1860 : return CHIP_NO_ERROR;
1861 : }
1862 :
1863 : void DeviceCommissioner::FindCommissionableNode(char * instanceName)
1864 : {
1865 : Dnssd::DiscoveryFilter filter(Dnssd::DiscoveryFilterType::kInstanceName, instanceName);
1866 : DiscoverCommissionableNodes(filter);
1867 : }
1868 :
1869 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1870 :
1871 0 : void DeviceCommissioner::OnNodeDiscovered(const chip::Dnssd::DiscoveredNodeData & nodeData)
1872 : {
1873 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1874 : if (mUdcServer != nullptr)
1875 : {
1876 : mUdcServer->OnCommissionableNodeFound(nodeData);
1877 : }
1878 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1879 0 : AbstractDnssdDiscoveryController::OnNodeDiscovered(nodeData);
1880 0 : mSetUpCodePairer.NotifyCommissionableDeviceDiscovered(nodeData);
1881 0 : }
1882 :
1883 0 : void DeviceCommissioner::OnBasicSuccess(void * context, const chip::app::DataModel::NullObjectType &)
1884 : {
1885 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1886 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1887 0 : }
1888 :
1889 0 : void DeviceCommissioner::OnBasicFailure(void * context, CHIP_ERROR error)
1890 : {
1891 0 : ChipLogProgress(Controller, "Received failure response %s\n", chip::ErrorStr(error));
1892 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1893 0 : commissioner->CommissioningStageComplete(error);
1894 0 : }
1895 :
1896 0 : static GeneralCommissioning::Commands::ArmFailSafe::Type DisarmFailsafeRequest()
1897 : {
1898 0 : GeneralCommissioning::Commands::ArmFailSafe::Type request;
1899 0 : request.expiryLengthSeconds = 0; // Expire immediately.
1900 0 : request.breadcrumb = 0;
1901 0 : return request;
1902 : }
1903 :
1904 0 : static void MarkForEviction(const Optional<SessionHandle> & session)
1905 : {
1906 0 : if (session.HasValue())
1907 : {
1908 0 : session.Value()->AsSecureSession()->MarkForEviction();
1909 : }
1910 0 : }
1911 :
1912 0 : void DeviceCommissioner::CleanupCommissioning(DeviceProxy * proxy, NodeId nodeId, const CompletionStatus & completionStatus)
1913 : {
1914 : // At this point, proxy == mDeviceBeingCommissioned, nodeId == mDeviceBeingCommissioned->GetDeviceId()
1915 :
1916 0 : mCommissioningCompletionStatus = completionStatus;
1917 :
1918 0 : if (completionStatus.err == CHIP_NO_ERROR)
1919 : {
1920 : // CommissioningStageComplete uses mDeviceBeingCommissioned, which can
1921 : // be commissionee if we are cleaning up before we've gone operational. Normally
1922 : // that would not happen in this non-error case, _except_ if we were told to skip sending
1923 : // CommissioningComplete: in that case we do not have an operational DeviceProxy, so
1924 : // we're using our CommissioneeDeviceProxy to do a successful cleanup.
1925 : //
1926 : // This means we have to call CommissioningStageComplete() before we destroy commissionee.
1927 : //
1928 : // This should be safe, because CommissioningStageComplete() does not call CleanupCommissioning
1929 : // when called in the cleanup stage (which is where we are), and StopPairing does not directly release
1930 : // mDeviceBeingCommissioned.
1931 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1932 :
1933 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
1934 0 : if (commissionee != nullptr)
1935 : {
1936 0 : ReleaseCommissioneeDevice(commissionee);
1937 : }
1938 : // Send the callbacks, we're done.
1939 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
1940 : }
1941 0 : else if (completionStatus.err == CHIP_ERROR_CANCELLED)
1942 : {
1943 : // If we're cleaning up because cancellation has been requested via StopPairing(), expire the failsafe
1944 : // in the background and reset our state synchronously, so a new commissioning attempt can be started.
1945 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
1946 0 : SessionHolder session((commissionee == proxy) ? commissionee->DetachSecureSession().Value()
1947 0 : : proxy->GetSecureSession().Value());
1948 :
1949 0 : auto request = DisarmFailsafeRequest();
1950 0 : auto onSuccessCb = [session](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
1951 : const decltype(request)::ResponseType & responseData) {
1952 0 : ChipLogProgress(Controller, "Failsafe disarmed");
1953 0 : MarkForEviction(session.Get());
1954 0 : };
1955 0 : auto onFailureCb = [session](CHIP_ERROR aError) {
1956 0 : ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, aError.Format());
1957 0 : MarkForEviction(session.Get());
1958 0 : };
1959 :
1960 0 : ChipLogProgress(Controller, "Disarming failsafe on device %p in background", proxy);
1961 0 : CHIP_ERROR err = InvokeCommandRequest(proxy->GetExchangeManager(), session.Get().Value(), kRootEndpointId, request,
1962 : onSuccessCb, onFailureCb);
1963 0 : if (err != CHIP_NO_ERROR)
1964 : {
1965 0 : ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
1966 : }
1967 :
1968 0 : CleanupDoneAfterError();
1969 0 : }
1970 0 : else if (completionStatus.failedStage.HasValue() && completionStatus.failedStage.Value() >= kWiFiNetworkSetup)
1971 : {
1972 : // If we were already doing network setup, we need to retain the pase session and start again from network setup stage.
1973 : // We do not need to reset the failsafe here because we want to keep everything on the device up to this point, so just
1974 : // send the completion callbacks (see "Commissioning Flows Error Handling" in the spec).
1975 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1976 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
1977 : }
1978 : else
1979 : {
1980 : // If we've failed somewhere in the early stages (or we don't have a failedStage specified), we need to start from the
1981 : // beginning. However, because some of the commands can only be sent once per arm-failsafe, we also need to force a reset on
1982 : // the failsafe so we can start fresh on the next attempt.
1983 0 : ChipLogProgress(Controller, "Disarming failsafe on device %p", proxy);
1984 0 : auto request = DisarmFailsafeRequest();
1985 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnDisarmFailsafe, OnDisarmFailsafeFailure, kRootEndpointId);
1986 0 : if (err != CHIP_NO_ERROR)
1987 : {
1988 : // We won't get any async callbacks here, so just pretend like the command errored out async.
1989 0 : ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
1990 0 : CleanupDoneAfterError();
1991 : }
1992 : }
1993 0 : }
1994 :
1995 0 : void DeviceCommissioner::OnDisarmFailsafe(void * context,
1996 : const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
1997 : {
1998 0 : ChipLogProgress(Controller, "Failsafe disarmed");
1999 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2000 0 : commissioner->CleanupDoneAfterError();
2001 0 : }
2002 :
2003 0 : void DeviceCommissioner::OnDisarmFailsafeFailure(void * context, CHIP_ERROR error)
2004 : {
2005 0 : ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, error.Format());
2006 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2007 0 : commissioner->CleanupDoneAfterError();
2008 0 : }
2009 :
2010 0 : void DeviceCommissioner::CleanupDoneAfterError()
2011 : {
2012 : // If someone nulled out our mDeviceBeingCommissioned, there's nothing else
2013 : // to do here.
2014 0 : VerifyOrReturn(mDeviceBeingCommissioned != nullptr);
2015 :
2016 0 : NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
2017 :
2018 : // Signal completion - this will reset mDeviceBeingCommissioned.
2019 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2020 :
2021 : // At this point, we also want to close off the pase session so we need to re-establish
2022 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
2023 :
2024 : // If we've disarmed the failsafe, it's because we're starting again, so kill the pase connection.
2025 0 : if (commissionee != nullptr)
2026 : {
2027 0 : ReleaseCommissioneeDevice(commissionee);
2028 : }
2029 :
2030 : // Invoke callbacks last, after we have cleared up all state.
2031 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
2032 : }
2033 :
2034 0 : void DeviceCommissioner::SendCommissioningCompleteCallbacks(NodeId nodeId, const CompletionStatus & completionStatus)
2035 : {
2036 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerCommission, completionStatus.err);
2037 :
2038 0 : ChipLogProgress(Controller, "Commissioning complete for node ID 0x" ChipLogFormatX64 ": %s", ChipLogValueX64(nodeId),
2039 : (completionStatus.err == CHIP_NO_ERROR ? "success" : completionStatus.err.AsString()));
2040 0 : mCommissioningStage = CommissioningStage::kSecurePairing;
2041 :
2042 0 : if (mPairingDelegate == nullptr)
2043 : {
2044 0 : return;
2045 : }
2046 :
2047 0 : mPairingDelegate->OnCommissioningComplete(nodeId, completionStatus.err);
2048 0 : PeerId peerId(GetCompressedFabricId(), nodeId);
2049 0 : if (completionStatus.err == CHIP_NO_ERROR)
2050 : {
2051 0 : mPairingDelegate->OnCommissioningSuccess(peerId);
2052 : }
2053 : else
2054 : {
2055 : // TODO: We should propogate detailed error information (commissioningError, networkCommissioningStatus) from
2056 : // completionStatus.
2057 0 : mPairingDelegate->OnCommissioningFailure(peerId, completionStatus.err, completionStatus.failedStage.ValueOr(kError),
2058 0 : completionStatus.attestationResult);
2059 : }
2060 : }
2061 :
2062 0 : void DeviceCommissioner::CommissioningStageComplete(CHIP_ERROR err, CommissioningDelegate::CommissioningReport report)
2063 : {
2064 : // Once this stage is complete, reset mDeviceBeingCommissioned - this will be reset when the delegate calls the next step.
2065 : MATTER_TRACE_SCOPE("CommissioningStageComplete", "DeviceCommissioner");
2066 : MATTER_LOG_METRIC_END(MetricKeyForCommissioningStage(mCommissioningStage), err);
2067 0 : VerifyOrDie(mDeviceBeingCommissioned);
2068 :
2069 0 : NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
2070 0 : DeviceProxy * proxy = mDeviceBeingCommissioned;
2071 0 : mDeviceBeingCommissioned = nullptr;
2072 0 : mInvokeCancelFn = nullptr;
2073 0 : mWriteCancelFn = nullptr;
2074 :
2075 0 : if (mPairingDelegate != nullptr)
2076 : {
2077 0 : mPairingDelegate->OnCommissioningStatusUpdate(PeerId(GetCompressedFabricId(), nodeId), mCommissioningStage, err);
2078 : }
2079 :
2080 0 : if (mCommissioningDelegate == nullptr)
2081 : {
2082 0 : return;
2083 : }
2084 0 : report.stageCompleted = mCommissioningStage;
2085 0 : CHIP_ERROR status = mCommissioningDelegate->CommissioningStepFinished(err, report);
2086 0 : if (status != CHIP_NO_ERROR && mCommissioningStage != CommissioningStage::kCleanup)
2087 : {
2088 : // Commissioning delegate will only return error if it failed to perform the appropriate commissioning step.
2089 : // In this case, we should complete the commissioning for it.
2090 0 : CompletionStatus completionStatus;
2091 0 : completionStatus.err = status;
2092 0 : completionStatus.failedStage = MakeOptional(report.stageCompleted);
2093 0 : mCommissioningStage = CommissioningStage::kCleanup;
2094 0 : mDeviceBeingCommissioned = proxy;
2095 0 : CleanupCommissioning(proxy, nodeId, completionStatus);
2096 0 : }
2097 : }
2098 :
2099 0 : void DeviceCommissioner::OnDeviceConnectedFn(void * context, Messaging::ExchangeManager & exchangeMgr,
2100 : const SessionHandle & sessionHandle)
2101 : {
2102 : // CASE session established.
2103 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, CHIP_NO_ERROR);
2104 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2105 0 : VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
2106 : commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
2107 0 : VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == sessionHandle->GetPeer().GetNodeId());
2108 0 : commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
2109 :
2110 0 : CommissioningDelegate::CommissioningReport report;
2111 0 : report.Set<OperationalNodeFoundData>(OperationalNodeFoundData(OperationalDeviceProxy(&exchangeMgr, sessionHandle)));
2112 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
2113 0 : }
2114 :
2115 0 : void DeviceCommissioner::OnDeviceConnectionFailureFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error)
2116 : {
2117 : // CASE session establishment failed.
2118 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, error);
2119 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2120 0 : VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
2121 : commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
2122 0 : VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
2123 0 : commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
2124 :
2125 0 : if (error != CHIP_NO_ERROR)
2126 : {
2127 0 : ChipLogProgress(Controller, "Device connection failed. Error %" CHIP_ERROR_FORMAT, error.Format());
2128 : }
2129 : else
2130 : {
2131 : // Ensure that commissioning stage advancement is done based on seeing an error.
2132 0 : ChipLogError(Controller, "Device connection failed without a valid error code.");
2133 0 : error = CHIP_ERROR_INTERNAL;
2134 : }
2135 0 : commissioner->CommissioningStageComplete(error);
2136 0 : }
2137 :
2138 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
2139 : // No specific action to take on either success or failure here; we're just
2140 : // trying to bump the fail-safe, and if that fails it's not clear there's much
2141 : // we can to with that.
2142 0 : static void OnExtendFailsafeForCASERetryFailure(void * context, CHIP_ERROR error)
2143 : {
2144 0 : ChipLogError(Controller, "Failed to extend fail-safe for CASE retry: %" CHIP_ERROR_FORMAT, error.Format());
2145 0 : }
2146 : static void
2147 0 : OnExtendFailsafeForCASERetrySuccess(void * context,
2148 : const app::Clusters::GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2149 : {
2150 0 : ChipLogProgress(Controller, "Status of extending fail-safe for CASE retry: %u", to_underlying(data.errorCode));
2151 0 : }
2152 :
2153 0 : void DeviceCommissioner::OnDeviceConnectionRetryFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error,
2154 : System::Clock::Seconds16 retryTimeout)
2155 : {
2156 0 : ChipLogError(Controller,
2157 : "Session establishment failed for " ChipLogFormatScopedNodeId ", error: %" CHIP_ERROR_FORMAT
2158 : ". Next retry expected to get a response to Sigma1 or fail within %d seconds",
2159 : ChipLogValueScopedNodeId(peerId), error.Format(), retryTimeout.count());
2160 :
2161 0 : auto self = static_cast<DeviceCommissioner *>(context);
2162 0 : VerifyOrDie(self->GetCommissioningStage() == CommissioningStage::kFindOperationalForStayActive ||
2163 : self->GetCommissioningStage() == CommissioningStage::kFindOperationalForCommissioningComplete);
2164 0 : VerifyOrDie(self->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
2165 :
2166 : // We need to do the fail-safe arming over the PASE session.
2167 0 : auto * commissioneeDevice = self->FindCommissioneeDevice(peerId.GetNodeId());
2168 0 : if (!commissioneeDevice)
2169 : {
2170 : // Commissioning canceled, presumably. Just ignore the notification,
2171 : // not much we can do here.
2172 0 : return;
2173 : }
2174 :
2175 : // Extend by the default failsafe timeout plus our retry timeout, so we can
2176 : // be sure the fail-safe will not expire before we try the next time, if
2177 : // there will be a next time.
2178 : //
2179 : // TODO: Make it possible for our clients to control the exact timeout here?
2180 : uint16_t failsafeTimeout;
2181 0 : if (UINT16_MAX - retryTimeout.count() < kDefaultFailsafeTimeout)
2182 : {
2183 0 : failsafeTimeout = UINT16_MAX;
2184 : }
2185 : else
2186 : {
2187 0 : failsafeTimeout = static_cast<uint16_t>(retryTimeout.count() + kDefaultFailsafeTimeout);
2188 : }
2189 :
2190 : // A false return is fine; we don't want to make the fail-safe shorter here.
2191 0 : self->ExtendArmFailSafeInternal(commissioneeDevice, self->GetCommissioningStage(), failsafeTimeout,
2192 0 : MakeOptional(kMinimumCommissioningStepTimeout), OnExtendFailsafeForCASERetrySuccess,
2193 : OnExtendFailsafeForCASERetryFailure, /* fireAndForget = */ true);
2194 : }
2195 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
2196 :
2197 : // ClusterStateCache::Callback / ReadClient::Callback
2198 0 : void DeviceCommissioner::OnDone(app::ReadClient * readClient)
2199 : {
2200 0 : VerifyOrDie(readClient != nullptr && readClient == mReadClient.get());
2201 0 : mReadClient.reset();
2202 0 : switch (mCommissioningStage)
2203 : {
2204 0 : case CommissioningStage::kReadCommissioningInfo:
2205 0 : ContinueReadingCommissioningInfo(mCommissioningDelegate->GetCommissioningParameters());
2206 0 : break;
2207 0 : default:
2208 0 : VerifyOrDie(false);
2209 : break;
2210 : }
2211 0 : }
2212 :
2213 : namespace {
2214 : // Helper for grouping attribute paths into read interactions in ContinueReadingCommissioningInfo()
2215 : // below. The logic generates a sequence of calls to AddAttributePath(), stopping when the capacity
2216 : // of the builder is exceeded. When creating subsequent read requests, the same sequence of calls
2217 : // is generated again, but the builder will skip however many attributes were already read in
2218 : // previous requests. This makes it easy to have logic that conditionally reads attributes, without
2219 : // needing to write manual code to work out where subsequent reads need to resume -- the logic that
2220 : // decides which attributes to read simply needs to be repeatable / deterministic.
2221 : class ReadInteractionBuilder
2222 : {
2223 : static constexpr auto kCapacity = InteractionModelEngine::kMinSupportedPathsPerReadRequest;
2224 :
2225 : size_t mSkip = 0;
2226 : size_t mCount = 0;
2227 : app::AttributePathParams mPaths[kCapacity];
2228 :
2229 : public:
2230 0 : ReadInteractionBuilder(size_t skip = 0) : mSkip(skip) {}
2231 :
2232 0 : size_t size() { return std::min(mCount, kCapacity); }
2233 0 : bool exceeded() { return mCount > kCapacity; }
2234 0 : app::AttributePathParams * paths() { return mPaths; }
2235 :
2236 : // Adds an attribute path if within the current window.
2237 : // Returns false if the available space has been exceeded.
2238 : template <typename... Ts>
2239 0 : bool AddAttributePath(Ts &&... args)
2240 : {
2241 0 : if (mSkip > 0)
2242 : {
2243 0 : mSkip--;
2244 0 : return true;
2245 : }
2246 0 : if (mCount >= kCapacity)
2247 : {
2248 : // capacity exceeded
2249 0 : mCount = kCapacity + 1;
2250 0 : return false;
2251 : }
2252 0 : mPaths[mCount++] = app::AttributePathParams(std::forward<Ts>(args)...);
2253 0 : return true;
2254 : }
2255 : };
2256 : } // namespace
2257 :
2258 0 : void DeviceCommissioner::ContinueReadingCommissioningInfo(const CommissioningParameters & params)
2259 : {
2260 0 : VerifyOrDie(mCommissioningStage == CommissioningStage::kReadCommissioningInfo);
2261 :
2262 : // mReadCommissioningInfoProgress starts at 0 and counts the number of paths we have read.
2263 : // A marker value is used to indicate that there are no further attributes to read.
2264 : static constexpr auto kReadProgressNoFurtherAttributes = std::numeric_limits<decltype(mReadCommissioningInfoProgress)>::max();
2265 0 : if (mReadCommissioningInfoProgress == kReadProgressNoFurtherAttributes)
2266 : {
2267 0 : FinishReadingCommissioningInfo();
2268 0 : return;
2269 : }
2270 :
2271 : // We can ony read 9 paths per Read Interaction, since that is the minimum a server has to
2272 : // support per spec (see "Interaction Model Limits"), so we generally need to perform more
2273 : // that one interaction. To build the list of attributes for each interaction, we use a
2274 : // builder that skips adding paths that we already handled in a previous interaction, and
2275 : // returns false if the current request is exhausted. This construction avoids allocating
2276 : // memory to hold the complete list of attributes to read up front; however the logic to
2277 : // determine the attributes to include must be deterministic since it runs multiple times.
2278 : // The use of an immediately-invoked lambda is convenient for control flow.
2279 0 : ReadInteractionBuilder builder(mReadCommissioningInfoProgress);
2280 0 : [&]() -> void {
2281 : // General Commissioning
2282 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2283 : Clusters::GeneralCommissioning::Attributes::SupportsConcurrentConnection::Id));
2284 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2285 : Clusters::GeneralCommissioning::Attributes::Breadcrumb::Id));
2286 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2287 : Clusters::GeneralCommissioning::Attributes::BasicCommissioningInfo::Id));
2288 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2289 : Clusters::GeneralCommissioning::Attributes::RegulatoryConfig::Id));
2290 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2291 : Clusters::GeneralCommissioning::Attributes::LocationCapability::Id));
2292 :
2293 : // Basic Information: VID and PID for device attestation purposes
2294 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
2295 : Clusters::BasicInformation::Attributes::VendorID::Id));
2296 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
2297 : Clusters::BasicInformation::Attributes::ProductID::Id));
2298 :
2299 : // Time Synchronization: all attributes
2300 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::TimeSynchronization::Id));
2301 :
2302 : // Network Commissioning (all endpoints): Read the feature map and connect time
2303 : // TODO: Expose a flag that disables network setup so we don't need to read this
2304 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2305 : Clusters::NetworkCommissioning::Attributes::FeatureMap::Id));
2306 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2307 : Clusters::NetworkCommissioning::Attributes::ConnectMaxTimeSeconds::Id));
2308 :
2309 : // OperationalCredentials: existing fabrics, if necessary
2310 0 : if (params.GetCheckForMatchingFabric())
2311 : {
2312 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::OperationalCredentials::Id,
2313 : Clusters::OperationalCredentials::Attributes::Fabrics::Id));
2314 : }
2315 :
2316 : // ICD Management
2317 0 : if (params.GetICDRegistrationStrategy() != ICDRegistrationStrategy::kIgnore)
2318 : {
2319 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2320 : Clusters::IcdManagement::Attributes::FeatureMap::Id));
2321 : }
2322 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2323 : Clusters::IcdManagement::Attributes::UserActiveModeTriggerHint::Id));
2324 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2325 : Clusters::IcdManagement::Attributes::UserActiveModeTriggerInstruction::Id));
2326 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2327 : Clusters::IcdManagement::Attributes::IdleModeDuration::Id));
2328 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2329 : Clusters::IcdManagement::Attributes::ActiveModeDuration::Id));
2330 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2331 : Clusters::IcdManagement::Attributes::ActiveModeThreshold::Id));
2332 0 : }();
2333 :
2334 0 : VerifyOrDie(builder.size() > 0); // our logic is broken if there is nothing to read
2335 0 : if (builder.exceeded())
2336 : {
2337 : // Keep track of the number of attributes we have read already so we can resume from there.
2338 0 : auto progress = mReadCommissioningInfoProgress + builder.size();
2339 0 : VerifyOrDie(progress < kReadProgressNoFurtherAttributes);
2340 0 : mReadCommissioningInfoProgress = static_cast<decltype(mReadCommissioningInfoProgress)>(progress);
2341 : }
2342 : else
2343 : {
2344 0 : mReadCommissioningInfoProgress = kReadProgressNoFurtherAttributes;
2345 : }
2346 :
2347 0 : SendCommissioningReadRequest(mDeviceBeingCommissioned, mCommissioningStepTimeout, builder.paths(), builder.size());
2348 : }
2349 :
2350 : namespace {
2351 0 : void AccumulateErrors(CHIP_ERROR & acc, CHIP_ERROR err)
2352 : {
2353 0 : if (acc == CHIP_NO_ERROR && err != CHIP_NO_ERROR)
2354 : {
2355 0 : acc = err;
2356 : }
2357 0 : }
2358 : } // namespace
2359 :
2360 0 : void DeviceCommissioner::FinishReadingCommissioningInfo()
2361 : {
2362 : // We want to parse as much information as possible, even if we eventually end
2363 : // up returning an error (e.g. because some mandatory information was missing).
2364 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2365 0 : ReadCommissioningInfo info;
2366 0 : AccumulateErrors(err, ParseGeneralCommissioningInfo(info));
2367 0 : AccumulateErrors(err, ParseBasicInformation(info));
2368 0 : AccumulateErrors(err, ParseNetworkCommissioningInfo(info));
2369 0 : AccumulateErrors(err, ParseTimeSyncInfo(info));
2370 0 : AccumulateErrors(err, ParseFabrics(info));
2371 0 : AccumulateErrors(err, ParseICDInfo(info));
2372 :
2373 0 : if (mPairingDelegate != nullptr && err == CHIP_NO_ERROR)
2374 : {
2375 0 : mPairingDelegate->OnReadCommissioningInfo(info);
2376 : }
2377 :
2378 0 : CommissioningDelegate::CommissioningReport report;
2379 0 : report.Set<ReadCommissioningInfo>(info);
2380 0 : CommissioningStageComplete(err, report);
2381 :
2382 : // Only release the attribute cache once `info` is no longer needed.
2383 0 : mAttributeCache.reset();
2384 0 : }
2385 :
2386 0 : CHIP_ERROR DeviceCommissioner::ParseGeneralCommissioningInfo(ReadCommissioningInfo & info)
2387 : {
2388 : using namespace GeneralCommissioning::Attributes;
2389 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2390 : CHIP_ERROR err;
2391 :
2392 0 : BasicCommissioningInfo::TypeInfo::DecodableType basicInfo;
2393 0 : err = mAttributeCache->Get<BasicCommissioningInfo::TypeInfo>(kRootEndpointId, basicInfo);
2394 0 : if (err == CHIP_NO_ERROR)
2395 : {
2396 0 : info.general.recommendedFailsafe = basicInfo.failSafeExpiryLengthSeconds;
2397 : }
2398 : else
2399 : {
2400 0 : ChipLogError(Controller, "Failed to read BasicCommissioningInfo: %" CHIP_ERROR_FORMAT, err.Format());
2401 0 : return_err = err;
2402 : }
2403 :
2404 0 : err = mAttributeCache->Get<RegulatoryConfig::TypeInfo>(kRootEndpointId, info.general.currentRegulatoryLocation);
2405 0 : if (err != CHIP_NO_ERROR)
2406 : {
2407 0 : ChipLogError(Controller, "Failed to read RegulatoryConfig: %" CHIP_ERROR_FORMAT, err.Format());
2408 0 : return_err = err;
2409 : }
2410 :
2411 0 : err = mAttributeCache->Get<LocationCapability::TypeInfo>(kRootEndpointId, info.general.locationCapability);
2412 0 : if (err != CHIP_NO_ERROR)
2413 : {
2414 0 : ChipLogError(Controller, "Failed to read LocationCapability: %" CHIP_ERROR_FORMAT, err.Format());
2415 0 : return_err = err;
2416 : }
2417 :
2418 0 : err = mAttributeCache->Get<Breadcrumb::TypeInfo>(kRootEndpointId, info.general.breadcrumb);
2419 0 : if (err != CHIP_NO_ERROR)
2420 : {
2421 0 : ChipLogError(Controller, "Failed to read Breadcrumb: %" CHIP_ERROR_FORMAT, err.Format());
2422 0 : return_err = err;
2423 : }
2424 :
2425 0 : err = mAttributeCache->Get<SupportsConcurrentConnection::TypeInfo>(kRootEndpointId, info.supportsConcurrentConnection);
2426 0 : if (err != CHIP_NO_ERROR)
2427 : {
2428 0 : ChipLogError(Controller, "Ignoring failure to read SupportsConcurrentConnection: %" CHIP_ERROR_FORMAT, err.Format());
2429 0 : info.supportsConcurrentConnection = true; // default to true (concurrent), not a fatal error
2430 : }
2431 :
2432 0 : return return_err;
2433 : }
2434 :
2435 0 : CHIP_ERROR DeviceCommissioner::ParseBasicInformation(ReadCommissioningInfo & info)
2436 : {
2437 : using namespace BasicInformation::Attributes;
2438 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2439 : CHIP_ERROR err;
2440 :
2441 0 : err = mAttributeCache->Get<VendorID::TypeInfo>(kRootEndpointId, info.basic.vendorId);
2442 0 : if (err != CHIP_NO_ERROR)
2443 : {
2444 0 : ChipLogError(Controller, "Failed to read VendorID: %" CHIP_ERROR_FORMAT, err.Format());
2445 0 : return_err = err;
2446 : }
2447 :
2448 0 : err = mAttributeCache->Get<ProductID::TypeInfo>(kRootEndpointId, info.basic.productId);
2449 0 : if (err != CHIP_NO_ERROR)
2450 : {
2451 0 : ChipLogError(Controller, "Failed to read ProductID: %" CHIP_ERROR_FORMAT, err.Format());
2452 0 : return_err = err;
2453 : }
2454 :
2455 0 : return return_err;
2456 : }
2457 :
2458 0 : CHIP_ERROR DeviceCommissioner::ParseNetworkCommissioningInfo(ReadCommissioningInfo & info)
2459 : {
2460 : using namespace NetworkCommissioning::Attributes;
2461 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2462 : CHIP_ERROR err;
2463 :
2464 : // Set the network cluster endpoints first so we can match up the connection
2465 : // times. Note that here we don't know what endpoints the network
2466 : // commissioning clusters might be on.
2467 0 : err = mAttributeCache->ForEachAttribute(NetworkCommissioning::Id, [this, &info](const ConcreteAttributePath & path) {
2468 0 : VerifyOrReturnError(path.mAttributeId == FeatureMap::Id, CHIP_NO_ERROR);
2469 0 : BitFlags<NetworkCommissioning::Feature> features;
2470 0 : if (mAttributeCache->Get<FeatureMap::TypeInfo>(path, *features.RawStorage()) == CHIP_NO_ERROR)
2471 : {
2472 0 : if (features.Has(NetworkCommissioning::Feature::kWiFiNetworkInterface))
2473 : {
2474 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has WiFi. endpointid = %u", path.mEndpointId);
2475 0 : info.network.wifi.endpoint = path.mEndpointId;
2476 : }
2477 0 : else if (features.Has(NetworkCommissioning::Feature::kThreadNetworkInterface))
2478 : {
2479 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has Thread. endpointid = %u", path.mEndpointId);
2480 0 : info.network.thread.endpoint = path.mEndpointId;
2481 : }
2482 0 : else if (features.Has(NetworkCommissioning::Feature::kEthernetNetworkInterface))
2483 : {
2484 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has Ethernet. endpointid = %u", path.mEndpointId);
2485 0 : info.network.eth.endpoint = path.mEndpointId;
2486 : }
2487 : }
2488 0 : return CHIP_NO_ERROR;
2489 : });
2490 0 : AccumulateErrors(return_err, err);
2491 :
2492 0 : if (info.network.thread.endpoint != kInvalidEndpointId)
2493 : {
2494 0 : err = mAttributeCache->Get<ConnectMaxTimeSeconds::TypeInfo>(info.network.thread.endpoint,
2495 0 : info.network.thread.minConnectionTime);
2496 0 : if (err != CHIP_NO_ERROR)
2497 : {
2498 0 : ChipLogError(Controller, "Failed to read Thread ConnectMaxTimeSeconds (endpoint %u): %" CHIP_ERROR_FORMAT,
2499 : info.network.thread.endpoint, err.Format());
2500 0 : return_err = err;
2501 : }
2502 : }
2503 :
2504 0 : if (info.network.wifi.endpoint != kInvalidEndpointId)
2505 : {
2506 0 : err =
2507 0 : mAttributeCache->Get<ConnectMaxTimeSeconds::TypeInfo>(info.network.wifi.endpoint, info.network.wifi.minConnectionTime);
2508 0 : if (err != CHIP_NO_ERROR)
2509 : {
2510 0 : ChipLogError(Controller, "Failed to read Wi-Fi ConnectMaxTimeSeconds (endpoint %u): %" CHIP_ERROR_FORMAT,
2511 : info.network.wifi.endpoint, err.Format());
2512 0 : return_err = err;
2513 : }
2514 : }
2515 :
2516 0 : if (return_err != CHIP_NO_ERROR)
2517 : {
2518 0 : ChipLogError(Controller, "Failed to parsing Network Commissioning information: %" CHIP_ERROR_FORMAT, return_err.Format());
2519 : }
2520 0 : return return_err;
2521 : }
2522 :
2523 0 : CHIP_ERROR DeviceCommissioner::ParseTimeSyncInfo(ReadCommissioningInfo & info)
2524 : {
2525 : using namespace TimeSynchronization::Attributes;
2526 : CHIP_ERROR err;
2527 :
2528 : // If we fail to get the feature map, there's no viable time cluster, don't set anything.
2529 0 : BitFlags<TimeSynchronization::Feature> featureMap;
2530 0 : err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
2531 0 : if (err != CHIP_NO_ERROR)
2532 : {
2533 0 : info.requiresUTC = false;
2534 0 : info.requiresTimeZone = false;
2535 0 : info.requiresDefaultNTP = false;
2536 0 : info.requiresTrustedTimeSource = false;
2537 0 : return CHIP_NO_ERROR;
2538 : }
2539 0 : info.requiresUTC = true;
2540 0 : info.requiresTimeZone = featureMap.Has(TimeSynchronization::Feature::kTimeZone);
2541 0 : info.requiresDefaultNTP = featureMap.Has(TimeSynchronization::Feature::kNTPClient);
2542 0 : info.requiresTrustedTimeSource = featureMap.Has(TimeSynchronization::Feature::kTimeSyncClient);
2543 :
2544 0 : if (info.requiresTimeZone)
2545 : {
2546 0 : err = mAttributeCache->Get<TimeZoneListMaxSize::TypeInfo>(kRootEndpointId, info.maxTimeZoneSize);
2547 0 : if (err != CHIP_NO_ERROR)
2548 : {
2549 : // This information should be available, let's do our best with what we have, but we can't set
2550 : // the time zone without this information
2551 0 : info.requiresTimeZone = false;
2552 : }
2553 0 : err = mAttributeCache->Get<DSTOffsetListMaxSize::TypeInfo>(kRootEndpointId, info.maxDSTSize);
2554 0 : if (err != CHIP_NO_ERROR)
2555 : {
2556 0 : info.requiresTimeZone = false;
2557 : }
2558 : }
2559 0 : if (info.requiresDefaultNTP)
2560 : {
2561 0 : DefaultNTP::TypeInfo::DecodableType defaultNTP;
2562 0 : err = mAttributeCache->Get<DefaultNTP::TypeInfo>(kRootEndpointId, defaultNTP);
2563 0 : if (err == CHIP_NO_ERROR && (!defaultNTP.IsNull()) && (defaultNTP.Value().size() != 0))
2564 : {
2565 0 : info.requiresDefaultNTP = false;
2566 : }
2567 : }
2568 0 : if (info.requiresTrustedTimeSource)
2569 : {
2570 0 : TrustedTimeSource::TypeInfo::DecodableType trustedTimeSource;
2571 0 : err = mAttributeCache->Get<TrustedTimeSource::TypeInfo>(kRootEndpointId, trustedTimeSource);
2572 0 : if (err == CHIP_NO_ERROR && !trustedTimeSource.IsNull())
2573 : {
2574 0 : info.requiresTrustedTimeSource = false;
2575 : }
2576 : }
2577 :
2578 0 : return CHIP_NO_ERROR;
2579 : }
2580 :
2581 0 : CHIP_ERROR DeviceCommissioner::ParseFabrics(ReadCommissioningInfo & info)
2582 : {
2583 : using namespace OperationalCredentials::Attributes;
2584 : CHIP_ERROR err;
2585 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2586 :
2587 : // We might not have requested a Fabrics attribute at all, so not having a
2588 : // value for it is not an error.
2589 0 : err = mAttributeCache->ForEachAttribute(OperationalCredentials::Id, [this, &info](const ConcreteAttributePath & path) {
2590 : using namespace chip::app::Clusters::OperationalCredentials::Attributes;
2591 : // this code is checking if the device is already on the commissioner's fabric.
2592 : // if a matching fabric is found, then remember the nodeId so that the commissioner
2593 : // can, if it decides to, cancel commissioning (before it fails in AddNoc) and know
2594 : // the device's nodeId on its fabric.
2595 0 : switch (path.mAttributeId)
2596 : {
2597 0 : case Fabrics::Id: {
2598 0 : Fabrics::TypeInfo::DecodableType fabrics;
2599 0 : ReturnErrorOnFailure(this->mAttributeCache->Get<Fabrics::TypeInfo>(path, fabrics));
2600 : // this is a best effort attempt to find a matching fabric, so no error checking on iter
2601 0 : auto iter = fabrics.begin();
2602 0 : while (iter.Next())
2603 : {
2604 0 : auto & fabricDescriptor = iter.GetValue();
2605 0 : ChipLogProgress(Controller,
2606 : "DeviceCommissioner::OnDone - fabric.vendorId=0x%04X fabric.fabricId=0x" ChipLogFormatX64
2607 : " fabric.nodeId=0x" ChipLogFormatX64,
2608 : fabricDescriptor.vendorID, ChipLogValueX64(fabricDescriptor.fabricID),
2609 : ChipLogValueX64(fabricDescriptor.nodeID));
2610 0 : if (GetFabricId() == fabricDescriptor.fabricID)
2611 : {
2612 0 : ChipLogProgress(Controller, "DeviceCommissioner::OnDone - found a matching fabric id");
2613 0 : chip::ByteSpan rootKeySpan = fabricDescriptor.rootPublicKey;
2614 0 : if (rootKeySpan.size() != Crypto::kP256_PublicKey_Length)
2615 : {
2616 0 : ChipLogError(Controller, "DeviceCommissioner::OnDone - fabric root key size mismatch %u != %u",
2617 : static_cast<unsigned>(rootKeySpan.size()),
2618 : static_cast<unsigned>(Crypto::kP256_PublicKey_Length));
2619 0 : continue;
2620 : }
2621 0 : P256PublicKeySpan rootPubKeySpan(rootKeySpan.data());
2622 0 : Crypto::P256PublicKey deviceRootPublicKey(rootPubKeySpan);
2623 :
2624 0 : Crypto::P256PublicKey commissionerRootPublicKey;
2625 0 : if (CHIP_NO_ERROR != GetRootPublicKey(commissionerRootPublicKey))
2626 : {
2627 0 : ChipLogError(Controller, "DeviceCommissioner::OnDone - error reading commissioner root public key");
2628 : }
2629 0 : else if (commissionerRootPublicKey.Matches(deviceRootPublicKey))
2630 : {
2631 0 : ChipLogProgress(Controller, "DeviceCommissioner::OnDone - fabric root keys match");
2632 0 : info.remoteNodeId = fabricDescriptor.nodeID;
2633 : }
2634 0 : }
2635 : }
2636 :
2637 0 : return CHIP_NO_ERROR;
2638 0 : }
2639 0 : default:
2640 0 : return CHIP_NO_ERROR;
2641 : }
2642 : });
2643 :
2644 0 : if (mPairingDelegate != nullptr)
2645 : {
2646 0 : mPairingDelegate->OnFabricCheck(info.remoteNodeId);
2647 : }
2648 :
2649 0 : return return_err;
2650 : }
2651 :
2652 0 : CHIP_ERROR DeviceCommissioner::ParseICDInfo(ReadCommissioningInfo & info)
2653 : {
2654 : using namespace IcdManagement::Attributes;
2655 : CHIP_ERROR err;
2656 :
2657 0 : bool hasUserActiveModeTrigger = false;
2658 0 : bool isICD = false;
2659 :
2660 0 : BitFlags<IcdManagement::Feature> featureMap;
2661 0 : err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
2662 0 : if (err == CHIP_NO_ERROR)
2663 : {
2664 0 : info.icd.isLIT = featureMap.Has(IcdManagement::Feature::kLongIdleTimeSupport);
2665 0 : info.icd.checkInProtocolSupport = featureMap.Has(IcdManagement::Feature::kCheckInProtocolSupport);
2666 0 : hasUserActiveModeTrigger = featureMap.Has(IcdManagement::Feature::kUserActiveModeTrigger);
2667 0 : isICD = true;
2668 : }
2669 0 : else if (err == CHIP_ERROR_KEY_NOT_FOUND)
2670 : {
2671 : // This key is optional so not an error
2672 0 : info.icd.isLIT = false;
2673 0 : err = CHIP_NO_ERROR;
2674 : }
2675 0 : else if (err == CHIP_ERROR_IM_STATUS_CODE_RECEIVED)
2676 : {
2677 0 : app::StatusIB statusIB;
2678 0 : err = mAttributeCache->GetStatus(app::ConcreteAttributePath(kRootEndpointId, IcdManagement::Id, FeatureMap::Id), statusIB);
2679 0 : if (err == CHIP_NO_ERROR)
2680 : {
2681 0 : if (statusIB.mStatus == Protocols::InteractionModel::Status::UnsupportedCluster)
2682 : {
2683 0 : info.icd.isLIT = false;
2684 : }
2685 : else
2686 : {
2687 0 : err = statusIB.ToChipError();
2688 : }
2689 : }
2690 0 : }
2691 :
2692 0 : ReturnErrorOnFailure(err);
2693 :
2694 0 : info.icd.userActiveModeTriggerHint.ClearAll();
2695 0 : info.icd.userActiveModeTriggerInstruction = CharSpan();
2696 :
2697 0 : if (hasUserActiveModeTrigger)
2698 : {
2699 : // Intentionally ignore errors since they are not mandatory.
2700 0 : bool activeModeTriggerInstructionRequired = false;
2701 :
2702 0 : err = mAttributeCache->Get<UserActiveModeTriggerHint::TypeInfo>(kRootEndpointId, info.icd.userActiveModeTriggerHint);
2703 0 : if (err != CHIP_NO_ERROR)
2704 : {
2705 0 : ChipLogError(Controller, "IcdManagement.UserActiveModeTriggerHint expected, but failed to read.");
2706 0 : return err;
2707 : }
2708 :
2709 : using IcdManagement::UserActiveModeTriggerBitmap;
2710 0 : activeModeTriggerInstructionRequired = info.icd.userActiveModeTriggerHint.HasAny(
2711 0 : UserActiveModeTriggerBitmap::kCustomInstruction, UserActiveModeTriggerBitmap::kActuateSensorSeconds,
2712 0 : UserActiveModeTriggerBitmap::kActuateSensorTimes, UserActiveModeTriggerBitmap::kActuateSensorLightsBlink,
2713 0 : UserActiveModeTriggerBitmap::kResetButtonLightsBlink, UserActiveModeTriggerBitmap::kResetButtonSeconds,
2714 0 : UserActiveModeTriggerBitmap::kResetButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonSeconds,
2715 0 : UserActiveModeTriggerBitmap::kSetupButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonTimes,
2716 0 : UserActiveModeTriggerBitmap::kAppDefinedButton);
2717 :
2718 0 : if (activeModeTriggerInstructionRequired)
2719 : {
2720 0 : err = mAttributeCache->Get<UserActiveModeTriggerInstruction::TypeInfo>(kRootEndpointId,
2721 0 : info.icd.userActiveModeTriggerInstruction);
2722 0 : if (err != CHIP_NO_ERROR)
2723 : {
2724 0 : ChipLogError(Controller,
2725 : "IcdManagement.UserActiveModeTriggerInstruction expected for given active mode trigger hint, but "
2726 : "failed to read.");
2727 0 : return err;
2728 : }
2729 : }
2730 : }
2731 :
2732 0 : if (!isICD)
2733 : {
2734 0 : info.icd.idleModeDuration = 0;
2735 0 : info.icd.activeModeDuration = 0;
2736 0 : info.icd.activeModeThreshold = 0;
2737 0 : return CHIP_NO_ERROR;
2738 : }
2739 :
2740 0 : err = mAttributeCache->Get<IdleModeDuration::TypeInfo>(kRootEndpointId, info.icd.idleModeDuration);
2741 0 : if (err != CHIP_NO_ERROR)
2742 : {
2743 0 : ChipLogError(Controller, "IcdManagement.IdleModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT, err.Format());
2744 0 : return err;
2745 : }
2746 :
2747 0 : err = mAttributeCache->Get<ActiveModeDuration::TypeInfo>(kRootEndpointId, info.icd.activeModeDuration);
2748 0 : if (err != CHIP_NO_ERROR)
2749 : {
2750 0 : ChipLogError(Controller, "IcdManagement.ActiveModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT,
2751 : err.Format());
2752 0 : return err;
2753 : }
2754 :
2755 0 : err = mAttributeCache->Get<ActiveModeThreshold::TypeInfo>(kRootEndpointId, info.icd.activeModeThreshold);
2756 0 : if (err != CHIP_NO_ERROR)
2757 : {
2758 0 : ChipLogError(Controller, "IcdManagement.ActiveModeThreshold expected, but failed to read: %" CHIP_ERROR_FORMAT,
2759 : err.Format());
2760 : }
2761 :
2762 0 : return err;
2763 : }
2764 :
2765 0 : void DeviceCommissioner::OnArmFailSafe(void * context,
2766 : const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2767 : {
2768 0 : CommissioningDelegate::CommissioningReport report;
2769 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2770 :
2771 0 : ChipLogProgress(Controller, "Received ArmFailSafe response errorCode=%u", to_underlying(data.errorCode));
2772 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2773 : {
2774 0 : err = CHIP_ERROR_INTERNAL;
2775 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2776 : }
2777 :
2778 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2779 0 : commissioner->CommissioningStageComplete(err, report);
2780 0 : }
2781 :
2782 0 : void DeviceCommissioner::OnSetRegulatoryConfigResponse(
2783 : void * context, const GeneralCommissioning::Commands::SetRegulatoryConfigResponse::DecodableType & data)
2784 : {
2785 0 : CommissioningDelegate::CommissioningReport report;
2786 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2787 :
2788 0 : ChipLogProgress(Controller, "Received SetRegulatoryConfig response errorCode=%u", to_underlying(data.errorCode));
2789 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2790 : {
2791 0 : err = CHIP_ERROR_INTERNAL;
2792 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2793 : }
2794 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2795 0 : commissioner->CommissioningStageComplete(err, report);
2796 0 : }
2797 :
2798 0 : void DeviceCommissioner::OnSetTimeZoneResponse(void * context,
2799 : const TimeSynchronization::Commands::SetTimeZoneResponse::DecodableType & data)
2800 : {
2801 0 : CommissioningDelegate::CommissioningReport report;
2802 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2803 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2804 : TimeZoneResponseInfo info;
2805 0 : info.requiresDSTOffsets = data.DSTOffsetRequired;
2806 0 : report.Set<TimeZoneResponseInfo>(info);
2807 0 : commissioner->CommissioningStageComplete(err, report);
2808 0 : }
2809 :
2810 0 : void DeviceCommissioner::OnSetUTCError(void * context, CHIP_ERROR error)
2811 : {
2812 : // For SetUTCTime, we don't actually care if the commissionee didn't want out time, that's its choice
2813 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2814 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2815 0 : }
2816 :
2817 0 : void DeviceCommissioner::OnScanNetworksFailure(void * context, CHIP_ERROR error)
2818 : {
2819 0 : ChipLogProgress(Controller, "Received ScanNetworks failure response %" CHIP_ERROR_FORMAT, error.Format());
2820 :
2821 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2822 :
2823 : // advance to the kNeedsNetworkCreds waiting step
2824 : // clear error so that we don't abort the commissioning when ScanNetworks fails
2825 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2826 :
2827 0 : if (commissioner->GetPairingDelegate() != nullptr)
2828 : {
2829 0 : commissioner->GetPairingDelegate()->OnScanNetworksFailure(error);
2830 : }
2831 0 : }
2832 :
2833 0 : void DeviceCommissioner::OnScanNetworksResponse(void * context,
2834 : const NetworkCommissioning::Commands::ScanNetworksResponse::DecodableType & data)
2835 : {
2836 0 : CommissioningDelegate::CommissioningReport report;
2837 :
2838 0 : ChipLogProgress(Controller, "Received ScanNetwork response, networkingStatus=%u debugText=%s",
2839 : to_underlying(data.networkingStatus),
2840 : (data.debugText.HasValue() ? std::string(data.debugText.Value().data(), data.debugText.Value().size()).c_str()
2841 : : "none provided"));
2842 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2843 :
2844 : // advance to the kNeedsNetworkCreds waiting step
2845 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2846 :
2847 0 : if (commissioner->GetPairingDelegate() != nullptr)
2848 : {
2849 0 : commissioner->GetPairingDelegate()->OnScanNetworksSuccess(data);
2850 : }
2851 0 : }
2852 :
2853 0 : CHIP_ERROR DeviceCommissioner::NetworkCredentialsReady()
2854 : {
2855 0 : VerifyOrReturnError(mCommissioningStage == CommissioningStage::kNeedsNetworkCreds, CHIP_ERROR_INCORRECT_STATE);
2856 :
2857 : // need to advance to next step
2858 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2859 :
2860 0 : return CHIP_NO_ERROR;
2861 : }
2862 :
2863 0 : CHIP_ERROR DeviceCommissioner::ICDRegistrationInfoReady()
2864 : {
2865 0 : VerifyOrReturnError(mCommissioningStage == CommissioningStage::kICDGetRegistrationInfo, CHIP_ERROR_INCORRECT_STATE);
2866 :
2867 : // need to advance to next step
2868 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2869 :
2870 0 : return CHIP_NO_ERROR;
2871 : }
2872 :
2873 0 : void DeviceCommissioner::OnNetworkConfigResponse(void * context,
2874 : const NetworkCommissioning::Commands::NetworkConfigResponse::DecodableType & data)
2875 : {
2876 0 : CommissioningDelegate::CommissioningReport report;
2877 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2878 :
2879 0 : ChipLogProgress(Controller, "Received NetworkConfig response, networkingStatus=%u", to_underlying(data.networkingStatus));
2880 0 : if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
2881 : {
2882 0 : err = CHIP_ERROR_INTERNAL;
2883 0 : report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
2884 : }
2885 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2886 0 : commissioner->CommissioningStageComplete(err, report);
2887 0 : }
2888 :
2889 0 : void DeviceCommissioner::OnConnectNetworkResponse(
2890 : void * context, const NetworkCommissioning::Commands::ConnectNetworkResponse::DecodableType & data)
2891 : {
2892 0 : CommissioningDelegate::CommissioningReport report;
2893 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2894 :
2895 0 : ChipLogProgress(Controller, "Received ConnectNetwork response, networkingStatus=%u", to_underlying(data.networkingStatus));
2896 0 : if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
2897 : {
2898 0 : err = CHIP_ERROR_INTERNAL;
2899 0 : report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
2900 : }
2901 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2902 0 : commissioner->CommissioningStageComplete(err, report);
2903 0 : }
2904 :
2905 0 : void DeviceCommissioner::OnCommissioningCompleteResponse(
2906 : void * context, const GeneralCommissioning::Commands::CommissioningCompleteResponse::DecodableType & data)
2907 : {
2908 0 : CommissioningDelegate::CommissioningReport report;
2909 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2910 :
2911 0 : ChipLogProgress(Controller, "Received CommissioningComplete response, errorCode=%u", to_underlying(data.errorCode));
2912 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2913 : {
2914 0 : err = CHIP_ERROR_INTERNAL;
2915 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2916 : }
2917 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2918 0 : commissioner->CommissioningStageComplete(err, report);
2919 0 : }
2920 :
2921 : template <typename RequestObjectT>
2922 : CHIP_ERROR
2923 0 : DeviceCommissioner::SendCommissioningCommand(DeviceProxy * device, const RequestObjectT & request,
2924 : CommandResponseSuccessCallback<typename RequestObjectT::ResponseType> successCb,
2925 : CommandResponseFailureCallback failureCb, EndpointId endpoint,
2926 : Optional<System::Clock::Timeout> timeout, bool fireAndForget)
2927 :
2928 : {
2929 : // Default behavior is to make sequential, cancellable calls tracked via mInvokeCancelFn.
2930 : // Fire-and-forget calls are not cancellable and don't receive `this` as context in callbacks.
2931 0 : VerifyOrDie(fireAndForget || !mInvokeCancelFn); // we don't make parallel (cancellable) calls
2932 :
2933 0 : void * context = (!fireAndForget) ? this : nullptr;
2934 0 : auto onSuccessCb = [context, successCb](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
2935 : const typename RequestObjectT::ResponseType & responseData) {
2936 0 : successCb(context, responseData);
2937 : };
2938 0 : auto onFailureCb = [context, failureCb](CHIP_ERROR aError) { failureCb(context, aError); };
2939 :
2940 0 : return InvokeCommandRequest(device->GetExchangeManager(), device->GetSecureSession().Value(), endpoint, request, onSuccessCb,
2941 0 : onFailureCb, NullOptional, timeout, (!fireAndForget) ? &mInvokeCancelFn : nullptr);
2942 : }
2943 :
2944 : template <typename AttrType>
2945 : CHIP_ERROR DeviceCommissioner::SendCommissioningWriteRequest(DeviceProxy * device, EndpointId endpoint, ClusterId cluster,
2946 : AttributeId attribute, const AttrType & requestData,
2947 : WriteResponseSuccessCallback successCb,
2948 : WriteResponseFailureCallback failureCb)
2949 : {
2950 : VerifyOrDie(!mWriteCancelFn); // we don't make parallel (cancellable) calls
2951 : auto onSuccessCb = [this, successCb](const app::ConcreteAttributePath & aPath) { successCb(this); };
2952 : auto onFailureCb = [this, failureCb](const app::ConcreteAttributePath * aPath, CHIP_ERROR aError) { failureCb(this, aError); };
2953 : return WriteAttribute(device->GetSecureSession().Value(), endpoint, cluster, attribute, requestData, onSuccessCb, onFailureCb,
2954 : /* aTimedWriteTimeoutMs = */ NullOptional, /* onDoneCb = */ nullptr, /* aDataVersion = */ NullOptional,
2955 : /* outCancelFn = */ &mWriteCancelFn);
2956 : }
2957 :
2958 0 : void DeviceCommissioner::SendCommissioningReadRequest(DeviceProxy * proxy, Optional<System::Clock::Timeout> timeout,
2959 : app::AttributePathParams * readPaths, size_t readPathsSize)
2960 : {
2961 0 : VerifyOrDie(!mReadClient); // we don't perform parallel reads
2962 :
2963 0 : app::InteractionModelEngine * engine = app::InteractionModelEngine::GetInstance();
2964 0 : app::ReadPrepareParams readParams(proxy->GetSecureSession().Value());
2965 0 : readParams.mIsFabricFiltered = false;
2966 0 : if (timeout.HasValue())
2967 : {
2968 0 : readParams.mTimeout = timeout.Value();
2969 : }
2970 0 : readParams.mpAttributePathParamsList = readPaths;
2971 0 : readParams.mAttributePathParamsListSize = readPathsSize;
2972 :
2973 : // Take ownership of the attribute cache, so it can be released if SendRequest fails.
2974 0 : auto attributeCache = std::move(mAttributeCache);
2975 : auto readClient = chip::Platform::MakeUnique<app::ReadClient>(
2976 0 : engine, proxy->GetExchangeManager(), attributeCache->GetBufferedCallback(), app::ReadClient::InteractionType::Read);
2977 0 : CHIP_ERROR err = readClient->SendRequest(readParams);
2978 0 : if (err != CHIP_NO_ERROR)
2979 : {
2980 0 : ChipLogError(Controller, "Failed to send read request: %" CHIP_ERROR_FORMAT, err.Format());
2981 0 : CommissioningStageComplete(err);
2982 0 : return;
2983 : }
2984 0 : mAttributeCache = std::move(attributeCache);
2985 0 : mReadClient = std::move(readClient);
2986 0 : }
2987 :
2988 0 : void DeviceCommissioner::PerformCommissioningStep(DeviceProxy * proxy, CommissioningStage step, CommissioningParameters & params,
2989 : CommissioningDelegate * delegate, EndpointId endpoint,
2990 : Optional<System::Clock::Timeout> timeout)
2991 :
2992 : {
2993 : MATTER_LOG_METRIC(kMetricDeviceCommissionerCommissionStage, step);
2994 : MATTER_LOG_METRIC_BEGIN(MetricKeyForCommissioningStage(step));
2995 :
2996 0 : if (params.GetCompletionStatus().err == CHIP_NO_ERROR)
2997 : {
2998 0 : ChipLogProgress(Controller, "Performing next commissioning step '%s'", StageToString(step));
2999 : }
3000 : else
3001 : {
3002 0 : ChipLogProgress(Controller, "Performing next commissioning step '%s' with completion status = '%s'", StageToString(step),
3003 : params.GetCompletionStatus().err.AsString());
3004 : }
3005 :
3006 0 : mCommissioningStepTimeout = timeout;
3007 0 : mCommissioningStage = step;
3008 0 : mCommissioningDelegate = delegate;
3009 0 : mDeviceBeingCommissioned = proxy;
3010 :
3011 : // TODO: Extend timeouts to the DAC and Opcert requests.
3012 : // TODO(cecille): We probably want something better than this for breadcrumbs.
3013 0 : uint64_t breadcrumb = static_cast<uint64_t>(step);
3014 :
3015 0 : switch (step)
3016 : {
3017 0 : case CommissioningStage::kArmFailsafe: {
3018 0 : VerifyOrDie(endpoint == kRootEndpointId);
3019 : // Make sure the fail-safe value we set here actually ends up being used
3020 : // no matter what.
3021 0 : proxy->SetFailSafeExpirationTimestamp(System::Clock::kZero);
3022 0 : VerifyOrDie(ExtendArmFailSafeInternal(proxy, step, params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout),
3023 : timeout, OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false));
3024 : }
3025 0 : break;
3026 0 : case CommissioningStage::kReadCommissioningInfo: {
3027 0 : VerifyOrDie(endpoint == kRootEndpointId);
3028 0 : ChipLogProgress(Controller, "Sending read requests for commissioning information");
3029 :
3030 : // Allocate a ClusterStateCache to collect the data from our read requests.
3031 : // The cache will be released in:
3032 : // - SendCommissioningReadRequest when failing to send a read request.
3033 : // - FinishReadingCommissioningInfo when the ReadCommissioningInfo stage is completed.
3034 : // - CancelCommissioningInteractions
3035 0 : mAttributeCache = Platform::MakeUnique<app::ClusterStateCache>(*this);
3036 :
3037 : // Generally we need to make more than one read request, because as per spec a server only
3038 : // supports a limited number of paths per Read Interaction. Because the actual number of
3039 : // interactions we end up performing is dynamic, we track all of them within a single
3040 : // commissioning stage.
3041 0 : mReadCommissioningInfoProgress = 0;
3042 0 : ContinueReadingCommissioningInfo(params); // Note: assume params == delegate.GetCommissioningParameters()
3043 0 : break;
3044 : }
3045 0 : case CommissioningStage::kConfigureUTCTime: {
3046 0 : TimeSynchronization::Commands::SetUTCTime::Type request;
3047 0 : uint64_t kChipEpochUsSinceUnixEpoch = static_cast<uint64_t>(kChipEpochSecondsSinceUnixEpoch) * chip::kMicrosecondsPerSecond;
3048 : System::Clock::Microseconds64 utcTime;
3049 0 : if (System::SystemClock().GetClock_RealTime(utcTime) != CHIP_NO_ERROR || utcTime.count() <= kChipEpochUsSinceUnixEpoch)
3050 : {
3051 : // We have no time to give, but that's OK, just complete this stage
3052 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3053 0 : return;
3054 : }
3055 :
3056 0 : request.UTCTime = utcTime.count() - kChipEpochUsSinceUnixEpoch;
3057 : // For now, we assume a seconds granularity
3058 0 : request.granularity = TimeSynchronization::GranularityEnum::kSecondsGranularity;
3059 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnSetUTCError, endpoint, timeout);
3060 0 : if (err != CHIP_NO_ERROR)
3061 : {
3062 : // We won't get any async callbacks here, so just complete our stage.
3063 0 : ChipLogError(Controller, "Failed to send SetUTCTime command: %" CHIP_ERROR_FORMAT, err.Format());
3064 0 : CommissioningStageComplete(err);
3065 0 : return;
3066 : }
3067 0 : break;
3068 0 : }
3069 0 : case CommissioningStage::kConfigureTimeZone: {
3070 0 : if (!params.GetTimeZone().HasValue())
3071 : {
3072 0 : ChipLogError(Controller, "ConfigureTimeZone stage called with no time zone data");
3073 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3074 0 : return;
3075 : }
3076 0 : TimeSynchronization::Commands::SetTimeZone::Type request;
3077 0 : request.timeZone = params.GetTimeZone().Value();
3078 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetTimeZoneResponse, OnBasicFailure, endpoint, timeout);
3079 0 : if (err != CHIP_NO_ERROR)
3080 : {
3081 : // We won't get any async callbacks here, so just complete our stage.
3082 0 : ChipLogError(Controller, "Failed to send SetTimeZone command: %" CHIP_ERROR_FORMAT, err.Format());
3083 0 : CommissioningStageComplete(err);
3084 0 : return;
3085 : }
3086 0 : break;
3087 : }
3088 0 : case CommissioningStage::kConfigureDSTOffset: {
3089 0 : if (!params.GetDSTOffsets().HasValue())
3090 : {
3091 0 : ChipLogError(Controller, "ConfigureDSTOffset stage called with no DST data");
3092 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3093 0 : return;
3094 : }
3095 0 : TimeSynchronization::Commands::SetDSTOffset::Type request;
3096 0 : request.DSTOffset = params.GetDSTOffsets().Value();
3097 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3098 0 : if (err != CHIP_NO_ERROR)
3099 : {
3100 : // We won't get any async callbacks here, so just complete our stage.
3101 0 : ChipLogError(Controller, "Failed to send SetDSTOffset command: %" CHIP_ERROR_FORMAT, err.Format());
3102 0 : CommissioningStageComplete(err);
3103 0 : return;
3104 : }
3105 0 : break;
3106 : }
3107 0 : case CommissioningStage::kConfigureDefaultNTP: {
3108 0 : if (!params.GetDefaultNTP().HasValue())
3109 : {
3110 0 : ChipLogError(Controller, "ConfigureDefaultNTP stage called with no default NTP data");
3111 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3112 0 : return;
3113 : }
3114 0 : TimeSynchronization::Commands::SetDefaultNTP::Type request;
3115 0 : request.defaultNTP = params.GetDefaultNTP().Value();
3116 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3117 0 : if (err != CHIP_NO_ERROR)
3118 : {
3119 : // We won't get any async callbacks here, so just complete our stage.
3120 0 : ChipLogError(Controller, "Failed to send SetDefaultNTP command: %" CHIP_ERROR_FORMAT, err.Format());
3121 0 : CommissioningStageComplete(err);
3122 0 : return;
3123 : }
3124 0 : break;
3125 : }
3126 0 : case CommissioningStage::kScanNetworks: {
3127 0 : NetworkCommissioning::Commands::ScanNetworks::Type request;
3128 0 : if (params.GetWiFiCredentials().HasValue())
3129 : {
3130 0 : request.ssid.Emplace(params.GetWiFiCredentials().Value().ssid);
3131 : }
3132 0 : request.breadcrumb.Emplace(breadcrumb);
3133 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnScanNetworksResponse, OnScanNetworksFailure, endpoint, timeout);
3134 0 : if (err != CHIP_NO_ERROR)
3135 : {
3136 : // We won't get any async callbacks here, so just complete our stage.
3137 0 : ChipLogError(Controller, "Failed to send ScanNetworks command: %" CHIP_ERROR_FORMAT, err.Format());
3138 0 : CommissioningStageComplete(err);
3139 0 : return;
3140 : }
3141 0 : break;
3142 0 : }
3143 0 : case CommissioningStage::kNeedsNetworkCreds: {
3144 : // nothing to do, the OnScanNetworksSuccess and OnScanNetworksFailure callbacks provide indication to the
3145 : // DevicePairingDelegate that network credentials are needed.
3146 0 : break;
3147 : }
3148 0 : case CommissioningStage::kConfigRegulatory: {
3149 : // TODO(cecille): Worthwhile to keep this around as part of the class?
3150 : // TODO(cecille): Where is the country config actually set?
3151 0 : ChipLogProgress(Controller, "Setting Regulatory Config");
3152 : auto capability =
3153 0 : params.GetLocationCapability().ValueOr(app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor);
3154 : app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum regulatoryConfig;
3155 : // Value is only switchable on the devices with indoor/outdoor capability
3156 0 : if (capability == app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kIndoorOutdoor)
3157 : {
3158 : // If the device supports indoor and outdoor configs, use the setting from the commissioner, otherwise fall back to
3159 : // the current device setting then to outdoor (most restrictive)
3160 0 : if (params.GetDeviceRegulatoryLocation().HasValue())
3161 : {
3162 0 : regulatoryConfig = params.GetDeviceRegulatoryLocation().Value();
3163 0 : ChipLogProgress(Controller, "Setting regulatory config to %u from commissioner override",
3164 : static_cast<uint8_t>(regulatoryConfig));
3165 : }
3166 0 : else if (params.GetDefaultRegulatoryLocation().HasValue())
3167 : {
3168 0 : regulatoryConfig = params.GetDefaultRegulatoryLocation().Value();
3169 0 : ChipLogProgress(Controller, "No regulatory config supplied by controller, leaving as device default (%u)",
3170 : static_cast<uint8_t>(regulatoryConfig));
3171 : }
3172 : else
3173 : {
3174 0 : regulatoryConfig = app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor;
3175 0 : ChipLogProgress(Controller, "No overrride or device regulatory config supplied, setting to outdoor");
3176 : }
3177 : }
3178 : else
3179 : {
3180 0 : ChipLogProgress(Controller, "Device does not support configurable regulatory location");
3181 0 : regulatoryConfig = capability;
3182 : }
3183 :
3184 0 : CharSpan countryCode;
3185 0 : const auto & providedCountryCode = params.GetCountryCode();
3186 0 : if (providedCountryCode.HasValue())
3187 : {
3188 0 : countryCode = providedCountryCode.Value();
3189 : }
3190 : else
3191 : {
3192 : // Default to "XX", for lack of anything better.
3193 0 : countryCode = "XX"_span;
3194 : }
3195 :
3196 0 : GeneralCommissioning::Commands::SetRegulatoryConfig::Type request;
3197 0 : request.newRegulatoryConfig = regulatoryConfig;
3198 0 : request.countryCode = countryCode;
3199 0 : request.breadcrumb = breadcrumb;
3200 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetRegulatoryConfigResponse, OnBasicFailure, endpoint, timeout);
3201 0 : if (err != CHIP_NO_ERROR)
3202 : {
3203 : // We won't get any async callbacks here, so just complete our stage.
3204 0 : ChipLogError(Controller, "Failed to send SetRegulatoryConfig command: %" CHIP_ERROR_FORMAT, err.Format());
3205 0 : CommissioningStageComplete(err);
3206 0 : return;
3207 : }
3208 0 : }
3209 0 : break;
3210 0 : case CommissioningStage::kSendPAICertificateRequest: {
3211 0 : ChipLogProgress(Controller, "Sending request for PAI certificate");
3212 0 : CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kPAI, timeout);
3213 0 : if (err != CHIP_NO_ERROR)
3214 : {
3215 : // We won't get any async callbacks here, so just complete our stage.
3216 0 : ChipLogError(Controller, "Failed to send CertificateChainRequest command to get PAI: %" CHIP_ERROR_FORMAT,
3217 : err.Format());
3218 0 : CommissioningStageComplete(err);
3219 0 : return;
3220 : }
3221 0 : break;
3222 : }
3223 0 : case CommissioningStage::kSendDACCertificateRequest: {
3224 0 : ChipLogProgress(Controller, "Sending request for DAC certificate");
3225 0 : CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kDAC, timeout);
3226 0 : if (err != CHIP_NO_ERROR)
3227 : {
3228 : // We won't get any async callbacks here, so just complete our stage.
3229 0 : ChipLogError(Controller, "Failed to send CertificateChainRequest command to get DAC: %" CHIP_ERROR_FORMAT,
3230 : err.Format());
3231 0 : CommissioningStageComplete(err);
3232 0 : return;
3233 : }
3234 0 : break;
3235 : }
3236 0 : case CommissioningStage::kSendAttestationRequest: {
3237 0 : ChipLogProgress(Controller, "Sending Attestation Request to the device.");
3238 0 : if (!params.GetAttestationNonce().HasValue())
3239 : {
3240 0 : ChipLogError(Controller, "No attestation nonce found");
3241 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3242 0 : return;
3243 : }
3244 0 : CHIP_ERROR err = SendAttestationRequestCommand(proxy, params.GetAttestationNonce().Value(), timeout);
3245 0 : if (err != CHIP_NO_ERROR)
3246 : {
3247 : // We won't get any async callbacks here, so just complete our stage.
3248 0 : ChipLogError(Controller, "Failed to send AttestationRequest command: %" CHIP_ERROR_FORMAT, err.Format());
3249 0 : CommissioningStageComplete(err);
3250 0 : return;
3251 : }
3252 0 : break;
3253 : }
3254 0 : case CommissioningStage::kAttestationVerification: {
3255 0 : ChipLogProgress(Controller, "Verifying attestation");
3256 0 : if (IsAttestationInformationMissing(params))
3257 : {
3258 0 : ChipLogError(Controller, "Missing attestation information");
3259 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3260 0 : return;
3261 : }
3262 :
3263 : DeviceAttestationVerifier::AttestationInfo info(
3264 0 : params.GetAttestationElements().Value(),
3265 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
3266 0 : params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
3267 0 : params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
3268 :
3269 0 : if (ValidateAttestationInfo(info) != CHIP_NO_ERROR)
3270 : {
3271 0 : ChipLogError(Controller, "Error validating attestation information");
3272 0 : CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
3273 0 : return;
3274 : }
3275 : }
3276 0 : break;
3277 0 : case CommissioningStage::kAttestationRevocationCheck: {
3278 0 : ChipLogProgress(Controller, "Verifying device's DAC chain revocation status");
3279 0 : if (IsAttestationInformationMissing(params))
3280 : {
3281 0 : ChipLogError(Controller, "Missing attestation information");
3282 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3283 0 : return;
3284 : }
3285 :
3286 : DeviceAttestationVerifier::AttestationInfo info(
3287 0 : params.GetAttestationElements().Value(),
3288 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
3289 0 : params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
3290 0 : params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
3291 :
3292 0 : if (CheckForRevokedDACChain(info) != CHIP_NO_ERROR)
3293 : {
3294 0 : ChipLogError(Controller, "Error validating device's DAC chain revocation status");
3295 0 : CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
3296 0 : return;
3297 : }
3298 : }
3299 0 : break;
3300 0 : case CommissioningStage::kSendOpCertSigningRequest: {
3301 0 : if (!params.GetCSRNonce().HasValue())
3302 : {
3303 0 : ChipLogError(Controller, "No CSR nonce found");
3304 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3305 0 : return;
3306 : }
3307 0 : CHIP_ERROR err = SendOperationalCertificateSigningRequestCommand(proxy, params.GetCSRNonce().Value(), timeout);
3308 0 : if (err != CHIP_NO_ERROR)
3309 : {
3310 : // We won't get any async callbacks here, so just complete our stage.
3311 0 : ChipLogError(Controller, "Failed to send CSR request: %" CHIP_ERROR_FORMAT, err.Format());
3312 0 : CommissioningStageComplete(err);
3313 0 : return;
3314 : }
3315 0 : break;
3316 : }
3317 0 : case CommissioningStage::kValidateCSR: {
3318 0 : if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetCSRNonce().HasValue())
3319 : {
3320 0 : ChipLogError(Controller, "Unable to validate CSR");
3321 0 : return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3322 : }
3323 : // This is non-blocking, so send the callback immediately.
3324 0 : CHIP_ERROR err = ValidateCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
3325 0 : params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
3326 0 : params.GetCSRNonce().Value());
3327 0 : if (err != CHIP_NO_ERROR)
3328 : {
3329 0 : ChipLogError(Controller, "Unable to validate CSR");
3330 : }
3331 0 : CommissioningStageComplete(err);
3332 0 : return;
3333 : }
3334 : break;
3335 0 : case CommissioningStage::kGenerateNOCChain: {
3336 0 : if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
3337 0 : !params.GetCSRNonce().HasValue())
3338 : {
3339 0 : ChipLogError(Controller, "Unable to generate NOC chain parameters");
3340 0 : return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3341 : }
3342 0 : CHIP_ERROR err = ProcessCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
3343 0 : params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
3344 0 : params.GetPAI().Value(), params.GetCSRNonce().Value());
3345 0 : if (err != CHIP_NO_ERROR)
3346 : {
3347 0 : ChipLogError(Controller, "Unable to process Op CSR");
3348 : // Handle error, and notify session failure to the commissioner application.
3349 0 : ChipLogError(Controller, "Failed to process the certificate signing request");
3350 : // TODO: Map error status to correct error code
3351 0 : CommissioningStageComplete(err);
3352 0 : return;
3353 : }
3354 : }
3355 0 : break;
3356 0 : case CommissioningStage::kSendTrustedRootCert: {
3357 0 : if (!params.GetRootCert().HasValue() || !params.GetNoc().HasValue())
3358 : {
3359 0 : ChipLogError(Controller, "No trusted root cert or NOC specified");
3360 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3361 0 : return;
3362 : }
3363 0 : CHIP_ERROR err = SendTrustedRootCertificate(proxy, params.GetRootCert().Value(), timeout);
3364 0 : if (err != CHIP_NO_ERROR)
3365 : {
3366 0 : ChipLogError(Controller, "Error sending trusted root certificate: %" CHIP_ERROR_FORMAT, err.Format());
3367 0 : CommissioningStageComplete(err);
3368 0 : return;
3369 : }
3370 :
3371 0 : err = proxy->SetPeerId(params.GetRootCert().Value(), params.GetNoc().Value());
3372 0 : if (err != CHIP_NO_ERROR)
3373 : {
3374 0 : ChipLogError(Controller, "Error setting peer id: %s", err.AsString());
3375 0 : CommissioningStageComplete(err);
3376 0 : return;
3377 : }
3378 0 : if (!IsOperationalNodeId(proxy->GetDeviceId()))
3379 : {
3380 0 : ChipLogError(Controller, "Given node ID is not an operational node ID");
3381 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3382 0 : return;
3383 : }
3384 : }
3385 0 : break;
3386 0 : case CommissioningStage::kSendNOC: {
3387 0 : if (!params.GetNoc().HasValue() || !params.GetIpk().HasValue() || !params.GetAdminSubject().HasValue())
3388 : {
3389 0 : ChipLogError(Controller, "AddNOC contents not specified");
3390 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3391 0 : return;
3392 : }
3393 0 : CHIP_ERROR err = SendOperationalCertificate(proxy, params.GetNoc().Value(), params.GetIcac(), params.GetIpk().Value(),
3394 0 : params.GetAdminSubject().Value(), timeout);
3395 0 : if (err != CHIP_NO_ERROR)
3396 : {
3397 : // We won't get any async callbacks here, so just complete our stage.
3398 0 : ChipLogError(Controller, "Error sending operational certificate: %" CHIP_ERROR_FORMAT, err.Format());
3399 0 : CommissioningStageComplete(err);
3400 0 : return;
3401 : }
3402 0 : break;
3403 : }
3404 0 : case CommissioningStage::kConfigureTrustedTimeSource: {
3405 0 : if (!params.GetTrustedTimeSource().HasValue())
3406 : {
3407 0 : ChipLogError(Controller, "ConfigureTrustedTimeSource stage called with no trusted time source data");
3408 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3409 0 : return;
3410 : }
3411 0 : TimeSynchronization::Commands::SetTrustedTimeSource::Type request;
3412 0 : request.trustedTimeSource = params.GetTrustedTimeSource().Value();
3413 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3414 0 : if (err != CHIP_NO_ERROR)
3415 : {
3416 : // We won't get any async callbacks here, so just complete our stage.
3417 0 : ChipLogError(Controller, "Failed to send SendTrustedTimeSource command: %" CHIP_ERROR_FORMAT, err.Format());
3418 0 : CommissioningStageComplete(err);
3419 0 : return;
3420 : }
3421 0 : break;
3422 : }
3423 0 : case CommissioningStage::kWiFiNetworkSetup: {
3424 0 : if (!params.GetWiFiCredentials().HasValue())
3425 : {
3426 0 : ChipLogError(Controller, "No wifi credentials specified");
3427 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3428 0 : return;
3429 : }
3430 :
3431 0 : NetworkCommissioning::Commands::AddOrUpdateWiFiNetwork::Type request;
3432 0 : request.ssid = params.GetWiFiCredentials().Value().ssid;
3433 0 : request.credentials = params.GetWiFiCredentials().Value().credentials;
3434 0 : request.breadcrumb.Emplace(breadcrumb);
3435 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3436 0 : if (err != CHIP_NO_ERROR)
3437 : {
3438 : // We won't get any async callbacks here, so just complete our stage.
3439 0 : ChipLogError(Controller, "Failed to send AddOrUpdateWiFiNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3440 0 : CommissioningStageComplete(err);
3441 0 : return;
3442 : }
3443 0 : }
3444 0 : break;
3445 0 : case CommissioningStage::kThreadNetworkSetup: {
3446 0 : if (!params.GetThreadOperationalDataset().HasValue())
3447 : {
3448 0 : ChipLogError(Controller, "No thread credentials specified");
3449 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3450 0 : return;
3451 : }
3452 0 : NetworkCommissioning::Commands::AddOrUpdateThreadNetwork::Type request;
3453 0 : request.operationalDataset = params.GetThreadOperationalDataset().Value();
3454 0 : request.breadcrumb.Emplace(breadcrumb);
3455 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3456 0 : if (err != CHIP_NO_ERROR)
3457 : {
3458 : // We won't get any async callbacks here, so just complete our stage.
3459 0 : ChipLogError(Controller, "Failed to send AddOrUpdateThreadNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3460 0 : CommissioningStageComplete(err);
3461 0 : return;
3462 : }
3463 0 : }
3464 0 : break;
3465 0 : case CommissioningStage::kFailsafeBeforeWiFiEnable:
3466 : FALLTHROUGH;
3467 : case CommissioningStage::kFailsafeBeforeThreadEnable:
3468 : // Before we try to do network enablement, make sure that our fail-safe
3469 : // is set far enough out that we can later try to do operational
3470 : // discovery without it timing out.
3471 0 : ExtendFailsafeBeforeNetworkEnable(proxy, params, step);
3472 0 : break;
3473 0 : case CommissioningStage::kWiFiNetworkEnable: {
3474 0 : if (!params.GetWiFiCredentials().HasValue())
3475 : {
3476 0 : ChipLogError(Controller, "No wifi credentials specified");
3477 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3478 0 : return;
3479 : }
3480 0 : NetworkCommissioning::Commands::ConnectNetwork::Type request;
3481 0 : request.networkID = params.GetWiFiCredentials().Value().ssid;
3482 0 : request.breadcrumb.Emplace(breadcrumb);
3483 :
3484 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3485 0 : ChipLogProgress(Controller, "SendCommand kWiFiNetworkEnable, supportsConcurrentConnection=%s",
3486 : params.GetSupportsConcurrentConnection().HasValue()
3487 : ? (params.GetSupportsConcurrentConnection().Value() ? "true" : "false")
3488 : : "missing");
3489 0 : err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
3490 :
3491 0 : if (err != CHIP_NO_ERROR)
3492 : {
3493 : // We won't get any async callbacks here, so just complete our stage.
3494 0 : ChipLogError(Controller, "Failed to send WiFi ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3495 0 : CommissioningStageComplete(err);
3496 0 : return;
3497 : }
3498 0 : }
3499 0 : break;
3500 0 : case CommissioningStage::kThreadNetworkEnable: {
3501 0 : ByteSpan extendedPanId;
3502 0 : chip::Thread::OperationalDataset operationalDataset;
3503 0 : if (!params.GetThreadOperationalDataset().HasValue() ||
3504 0 : operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
3505 0 : operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
3506 : {
3507 0 : ChipLogError(Controller, "Unable to get extended pan ID for thread operational dataset\n");
3508 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3509 0 : return;
3510 : }
3511 0 : NetworkCommissioning::Commands::ConnectNetwork::Type request;
3512 0 : request.networkID = extendedPanId;
3513 0 : request.breadcrumb.Emplace(breadcrumb);
3514 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
3515 0 : if (err != CHIP_NO_ERROR)
3516 : {
3517 : // We won't get any async callbacks here, so just complete our stage.
3518 0 : ChipLogError(Controller, "Failed to send Thread ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3519 0 : CommissioningStageComplete(err);
3520 0 : return;
3521 : }
3522 0 : }
3523 0 : break;
3524 0 : case CommissioningStage::kICDGetRegistrationInfo: {
3525 0 : GetPairingDelegate()->OnICDRegistrationInfoRequired();
3526 0 : return;
3527 : }
3528 : break;
3529 0 : case CommissioningStage::kICDRegistration: {
3530 0 : IcdManagement::Commands::RegisterClient::Type request;
3531 :
3532 0 : if (!(params.GetICDCheckInNodeId().HasValue() && params.GetICDMonitoredSubject().HasValue() &&
3533 0 : params.GetICDSymmetricKey().HasValue()))
3534 : {
3535 0 : ChipLogError(Controller, "No ICD Registration information provided!");
3536 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE);
3537 0 : return;
3538 : }
3539 :
3540 0 : request.checkInNodeID = params.GetICDCheckInNodeId().Value();
3541 0 : request.monitoredSubject = params.GetICDMonitoredSubject().Value();
3542 0 : request.key = params.GetICDSymmetricKey().Value();
3543 :
3544 : CHIP_ERROR err =
3545 0 : SendCommissioningCommand(proxy, request, OnICDManagementRegisterClientResponse, OnBasicFailure, endpoint, timeout);
3546 0 : if (err != CHIP_NO_ERROR)
3547 : {
3548 : // We won't get any async callbacks here, so just complete our stage.
3549 0 : ChipLogError(Controller, "Failed to send IcdManagement.RegisterClient command: %" CHIP_ERROR_FORMAT, err.Format());
3550 0 : CommissioningStageComplete(err);
3551 0 : return;
3552 : }
3553 0 : }
3554 0 : break;
3555 0 : case CommissioningStage::kEvictPreviousCaseSessions: {
3556 0 : auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
3557 :
3558 : // If we ever had a commissioned device with this node ID before, we may
3559 : // have stale sessions to it. Make sure we don't re-use any of those,
3560 : // because clearly they are not related to this new device we are
3561 : // commissioning. We only care about sessions we might reuse, so just
3562 : // clearing the ones associated with our fabric index is good enough and
3563 : // we don't need to worry about ExpireAllSessionsOnLogicalFabric.
3564 0 : mSystemState->SessionMgr()->ExpireAllSessions(scopedPeerId);
3565 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3566 0 : return;
3567 : }
3568 0 : case CommissioningStage::kFindOperationalForStayActive:
3569 : case CommissioningStage::kFindOperationalForCommissioningComplete: {
3570 : // If there is an error, CommissioningStageComplete will be called from OnDeviceConnectionFailureFn.
3571 0 : auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
3572 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissioningOperationalSetup);
3573 0 : mSystemState->CASESessionMgr()->FindOrEstablishSession(scopedPeerId, &mOnDeviceConnectedCallback,
3574 : &mOnDeviceConnectionFailureCallback
3575 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
3576 : ,
3577 : /* attemptCount = */ 3, &mOnDeviceConnectionRetryCallback
3578 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
3579 : );
3580 : }
3581 0 : break;
3582 0 : case CommissioningStage::kPrimaryOperationalNetworkFailed: {
3583 : // nothing to do. This stage indicates that the primary operational network failed and the network config should be
3584 : // removed later.
3585 0 : break;
3586 : }
3587 0 : case CommissioningStage::kRemoveWiFiNetworkConfig: {
3588 0 : NetworkCommissioning::Commands::RemoveNetwork::Type request;
3589 0 : request.networkID = params.GetWiFiCredentials().Value().ssid;
3590 0 : request.breadcrumb.Emplace(breadcrumb);
3591 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3592 0 : if (err != CHIP_NO_ERROR)
3593 : {
3594 : // We won't get any async callbacks here, so just complete our stage.
3595 0 : ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3596 0 : CommissioningStageComplete(err);
3597 0 : return;
3598 : }
3599 0 : break;
3600 0 : }
3601 0 : case CommissioningStage::kRemoveThreadNetworkConfig: {
3602 0 : ByteSpan extendedPanId;
3603 0 : chip::Thread::OperationalDataset operationalDataset;
3604 0 : if (!params.GetThreadOperationalDataset().HasValue() ||
3605 0 : operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
3606 0 : operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
3607 : {
3608 0 : ChipLogError(Controller, "Unable to get extended pan ID for thread operational dataset\n");
3609 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3610 0 : return;
3611 : }
3612 0 : NetworkCommissioning::Commands::RemoveNetwork::Type request;
3613 0 : request.networkID = extendedPanId;
3614 0 : request.breadcrumb.Emplace(breadcrumb);
3615 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3616 0 : if (err != CHIP_NO_ERROR)
3617 : {
3618 : // We won't get any async callbacks here, so just complete our stage.
3619 0 : ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3620 0 : CommissioningStageComplete(err);
3621 0 : return;
3622 : }
3623 0 : break;
3624 0 : }
3625 0 : case CommissioningStage::kICDSendStayActive: {
3626 0 : if (!(params.GetICDStayActiveDurationMsec().HasValue()))
3627 : {
3628 0 : ChipLogProgress(Controller, "Skipping kICDSendStayActive");
3629 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3630 0 : return;
3631 : }
3632 :
3633 : // StayActive Command happens over CASE Connection
3634 0 : IcdManagement::Commands::StayActiveRequest::Type request;
3635 0 : request.stayActiveDuration = params.GetICDStayActiveDurationMsec().Value();
3636 0 : ChipLogError(Controller, "Send ICD StayActive with Duration %u", request.stayActiveDuration);
3637 : CHIP_ERROR err =
3638 0 : SendCommissioningCommand(proxy, request, OnICDManagementStayActiveResponse, OnBasicFailure, endpoint, timeout);
3639 0 : if (err != CHIP_NO_ERROR)
3640 : {
3641 : // We won't get any async callbacks here, so just complete our stage.
3642 0 : ChipLogError(Controller, "Failed to send IcdManagement.StayActive command: %" CHIP_ERROR_FORMAT, err.Format());
3643 0 : CommissioningStageComplete(err);
3644 0 : return;
3645 : }
3646 : }
3647 0 : break;
3648 0 : case CommissioningStage::kSendComplete: {
3649 : // CommissioningComplete command happens over the CASE connection.
3650 : GeneralCommissioning::Commands::CommissioningComplete::Type request;
3651 : CHIP_ERROR err =
3652 0 : SendCommissioningCommand(proxy, request, OnCommissioningCompleteResponse, OnBasicFailure, endpoint, timeout);
3653 0 : if (err != CHIP_NO_ERROR)
3654 : {
3655 : // We won't get any async callbacks here, so just complete our stage.
3656 0 : ChipLogError(Controller, "Failed to send CommissioningComplete command: %" CHIP_ERROR_FORMAT, err.Format());
3657 0 : CommissioningStageComplete(err);
3658 0 : return;
3659 : }
3660 : }
3661 0 : break;
3662 0 : case CommissioningStage::kCleanup:
3663 0 : CleanupCommissioning(proxy, proxy->GetDeviceId(), params.GetCompletionStatus());
3664 0 : break;
3665 0 : case CommissioningStage::kError:
3666 0 : mCommissioningStage = CommissioningStage::kSecurePairing;
3667 0 : break;
3668 0 : case CommissioningStage::kSecurePairing:
3669 0 : break;
3670 : }
3671 : }
3672 :
3673 0 : void DeviceCommissioner::ExtendFailsafeBeforeNetworkEnable(DeviceProxy * device, CommissioningParameters & params,
3674 : CommissioningStage step)
3675 : {
3676 0 : auto * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
3677 0 : if (device != commissioneeDevice)
3678 : {
3679 : // Not a commissionee device; just return.
3680 0 : ChipLogError(Controller, "Trying to extend fail-safe for an unknown commissionee with device id " ChipLogFormatX64,
3681 : ChipLogValueX64(device->GetDeviceId()));
3682 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE, CommissioningDelegate::CommissioningReport());
3683 0 : return;
3684 : }
3685 :
3686 : // Try to make sure we have at least enough time for our expected
3687 : // commissioning bits plus the MRP retries for a Sigma1.
3688 0 : uint16_t failSafeTimeoutSecs = params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout);
3689 0 : auto sigma1Timeout = CASESession::ComputeSigma1ResponseTimeout(commissioneeDevice->GetPairing().GetRemoteMRPConfig());
3690 0 : uint16_t sigma1TimeoutSecs = std::chrono::duration_cast<System::Clock::Seconds16>(sigma1Timeout).count();
3691 0 : if (UINT16_MAX - failSafeTimeoutSecs < sigma1TimeoutSecs)
3692 : {
3693 0 : failSafeTimeoutSecs = UINT16_MAX;
3694 : }
3695 : else
3696 : {
3697 0 : failSafeTimeoutSecs = static_cast<uint16_t>(failSafeTimeoutSecs + sigma1TimeoutSecs);
3698 : }
3699 :
3700 0 : if (!ExtendArmFailSafeInternal(commissioneeDevice, step, failSafeTimeoutSecs, MakeOptional(kMinimumCommissioningStepTimeout),
3701 : OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false))
3702 : {
3703 : // A false return is fine; we don't want to make the fail-safe shorter here.
3704 0 : CommissioningStageComplete(CHIP_NO_ERROR, CommissioningDelegate::CommissioningReport());
3705 : }
3706 : }
3707 :
3708 0 : bool DeviceCommissioner::IsAttestationInformationMissing(const CommissioningParameters & params)
3709 : {
3710 0 : if (!params.GetAttestationElements().HasValue() || !params.GetAttestationSignature().HasValue() ||
3711 0 : !params.GetAttestationNonce().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
3712 0 : !params.GetRemoteVendorId().HasValue() || !params.GetRemoteProductId().HasValue())
3713 : {
3714 0 : return true;
3715 : }
3716 :
3717 0 : return false;
3718 : }
3719 :
3720 0 : CHIP_ERROR DeviceController::GetCompressedFabricIdBytes(MutableByteSpan & outBytes) const
3721 : {
3722 0 : const auto * fabricInfo = GetFabricInfo();
3723 0 : VerifyOrReturnError(fabricInfo != nullptr, CHIP_ERROR_INVALID_FABRIC_INDEX);
3724 0 : return fabricInfo->GetCompressedFabricIdBytes(outBytes);
3725 : }
3726 :
3727 0 : CHIP_ERROR DeviceController::GetRootPublicKey(Crypto::P256PublicKey & outRootPublicKey) const
3728 : {
3729 0 : const auto * fabricTable = GetFabricTable();
3730 0 : VerifyOrReturnError(fabricTable != nullptr, CHIP_ERROR_INCORRECT_STATE);
3731 0 : return fabricTable->FetchRootPubkey(mFabricIndex, outRootPublicKey);
3732 : }
3733 :
3734 : } // namespace Controller
3735 : } // namespace chip
|