Line data Source code
1 : /*
2 : *
3 : * Copyright (c) 2020-2024 Project CHIP Authors
4 : * Copyright (c) 2013-2017 Nest Labs, Inc.
5 : * All rights reserved.
6 : *
7 : * Licensed under the Apache License, Version 2.0 (the "License");
8 : * you may not use this file except in compliance with the License.
9 : * You may obtain a copy of the License at
10 : *
11 : * http://www.apache.org/licenses/LICENSE-2.0
12 : *
13 : * Unless required by applicable law or agreed to in writing, software
14 : * distributed under the License is distributed on an "AS IS" BASIS,
15 : * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 : * See the License for the specific language governing permissions and
17 : * limitations under the License.
18 : */
19 :
20 : /**
21 : * @file
22 : * Implementation of CHIP Device Controller, a common class
23 : * that implements discovery, pairing and provisioning of CHIP
24 : * devices.
25 : *
26 : */
27 :
28 : // module header, comes first
29 : #include <controller/CHIPDeviceController.h>
30 :
31 : #include <app-common/zap-generated/ids/Attributes.h>
32 : #include <app-common/zap-generated/ids/Clusters.h>
33 :
34 : #include <app/InteractionModelEngine.h>
35 : #include <app/OperationalSessionSetup.h>
36 : #include <app/server/Dnssd.h>
37 : #include <controller/CurrentFabricRemover.h>
38 : #include <controller/InvokeInteraction.h>
39 : #include <controller/WriteInteraction.h>
40 : #include <credentials/CHIPCert.h>
41 : #include <credentials/DeviceAttestationCredsProvider.h>
42 : #include <crypto/CHIPCryptoPAL.h>
43 : #include <lib/core/CHIPCore.h>
44 : #include <lib/core/CHIPEncoding.h>
45 : #include <lib/core/CHIPSafeCasts.h>
46 : #include <lib/core/ErrorStr.h>
47 : #include <lib/core/NodeId.h>
48 : #include <lib/support/Base64.h>
49 : #include <lib/support/CHIPArgParser.hpp>
50 : #include <lib/support/CHIPMem.h>
51 : #include <lib/support/CodeUtils.h>
52 : #include <lib/support/PersistentStorageMacros.h>
53 : #include <lib/support/SafeInt.h>
54 : #include <lib/support/ScopedBuffer.h>
55 : #include <lib/support/ThreadOperationalDataset.h>
56 : #include <lib/support/TimeUtils.h>
57 : #include <lib/support/logging/CHIPLogging.h>
58 : #include <messaging/ExchangeContext.h>
59 : #include <platform/LockTracker.h>
60 : #include <protocols/secure_channel/MessageCounterManager.h>
61 : #include <setup_payload/QRCodeSetupPayloadParser.h>
62 : #include <tracing/macros.h>
63 : #include <tracing/metric_event.h>
64 :
65 : #if CONFIG_NETWORK_LAYER_BLE
66 : #include <ble/Ble.h>
67 : #include <transport/raw/BLE.h>
68 : #endif
69 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
70 : #include <transport/raw/WiFiPAF.h>
71 : #endif
72 :
73 : #include <algorithm>
74 : #include <array>
75 : #include <errno.h>
76 : #include <inttypes.h>
77 : #include <limits>
78 : #include <memory>
79 : #include <stdint.h>
80 : #include <stdlib.h>
81 : #include <string>
82 : #include <time.h>
83 :
84 : using namespace chip::app;
85 : using namespace chip::app::Clusters;
86 : using namespace chip::Inet;
87 : using namespace chip::System;
88 : using namespace chip::Transport;
89 : using namespace chip::Credentials;
90 : using namespace chip::Crypto;
91 : using namespace chip::Tracing;
92 :
93 : namespace chip {
94 : namespace Controller {
95 :
96 : using namespace chip::Encoding;
97 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
98 : using namespace chip::Protocols::UserDirectedCommissioning;
99 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
100 :
101 88 : DeviceController::DeviceController()
102 : {
103 8 : mState = State::NotInitialized;
104 8 : }
105 :
106 0 : CHIP_ERROR DeviceController::Init(ControllerInitParams params)
107 : {
108 0 : assertChipStackLockedByCurrentThread();
109 :
110 0 : VerifyOrReturnError(mState == State::NotInitialized, CHIP_ERROR_INCORRECT_STATE);
111 0 : VerifyOrReturnError(params.systemState != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
112 :
113 0 : VerifyOrReturnError(params.systemState->SystemLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
114 0 : VerifyOrReturnError(params.systemState->UDPEndPointManager() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
115 :
116 : #if CONFIG_NETWORK_LAYER_BLE
117 0 : VerifyOrReturnError(params.systemState->BleLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
118 : #endif
119 :
120 0 : VerifyOrReturnError(params.systemState->TransportMgr() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
121 :
122 0 : ReturnErrorOnFailure(mDNSResolver.Init(params.systemState->UDPEndPointManager()));
123 0 : mDNSResolver.SetDiscoveryDelegate(this);
124 0 : RegisterDeviceDiscoveryDelegate(params.deviceDiscoveryDelegate);
125 :
126 0 : mVendorId = params.controllerVendorId;
127 0 : if (params.operationalKeypair != nullptr || !params.controllerNOC.empty() || !params.controllerRCAC.empty())
128 : {
129 0 : ReturnErrorOnFailure(InitControllerNOCChain(params));
130 : }
131 0 : else if (params.fabricIndex.HasValue())
132 : {
133 0 : VerifyOrReturnError(params.systemState->Fabrics()->FabricCount() > 0, CHIP_ERROR_INVALID_ARGUMENT);
134 0 : if (params.systemState->Fabrics()->FindFabricWithIndex(params.fabricIndex.Value()) != nullptr)
135 : {
136 0 : mFabricIndex = params.fabricIndex.Value();
137 : }
138 : else
139 : {
140 0 : ChipLogError(Controller, "There is no fabric corresponding to the given fabricIndex");
141 0 : return CHIP_ERROR_INVALID_ARGUMENT;
142 : }
143 : }
144 :
145 0 : mSystemState = params.systemState->Retain();
146 0 : mState = State::Initialized;
147 :
148 0 : mRemoveFromFabricTableOnShutdown = params.removeFromFabricTableOnShutdown;
149 0 : mDeleteFromFabricTableOnShutdown = params.deleteFromFabricTableOnShutdown;
150 :
151 0 : if (GetFabricIndex() != kUndefinedFabricIndex)
152 : {
153 0 : ChipLogProgress(Controller,
154 : "Joined the fabric at index %d. Fabric ID is 0x" ChipLogFormatX64
155 : " (Compressed Fabric ID: " ChipLogFormatX64 ")",
156 : GetFabricIndex(), ChipLogValueX64(GetFabricId()), ChipLogValueX64(GetCompressedFabricId()));
157 : }
158 :
159 0 : return CHIP_NO_ERROR;
160 : }
161 :
162 0 : CHIP_ERROR DeviceController::InitControllerNOCChain(const ControllerInitParams & params)
163 : {
164 0 : FabricInfo newFabric;
165 0 : constexpr uint32_t chipCertAllocatedLen = kMaxCHIPCertLength;
166 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> rcacBuf;
167 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> icacBuf;
168 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> nocBuf;
169 0 : Credentials::P256PublicKeySpan rootPublicKeySpan;
170 : FabricId fabricId;
171 : NodeId nodeId;
172 0 : bool hasExternallyOwnedKeypair = false;
173 0 : Crypto::P256Keypair * externalOperationalKeypair = nullptr;
174 0 : VendorId newFabricVendorId = params.controllerVendorId;
175 :
176 : // There are three possibilities here in terms of what happens with our
177 : // operational key:
178 : // 1) We have an externally owned operational keypair.
179 : // 2) We have an operational keypair that the fabric table should clone via
180 : // serialize/deserialize.
181 : // 3) We have no keypair at all, and the fabric table has been initialized
182 : // with a key store.
183 0 : if (params.operationalKeypair != nullptr)
184 : {
185 0 : hasExternallyOwnedKeypair = params.hasExternallyOwnedOperationalKeypair;
186 0 : externalOperationalKeypair = params.operationalKeypair;
187 : }
188 :
189 0 : VerifyOrReturnError(rcacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
190 0 : VerifyOrReturnError(icacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
191 0 : VerifyOrReturnError(nocBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
192 :
193 0 : MutableByteSpan rcacSpan(rcacBuf.Get(), chipCertAllocatedLen);
194 :
195 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerRCAC, rcacSpan));
196 0 : ReturnErrorOnFailure(Credentials::ExtractPublicKeyFromChipCert(rcacSpan, rootPublicKeySpan));
197 0 : Crypto::P256PublicKey rootPublicKey{ rootPublicKeySpan };
198 :
199 0 : MutableByteSpan icacSpan;
200 0 : if (params.controllerICAC.empty())
201 : {
202 0 : ChipLogProgress(Controller, "Intermediate CA is not needed");
203 : }
204 : else
205 : {
206 0 : icacSpan = MutableByteSpan(icacBuf.Get(), chipCertAllocatedLen);
207 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerICAC, icacSpan));
208 : }
209 :
210 0 : MutableByteSpan nocSpan = MutableByteSpan(nocBuf.Get(), chipCertAllocatedLen);
211 :
212 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerNOC, nocSpan));
213 0 : ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(nocSpan, &nodeId, &fabricId));
214 :
215 0 : auto * fabricTable = params.systemState->Fabrics();
216 0 : const FabricInfo * fabricInfo = nullptr;
217 :
218 : //
219 : // When multiple controllers are permitted on the same fabric, we need to find fabrics with
220 : // nodeId as an extra discriminant since we can have multiple FabricInfo objects that all
221 : // collide on the same fabric. Not doing so may result in a match with an existing FabricInfo
222 : // instance that matches the fabric in the provided NOC but is associated with a different NodeId
223 : // that is already in use by another active controller instance. That will effectively cause it
224 : // to change its identity inadvertently, which is not acceptable.
225 : //
226 : // TODO: Figure out how to clean up unreclaimed FabricInfos restored from persistent
227 : // storage that are not in use by active DeviceController instances. Also, figure out
228 : // how to reclaim FabricInfo slots when a DeviceController instance is deleted.
229 : //
230 0 : if (params.permitMultiControllerFabrics)
231 : {
232 0 : fabricInfo = fabricTable->FindIdentity(rootPublicKey, fabricId, nodeId);
233 : }
234 : else
235 : {
236 0 : fabricInfo = fabricTable->FindFabric(rootPublicKey, fabricId);
237 : }
238 :
239 0 : bool fabricFoundInTable = (fabricInfo != nullptr);
240 :
241 0 : FabricIndex fabricIndex = fabricFoundInTable ? fabricInfo->GetFabricIndex() : kUndefinedFabricIndex;
242 :
243 0 : CHIP_ERROR err = CHIP_NO_ERROR;
244 :
245 0 : auto advertiseOperational =
246 0 : params.enableServerInteractions ? FabricTable::AdvertiseIdentity::Yes : FabricTable::AdvertiseIdentity::No;
247 :
248 : //
249 : // We permit colliding fabrics when multiple controllers are present on the same logical fabric
250 : // since each controller is associated with a unique FabricInfo 'identity' object and consequently,
251 : // a unique FabricIndex.
252 : //
253 : // This sets a flag that will be cleared automatically when the fabric is committed/reverted later
254 : // in this function.
255 : //
256 0 : if (params.permitMultiControllerFabrics)
257 : {
258 0 : fabricTable->PermitCollidingFabrics();
259 : }
260 :
261 : // We have 4 cases to handle legacy usage of direct operational key injection
262 0 : if (externalOperationalKeypair)
263 : {
264 : // Cases 1 and 2: Injected operational keys
265 :
266 : // CASE 1: Fabric update with injected key
267 0 : if (fabricFoundInTable)
268 : {
269 0 : err = fabricTable->UpdatePendingFabricWithProvidedOpKey(fabricIndex, nocSpan, icacSpan, externalOperationalKeypair,
270 : hasExternallyOwnedKeypair, advertiseOperational);
271 : }
272 : else
273 : // CASE 2: New fabric with injected key
274 : {
275 0 : err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
276 0 : if (err == CHIP_NO_ERROR)
277 : {
278 0 : err = fabricTable->AddNewPendingFabricWithProvidedOpKey(nocSpan, icacSpan, newFabricVendorId,
279 : externalOperationalKeypair, hasExternallyOwnedKeypair,
280 : &fabricIndex, advertiseOperational);
281 : }
282 : }
283 : }
284 : else
285 : {
286 : // Cases 3 and 4: OperationalKeystore has the keys
287 :
288 : // CASE 3: Fabric update with operational keystore
289 0 : if (fabricFoundInTable)
290 : {
291 0 : VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(fabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
292 :
293 0 : err = fabricTable->UpdatePendingFabricWithOperationalKeystore(fabricIndex, nocSpan, icacSpan, advertiseOperational);
294 : }
295 : else
296 : // CASE 4: New fabric with operational keystore
297 : {
298 0 : err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
299 0 : if (err == CHIP_NO_ERROR)
300 : {
301 0 : err = fabricTable->AddNewPendingFabricWithOperationalKeystore(nocSpan, icacSpan, newFabricVendorId, &fabricIndex,
302 : advertiseOperational);
303 : }
304 :
305 0 : if (err == CHIP_NO_ERROR)
306 : {
307 : // Now that we know our planned fabric index, verify that the
308 : // keystore has a key for it.
309 0 : if (!fabricTable->HasOperationalKeyForFabric(fabricIndex))
310 : {
311 0 : err = CHIP_ERROR_KEY_NOT_FOUND;
312 : }
313 : }
314 : }
315 : }
316 :
317 : // Commit after setup, error-out on failure.
318 0 : if (err == CHIP_NO_ERROR)
319 : {
320 : // No need to revert on error: CommitPendingFabricData reverts internally on *any* error.
321 0 : err = fabricTable->CommitPendingFabricData();
322 : }
323 : else
324 : {
325 0 : fabricTable->RevertPendingFabricData();
326 : }
327 :
328 0 : ReturnErrorOnFailure(err);
329 0 : VerifyOrReturnError(fabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
330 :
331 0 : mFabricIndex = fabricIndex;
332 0 : mAdvertiseIdentity = advertiseOperational;
333 0 : return CHIP_NO_ERROR;
334 0 : }
335 :
336 0 : CHIP_ERROR DeviceController::UpdateControllerNOCChain(const ByteSpan & noc, const ByteSpan & icac,
337 : Crypto::P256Keypair * operationalKeypair,
338 : bool operationalKeypairExternalOwned)
339 : {
340 0 : VerifyOrReturnError(mFabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
341 0 : VerifyOrReturnError(mSystemState != nullptr, CHIP_ERROR_INTERNAL);
342 0 : FabricTable * fabricTable = mSystemState->Fabrics();
343 0 : CHIP_ERROR err = CHIP_NO_ERROR;
344 : FabricId fabricId;
345 : NodeId nodeId;
346 0 : CATValues oldCats;
347 0 : CATValues newCats;
348 0 : ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(noc, &nodeId, &fabricId));
349 0 : ReturnErrorOnFailure(fabricTable->FetchCATs(mFabricIndex, oldCats));
350 0 : ReturnErrorOnFailure(ExtractCATsFromOpCert(noc, newCats));
351 :
352 0 : bool needCloseSession = true;
353 0 : if (GetFabricInfo()->GetNodeId() == nodeId && oldCats == newCats)
354 : {
355 0 : needCloseSession = false;
356 : }
357 :
358 0 : if (operationalKeypair != nullptr)
359 : {
360 0 : err = fabricTable->UpdatePendingFabricWithProvidedOpKey(mFabricIndex, noc, icac, operationalKeypair,
361 : operationalKeypairExternalOwned, mAdvertiseIdentity);
362 : }
363 : else
364 : {
365 0 : VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(mFabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
366 0 : err = fabricTable->UpdatePendingFabricWithOperationalKeystore(mFabricIndex, noc, icac, mAdvertiseIdentity);
367 : }
368 :
369 0 : if (err == CHIP_NO_ERROR)
370 : {
371 0 : err = fabricTable->CommitPendingFabricData();
372 : }
373 : else
374 : {
375 0 : fabricTable->RevertPendingFabricData();
376 : }
377 :
378 0 : ReturnErrorOnFailure(err);
379 0 : if (needCloseSession)
380 : {
381 : // If the node id or CATs have changed, our existing CASE sessions are no longer valid,
382 : // because the other side will think anything coming over those sessions comes from our
383 : // old node ID, and the new CATs might not satisfy the ACL requirements of the other side.
384 0 : mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
385 : }
386 0 : ChipLogProgress(Controller, "Controller NOC chain has updated");
387 0 : return CHIP_NO_ERROR;
388 : }
389 :
390 0 : void DeviceController::Shutdown()
391 : {
392 0 : assertChipStackLockedByCurrentThread();
393 :
394 0 : VerifyOrReturn(mState != State::NotInitialized);
395 :
396 : // If our state is initialialized it means mSystemState is valid,
397 : // and we can use it below before we release our reference to it.
398 0 : ChipLogDetail(Controller, "Shutting down the controller");
399 0 : mState = State::NotInitialized;
400 :
401 0 : if (mFabricIndex != kUndefinedFabricIndex)
402 : {
403 : // Shut down any subscription clients for this fabric.
404 0 : app::InteractionModelEngine::GetInstance()->ShutdownSubscriptions(mFabricIndex);
405 :
406 : // Shut down any ongoing CASE session activity we have. We're going to
407 : // assume that all sessions for our fabric belong to us here.
408 0 : mSystemState->CASESessionMgr()->ReleaseSessionsForFabric(mFabricIndex);
409 :
410 : // Shut down any bdx transfers we're acting as the server for.
411 0 : mSystemState->BDXTransferServer()->AbortTransfersForFabric(mFabricIndex);
412 :
413 : // TODO: The CASE session manager does not shut down existing CASE
414 : // sessions. It just shuts down any ongoing CASE session establishment
415 : // we're in the middle of as initiator. Maybe it should shut down
416 : // existing sessions too?
417 0 : mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
418 :
419 0 : if (mDeleteFromFabricTableOnShutdown)
420 : {
421 0 : mSystemState->Fabrics()->Delete(mFabricIndex);
422 : }
423 0 : else if (mRemoveFromFabricTableOnShutdown)
424 : {
425 0 : mSystemState->Fabrics()->Forget(mFabricIndex);
426 : }
427 : }
428 :
429 0 : mSystemState->Release();
430 0 : mSystemState = nullptr;
431 :
432 0 : mDNSResolver.Shutdown();
433 0 : mDeviceDiscoveryDelegate = nullptr;
434 : }
435 :
436 0 : CHIP_ERROR DeviceController::GetPeerAddressAndPort(NodeId peerId, Inet::IPAddress & addr, uint16_t & port)
437 : {
438 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
439 0 : Transport::PeerAddress peerAddr;
440 0 : ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(peerId), peerAddr));
441 0 : addr = peerAddr.GetIPAddress();
442 0 : port = peerAddr.GetPort();
443 0 : return CHIP_NO_ERROR;
444 : }
445 :
446 0 : CHIP_ERROR DeviceController::GetPeerAddress(NodeId nodeId, Transport::PeerAddress & addr)
447 : {
448 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
449 0 : ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(nodeId), addr));
450 :
451 0 : return CHIP_NO_ERROR;
452 : }
453 :
454 0 : CHIP_ERROR DeviceController::ComputePASEVerifier(uint32_t iterations, uint32_t setupPincode, const ByteSpan & salt,
455 : Spake2pVerifier & outVerifier)
456 : {
457 0 : ReturnErrorOnFailure(PASESession::GeneratePASEVerifier(outVerifier, iterations, salt, /* useRandomPIN= */ false, setupPincode));
458 :
459 0 : return CHIP_NO_ERROR;
460 : }
461 :
462 0 : ControllerDeviceInitParams DeviceController::GetControllerDeviceInitParams()
463 : {
464 : return ControllerDeviceInitParams{
465 0 : .sessionManager = mSystemState->SessionMgr(),
466 0 : .exchangeMgr = mSystemState->ExchangeMgr(),
467 0 : };
468 : }
469 :
470 0 : DeviceCommissioner::DeviceCommissioner() :
471 0 : mOnDeviceConnectedCallback(OnDeviceConnectedFn, this), mOnDeviceConnectionFailureCallback(OnDeviceConnectionFailureFn, this),
472 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
473 0 : mOnDeviceConnectionRetryCallback(OnDeviceConnectionRetryFn, this),
474 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
475 0 : mDeviceAttestationInformationVerificationCallback(OnDeviceAttestationInformationVerification, this),
476 0 : mDeviceNOCChainCallback(OnDeviceNOCChainGeneration, this), mSetUpCodePairer(this)
477 : {
478 : #if CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
479 : (void) mPeerAdminJFAdminClusterEndpointId;
480 : #endif // CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
481 0 : }
482 :
483 0 : CHIP_ERROR DeviceCommissioner::Init(CommissionerInitParams params)
484 : {
485 0 : VerifyOrReturnError(params.operationalCredentialsDelegate != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
486 0 : mOperationalCredentialsDelegate = params.operationalCredentialsDelegate;
487 0 : ReturnErrorOnFailure(DeviceController::Init(params));
488 :
489 0 : mPairingDelegate = params.pairingDelegate;
490 :
491 : // Configure device attestation validation
492 0 : mDeviceAttestationVerifier = params.deviceAttestationVerifier;
493 0 : if (mDeviceAttestationVerifier == nullptr)
494 : {
495 0 : mDeviceAttestationVerifier = Credentials::GetDeviceAttestationVerifier();
496 0 : if (mDeviceAttestationVerifier == nullptr)
497 : {
498 0 : ChipLogError(Controller,
499 : "Missing DeviceAttestationVerifier configuration at DeviceCommissioner init and none set with "
500 : "Credentials::SetDeviceAttestationVerifier()!");
501 0 : return CHIP_ERROR_INVALID_ARGUMENT;
502 : }
503 :
504 : // We fell back on a default from singleton accessor.
505 0 : ChipLogProgress(Controller,
506 : "*** Missing DeviceAttestationVerifier configuration at DeviceCommissioner init: using global default, "
507 : "consider passing one in CommissionerInitParams.");
508 : }
509 :
510 0 : if (params.defaultCommissioner != nullptr)
511 : {
512 0 : mDefaultCommissioner = params.defaultCommissioner;
513 : }
514 : else
515 : {
516 0 : mDefaultCommissioner = &mAutoCommissioner;
517 : }
518 :
519 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
520 : mUdcTransportMgr = chip::Platform::New<UdcTransportMgr>();
521 : ReturnErrorOnFailure(mUdcTransportMgr->Init(Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
522 : .SetAddressType(Inet::IPAddressType::kIPv6)
523 : .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
524 : #if INET_CONFIG_ENABLE_IPV4
525 : ,
526 : Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
527 : .SetAddressType(Inet::IPAddressType::kIPv4)
528 : .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
529 : #endif // INET_CONFIG_ENABLE_IPV4
530 : ));
531 :
532 : mUdcServer = chip::Platform::New<UserDirectedCommissioningServer>();
533 : mUdcTransportMgr->SetSessionManager(mUdcServer);
534 : mUdcServer->SetTransportManager(mUdcTransportMgr);
535 :
536 : mUdcServer->SetInstanceNameResolver(this);
537 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
538 :
539 0 : mSetUpCodePairer.SetSystemLayer(mSystemState->SystemLayer());
540 : #if CONFIG_NETWORK_LAYER_BLE
541 0 : mSetUpCodePairer.SetBleLayer(mSystemState->BleLayer());
542 : #endif // CONFIG_NETWORK_LAYER_BLE
543 :
544 0 : return CHIP_NO_ERROR;
545 : }
546 :
547 0 : void DeviceCommissioner::Shutdown()
548 : {
549 0 : VerifyOrReturn(mState != State::NotInitialized);
550 :
551 0 : ChipLogDetail(Controller, "Shutting down the commissioner");
552 :
553 0 : mSetUpCodePairer.StopPairing();
554 :
555 : // Check to see if pairing in progress before shutting down
556 0 : CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
557 0 : if (device != nullptr && device->IsSessionSetupInProgress())
558 : {
559 0 : ChipLogDetail(Controller, "Setup in progress, stopping setup before shutting down");
560 0 : OnSessionEstablishmentError(CHIP_ERROR_CONNECTION_ABORTED);
561 : }
562 :
563 0 : CancelCommissioningInteractions();
564 :
565 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
566 : if (mUdcTransportMgr != nullptr)
567 : {
568 : chip::Platform::Delete(mUdcTransportMgr);
569 : mUdcTransportMgr = nullptr;
570 : }
571 : if (mUdcServer != nullptr)
572 : {
573 : mUdcServer->SetInstanceNameResolver(nullptr);
574 : chip::Platform::Delete(mUdcServer);
575 : mUdcServer = nullptr;
576 : }
577 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
578 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
579 0 : WiFiPAF::WiFiPAFLayer::GetWiFiPAFLayer().Shutdown(
580 0 : [](uint32_t id, WiFiPAF::WiFiPafRole role) { DeviceLayer::ConnectivityMgr().WiFiPAFShutdown(id, role); });
581 : #endif
582 :
583 : // Release everything from the commissionee device pool here.
584 : // Make sure to use ReleaseCommissioneeDevice so we don't keep dangling
585 : // pointers to the device objects.
586 0 : mCommissioneeDevicePool.ForEachActiveObject([this](auto * commissioneeDevice) {
587 0 : ReleaseCommissioneeDevice(commissioneeDevice);
588 0 : return Loop::Continue;
589 : });
590 :
591 0 : DeviceController::Shutdown();
592 : }
593 :
594 0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(NodeId id)
595 : {
596 : MATTER_TRACE_SCOPE("FindCommissioneeDevice", "DeviceCommissioner");
597 0 : CommissioneeDeviceProxy * foundDevice = nullptr;
598 0 : mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
599 0 : if (deviceProxy->GetDeviceId() == id)
600 : {
601 0 : foundDevice = deviceProxy;
602 0 : return Loop::Break;
603 : }
604 0 : return Loop::Continue;
605 : });
606 :
607 0 : return foundDevice;
608 : }
609 :
610 0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(const Transport::PeerAddress & peerAddress)
611 : {
612 0 : CommissioneeDeviceProxy * foundDevice = nullptr;
613 0 : mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
614 0 : if (deviceProxy->GetPeerAddress() == peerAddress)
615 : {
616 0 : foundDevice = deviceProxy;
617 0 : return Loop::Break;
618 : }
619 0 : return Loop::Continue;
620 : });
621 :
622 0 : return foundDevice;
623 : }
624 :
625 0 : void DeviceCommissioner::ReleaseCommissioneeDevice(CommissioneeDeviceProxy * device)
626 : {
627 : #if CONFIG_NETWORK_LAYER_BLE
628 0 : if (mSystemState->BleLayer() != nullptr && device->GetDeviceTransportType() == Transport::Type::kBle)
629 : {
630 : // We only support one BLE connection, so if this is BLE, close it
631 0 : ChipLogProgress(Discovery, "Closing all BLE connections");
632 0 : mSystemState->BleLayer()->CloseAllBleConnections();
633 : }
634 : #endif
635 : // Make sure that there will be no dangling pointer
636 0 : if (mDeviceInPASEEstablishment == device)
637 : {
638 0 : mDeviceInPASEEstablishment = nullptr;
639 : }
640 0 : if (mDeviceBeingCommissioned == device)
641 : {
642 0 : mDeviceBeingCommissioned = nullptr;
643 : }
644 :
645 : // Release the commissionee device after we have nulled out our pointers,
646 : // because that can call back in to us with error notifications as the
647 : // session is released.
648 0 : mCommissioneeDevicePool.ReleaseObject(device);
649 0 : }
650 :
651 0 : CHIP_ERROR DeviceCommissioner::GetDeviceBeingCommissioned(NodeId deviceId, CommissioneeDeviceProxy ** out_device)
652 : {
653 0 : VerifyOrReturnError(out_device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
654 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(deviceId);
655 :
656 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
657 :
658 0 : *out_device = device;
659 :
660 0 : return CHIP_NO_ERROR;
661 : }
662 :
663 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, const CommissioningParameters & params,
664 : DiscoveryType discoveryType, Optional<Dnssd::CommonResolutionData> resolutionData)
665 : {
666 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
667 :
668 0 : if (mDefaultCommissioner == nullptr)
669 : {
670 0 : ChipLogError(Controller, "No default commissioner is specified");
671 0 : return CHIP_ERROR_INCORRECT_STATE;
672 : }
673 0 : ReturnErrorOnFailure(mDefaultCommissioner->SetCommissioningParameters(params));
674 :
675 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
676 0 : resolutionData);
677 : }
678 :
679 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
680 : Optional<Dnssd::CommonResolutionData> resolutionData)
681 : {
682 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
683 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
684 0 : resolutionData);
685 : }
686 :
687 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & params)
688 : {
689 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
690 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, params));
691 0 : auto errorCode = Commission(remoteDeviceId);
692 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
693 0 : return errorCode;
694 : }
695 :
696 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & rendezvousParams,
697 : CommissioningParameters & commissioningParams)
698 : {
699 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
700 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, rendezvousParams));
701 0 : auto errorCode = Commission(remoteDeviceId, commissioningParams);
702 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
703 0 : return errorCode;
704 : }
705 :
706 0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
707 : Optional<Dnssd::CommonResolutionData> resolutionData)
708 : {
709 : MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
710 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kPaseOnly, discoveryType,
711 0 : resolutionData);
712 : }
713 :
714 0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, RendezvousParameters & params)
715 : {
716 : MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
717 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerPASESession);
718 :
719 0 : CHIP_ERROR err = CHIP_NO_ERROR;
720 0 : CommissioneeDeviceProxy * device = nullptr;
721 0 : CommissioneeDeviceProxy * current = nullptr;
722 0 : Transport::PeerAddress peerAddress = Transport::PeerAddress::UDP(Inet::IPAddress::Any);
723 :
724 0 : Messaging::ExchangeContext * exchangeCtxt = nullptr;
725 0 : Optional<SessionHandle> session;
726 :
727 0 : VerifyOrExit(mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
728 0 : VerifyOrExit(mDeviceInPASEEstablishment == nullptr, err = CHIP_ERROR_INCORRECT_STATE);
729 :
730 : // TODO(#13940): We need to specify the peer address for BLE transport in bindings.
731 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle ||
732 0 : params.GetPeerAddress().GetTransportType() == Transport::Type::kUndefined)
733 : {
734 : #if CONFIG_NETWORK_LAYER_BLE
735 : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
736 : ConnectBleTransportToSelf();
737 : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
738 0 : if (!params.HasBleLayer())
739 : {
740 0 : params.SetPeerAddress(Transport::PeerAddress::BLE());
741 : }
742 0 : peerAddress = Transport::PeerAddress::BLE();
743 : #endif // CONFIG_NETWORK_LAYER_BLE
744 : }
745 0 : else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kTcp ||
746 0 : params.GetPeerAddress().GetTransportType() == Transport::Type::kUdp)
747 : {
748 0 : peerAddress = Transport::PeerAddress::UDP(params.GetPeerAddress().GetIPAddress(), params.GetPeerAddress().GetPort(),
749 0 : params.GetPeerAddress().GetInterface());
750 : }
751 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
752 0 : else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
753 : {
754 0 : peerAddress = Transport::PeerAddress::WiFiPAF(remoteDeviceId);
755 : }
756 : #endif // CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
757 :
758 0 : current = FindCommissioneeDevice(peerAddress);
759 0 : if (current != nullptr)
760 : {
761 0 : if (current->GetDeviceId() == remoteDeviceId)
762 : {
763 : // We might be able to just reuse its connection if it has one or is
764 : // working on one.
765 0 : if (current->IsSecureConnected())
766 : {
767 0 : if (mPairingDelegate)
768 : {
769 : // We already have an open secure session to this device, call the callback immediately and early return.
770 0 : mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR);
771 : }
772 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
773 0 : return CHIP_NO_ERROR;
774 : }
775 0 : if (current->IsSessionSetupInProgress())
776 : {
777 : // We're not connected yet, but we're in the process of connecting. Pairing delegate will get a callback when
778 : // connection completes
779 0 : return CHIP_NO_ERROR;
780 : }
781 : }
782 :
783 : // Either the consumer wants to assign a different device id to this
784 : // peer address now (so we can't reuse the commissionee device we have
785 : // already) or something has gone strange. Delete the old device, try
786 : // again.
787 0 : ChipLogError(Controller, "Found unconnected device, removing");
788 0 : ReleaseCommissioneeDevice(current);
789 : }
790 :
791 0 : device = mCommissioneeDevicePool.CreateObject();
792 0 : VerifyOrExit(device != nullptr, err = CHIP_ERROR_NO_MEMORY);
793 :
794 0 : mDeviceInPASEEstablishment = device;
795 0 : device->Init(GetControllerDeviceInitParams(), remoteDeviceId, peerAddress);
796 0 : device->UpdateDeviceData(params.GetPeerAddress(), params.GetMRPConfig());
797 :
798 : #if CONFIG_NETWORK_LAYER_BLE
799 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle)
800 : {
801 0 : if (params.HasConnectionObject())
802 : {
803 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetConnectionObject()));
804 : }
805 0 : else if (params.HasDiscoveredObject())
806 : {
807 : // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
808 : // for later.
809 0 : mRendezvousParametersForDeviceDiscoveredOverBle = params;
810 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetDiscoveredObject(), this,
811 : OnDiscoveredDeviceOverBleSuccess,
812 : OnDiscoveredDeviceOverBleError));
813 0 : ExitNow(CHIP_NO_ERROR);
814 : }
815 0 : else if (params.HasDiscriminator())
816 : {
817 : // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
818 : // for later.
819 0 : mRendezvousParametersForDeviceDiscoveredOverBle = params;
820 :
821 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByDiscriminator(params.GetSetupDiscriminator().value(),
822 : this, OnDiscoveredDeviceOverBleSuccess,
823 : OnDiscoveredDeviceOverBleError));
824 0 : ExitNow(CHIP_NO_ERROR);
825 : }
826 : else
827 : {
828 0 : ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
829 : }
830 : }
831 : #endif
832 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
833 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
834 : {
835 0 : if (DeviceLayer::ConnectivityMgr().GetWiFiPAF()->GetWiFiPAFState() != WiFiPAF::State::kConnected)
836 : {
837 0 : ChipLogProgress(Controller, "WiFi-PAF: Subscribing to the NAN-USD devices, nodeId: %lu",
838 : params.GetPeerAddress().GetRemoteId());
839 0 : mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = params;
840 0 : auto nodeId = params.GetPeerAddress().GetRemoteId();
841 0 : const SetupDiscriminator connDiscriminator(params.GetSetupDiscriminator().value());
842 0 : VerifyOrReturnValue(!connDiscriminator.IsShortDiscriminator(), CHIP_ERROR_INVALID_ARGUMENT,
843 : ChipLogError(Controller, "Error, Long discriminator is required"));
844 0 : uint16_t discriminator = connDiscriminator.GetLongValue();
845 0 : WiFiPAF::WiFiPAFSession sessionInfo = { .role = WiFiPAF::WiFiPafRole::kWiFiPafRole_Subscriber,
846 : .nodeId = nodeId,
847 0 : .discriminator = discriminator };
848 0 : ReturnErrorOnFailure(
849 : DeviceLayer::ConnectivityMgr().GetWiFiPAF()->AddPafSession(WiFiPAF::PafInfoAccess::kAccNodeInfo, sessionInfo));
850 0 : DeviceLayer::ConnectivityMgr().WiFiPAFSubscribe(discriminator, reinterpret_cast<void *>(this),
851 : OnWiFiPAFSubscribeComplete, OnWiFiPAFSubscribeError);
852 0 : ExitNow(CHIP_NO_ERROR);
853 : }
854 : }
855 : #endif
856 0 : session = mSystemState->SessionMgr()->CreateUnauthenticatedSession(params.GetPeerAddress(), params.GetMRPConfig());
857 0 : VerifyOrExit(session.HasValue(), err = CHIP_ERROR_NO_MEMORY);
858 :
859 : // Allocate the exchange immediately before calling PASESession::Pair.
860 : //
861 : // PASESession::Pair takes ownership of the exchange and will free it on
862 : // error, but can only do this if it is actually called. Allocating the
863 : // exchange context right before calling Pair ensures that if allocation
864 : // succeeds, PASESession has taken ownership.
865 0 : exchangeCtxt = mSystemState->ExchangeMgr()->NewContext(session.Value(), &device->GetPairing());
866 0 : VerifyOrExit(exchangeCtxt != nullptr, err = CHIP_ERROR_INTERNAL);
867 :
868 0 : err = device->GetPairing().Pair(*mSystemState->SessionMgr(), params.GetSetupPINCode(), GetLocalMRPConfig(), exchangeCtxt, this);
869 0 : SuccessOrExit(err);
870 :
871 0 : exit:
872 0 : if (err != CHIP_NO_ERROR)
873 : {
874 0 : if (device != nullptr)
875 : {
876 0 : ReleaseCommissioneeDevice(device);
877 : }
878 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
879 : }
880 :
881 0 : return err;
882 0 : }
883 :
884 : #if CONFIG_NETWORK_LAYER_BLE
885 0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleSuccess(void * appState, BLE_CONNECTION_OBJECT connObj)
886 : {
887 0 : auto self = static_cast<DeviceCommissioner *>(appState);
888 0 : auto device = self->mDeviceInPASEEstablishment;
889 :
890 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
891 : {
892 0 : auto remoteId = device->GetDeviceId();
893 :
894 0 : auto params = self->mRendezvousParametersForDeviceDiscoveredOverBle;
895 0 : params.SetConnectionObject(connObj);
896 0 : self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
897 :
898 0 : self->ReleaseCommissioneeDevice(device);
899 0 : LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
900 : }
901 0 : }
902 :
903 0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleError(void * appState, CHIP_ERROR err)
904 : {
905 0 : auto self = static_cast<DeviceCommissioner *>(appState);
906 0 : auto device = self->mDeviceInPASEEstablishment;
907 :
908 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
909 : {
910 0 : self->ReleaseCommissioneeDevice(device);
911 0 : self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
912 :
913 : // Callback is required when BLE discovery fails, otherwise the caller will always be in a suspended state
914 : // A better way to handle it should define a new error code
915 0 : if (self->mPairingDelegate != nullptr)
916 : {
917 0 : self->mPairingDelegate->OnPairingComplete(err);
918 : }
919 : }
920 0 : }
921 : #endif // CONFIG_NETWORK_LAYER_BLE
922 :
923 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
924 0 : void DeviceCommissioner::OnWiFiPAFSubscribeComplete(void * appState)
925 : {
926 0 : auto self = reinterpret_cast<DeviceCommissioner *>(appState);
927 0 : auto device = self->mDeviceInPASEEstablishment;
928 :
929 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
930 : {
931 0 : ChipLogProgress(Controller, "WiFi-PAF: Subscription Completed, dev_id = %lu", device->GetDeviceId());
932 0 : auto remoteId = device->GetDeviceId();
933 0 : auto params = self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF;
934 :
935 0 : self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
936 0 : self->ReleaseCommissioneeDevice(device);
937 0 : LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
938 : }
939 0 : }
940 :
941 0 : void DeviceCommissioner::OnWiFiPAFSubscribeError(void * appState, CHIP_ERROR err)
942 : {
943 0 : auto self = (DeviceCommissioner *) appState;
944 0 : auto device = self->mDeviceInPASEEstablishment;
945 :
946 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
947 : {
948 0 : ChipLogError(Controller, "WiFi-PAF: Subscription Error, id = %lu, err = %" CHIP_ERROR_FORMAT, device->GetDeviceId(),
949 : err.Format());
950 0 : self->ReleaseCommissioneeDevice(device);
951 0 : self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
952 0 : if (self->mPairingDelegate != nullptr)
953 : {
954 0 : self->mPairingDelegate->OnPairingComplete(err);
955 : }
956 : }
957 0 : }
958 : #endif
959 :
960 0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId, CommissioningParameters & params)
961 : {
962 0 : if (mDefaultCommissioner == nullptr)
963 : {
964 0 : ChipLogError(Controller, "No default commissioner is specified");
965 0 : return CHIP_ERROR_INCORRECT_STATE;
966 : }
967 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, mDefaultCommissioner->SetCommissioningParameters(params));
968 0 : auto errorCode = Commission(remoteDeviceId);
969 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
970 0 : return errorCode;
971 : }
972 :
973 0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId)
974 : {
975 : MATTER_TRACE_SCOPE("Commission", "DeviceCommissioner");
976 :
977 0 : if (mDefaultCommissioner == nullptr)
978 : {
979 0 : ChipLogError(Controller, "No default commissioner is specified");
980 0 : return CHIP_ERROR_INCORRECT_STATE;
981 : }
982 :
983 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
984 0 : if (device == nullptr || (!device->IsSecureConnected() && !device->IsSessionSetupInProgress()))
985 : {
986 0 : ChipLogError(Controller, "Invalid device for commissioning " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
987 0 : return CHIP_ERROR_INCORRECT_STATE;
988 : }
989 0 : if (!device->IsSecureConnected() && device != mDeviceInPASEEstablishment)
990 : {
991 : // We should not end up in this state because we won't attempt to establish more than one connection at a time.
992 0 : ChipLogError(Controller, "Device is not connected and not being paired " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
993 0 : return CHIP_ERROR_INCORRECT_STATE;
994 : }
995 :
996 0 : if (mCommissioningStage != CommissioningStage::kSecurePairing)
997 : {
998 0 : ChipLogError(Controller, "Commissioning already in progress (stage '%s') - not restarting",
999 : StageToString(mCommissioningStage));
1000 0 : return CHIP_ERROR_INCORRECT_STATE;
1001 : }
1002 :
1003 0 : ChipLogProgress(Controller, "Commission called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
1004 :
1005 0 : mDefaultCommissioner->SetOperationalCredentialsDelegate(mOperationalCredentialsDelegate);
1006 0 : if (device->IsSecureConnected())
1007 : {
1008 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
1009 0 : mDefaultCommissioner->StartCommissioning(this, device);
1010 : }
1011 : else
1012 : {
1013 0 : mRunCommissioningAfterConnection = true;
1014 : }
1015 0 : return CHIP_NO_ERROR;
1016 : }
1017 :
1018 : CHIP_ERROR
1019 0 : DeviceCommissioner::ContinueCommissioningAfterDeviceAttestation(DeviceProxy * device,
1020 : Credentials::AttestationVerificationResult attestationResult)
1021 : {
1022 : MATTER_TRACE_SCOPE("continueCommissioningDevice", "DeviceCommissioner");
1023 :
1024 0 : if (mDefaultCommissioner == nullptr)
1025 : {
1026 0 : ChipLogError(Controller, "No default commissioner is specified");
1027 0 : return CHIP_ERROR_INCORRECT_STATE;
1028 : }
1029 :
1030 0 : if (device == nullptr || device != mDeviceBeingCommissioned)
1031 : {
1032 0 : ChipLogError(Controller, "Invalid device for commissioning %p", device);
1033 0 : return CHIP_ERROR_INCORRECT_STATE;
1034 : }
1035 0 : CommissioneeDeviceProxy * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
1036 0 : if (commissioneeDevice == nullptr)
1037 : {
1038 0 : ChipLogError(Controller, "Couldn't find commissionee device");
1039 0 : return CHIP_ERROR_INCORRECT_STATE;
1040 : }
1041 0 : if (!commissioneeDevice->IsSecureConnected() || commissioneeDevice != mDeviceBeingCommissioned)
1042 : {
1043 0 : ChipLogError(Controller, "Invalid device for commissioning after attestation failure: 0x" ChipLogFormatX64,
1044 : ChipLogValueX64(commissioneeDevice->GetDeviceId()));
1045 0 : return CHIP_ERROR_INCORRECT_STATE;
1046 : }
1047 :
1048 0 : if (mCommissioningStage != CommissioningStage::kAttestationRevocationCheck)
1049 : {
1050 0 : ChipLogError(Controller, "Commissioning is not attestation verification phase");
1051 0 : return CHIP_ERROR_INCORRECT_STATE;
1052 : }
1053 :
1054 0 : ChipLogProgress(Controller, "Continuing commissioning after attestation failure for device ID 0x" ChipLogFormatX64,
1055 : ChipLogValueX64(commissioneeDevice->GetDeviceId()));
1056 :
1057 0 : if (attestationResult != AttestationVerificationResult::kSuccess)
1058 : {
1059 0 : ChipLogError(Controller, "Client selected error: %u for failed 'Attestation Information' for device",
1060 : to_underlying(attestationResult));
1061 :
1062 0 : CommissioningDelegate::CommissioningReport report;
1063 0 : report.Set<AttestationErrorInfo>(attestationResult);
1064 0 : CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1065 0 : }
1066 : else
1067 : {
1068 0 : ChipLogProgress(Controller, "Overriding attestation failure per client and continuing commissioning");
1069 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1070 : }
1071 0 : return CHIP_NO_ERROR;
1072 : }
1073 :
1074 0 : CHIP_ERROR DeviceCommissioner::StopPairing(NodeId remoteDeviceId)
1075 : {
1076 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1077 0 : VerifyOrReturnError(remoteDeviceId != kUndefinedNodeId, CHIP_ERROR_INVALID_ARGUMENT);
1078 :
1079 0 : ChipLogProgress(Controller, "StopPairing called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
1080 :
1081 : // If we're still in the process of discovering the device, just stop the SetUpCodePairer
1082 0 : if (mSetUpCodePairer.StopPairing(remoteDeviceId))
1083 : {
1084 0 : mRunCommissioningAfterConnection = false;
1085 0 : return CHIP_NO_ERROR;
1086 : }
1087 :
1088 : // Otherwise we might be pairing and / or commissioning it.
1089 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
1090 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR);
1091 :
1092 0 : if (mDeviceBeingCommissioned == device)
1093 : {
1094 0 : CancelCommissioningInteractions();
1095 0 : CommissioningStageComplete(CHIP_ERROR_CANCELLED);
1096 : }
1097 : else
1098 : {
1099 0 : ReleaseCommissioneeDevice(device);
1100 : }
1101 0 : return CHIP_NO_ERROR;
1102 : }
1103 :
1104 0 : void DeviceCommissioner::CancelCommissioningInteractions()
1105 : {
1106 0 : if (mReadClient)
1107 : {
1108 0 : ChipLogDetail(Controller, "Cancelling read request for step '%s'", StageToString(mCommissioningStage));
1109 0 : mReadClient.reset(); // destructor cancels
1110 0 : mAttributeCache.reset();
1111 : }
1112 0 : if (mInvokeCancelFn)
1113 : {
1114 0 : ChipLogDetail(Controller, "Cancelling command invocation for step '%s'", StageToString(mCommissioningStage));
1115 0 : mInvokeCancelFn();
1116 0 : mInvokeCancelFn = nullptr;
1117 : }
1118 0 : if (mWriteCancelFn)
1119 : {
1120 0 : ChipLogDetail(Controller, "Cancelling write request for step '%s'", StageToString(mCommissioningStage));
1121 0 : mWriteCancelFn();
1122 0 : mWriteCancelFn = nullptr;
1123 : }
1124 0 : if (mOnDeviceConnectedCallback.IsRegistered())
1125 : {
1126 0 : ChipLogDetail(Controller, "Cancelling CASE setup for step '%s'", StageToString(mCommissioningStage));
1127 0 : CancelCASECallbacks();
1128 : }
1129 0 : }
1130 :
1131 0 : void DeviceCommissioner::CancelCASECallbacks()
1132 : {
1133 0 : mOnDeviceConnectedCallback.Cancel();
1134 0 : mOnDeviceConnectionFailureCallback.Cancel();
1135 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
1136 0 : mOnDeviceConnectionRetryCallback.Cancel();
1137 : #endif
1138 0 : }
1139 :
1140 0 : CHIP_ERROR DeviceCommissioner::UnpairDevice(NodeId remoteDeviceId)
1141 : {
1142 : MATTER_TRACE_SCOPE("UnpairDevice", "DeviceCommissioner");
1143 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1144 :
1145 0 : return AutoCurrentFabricRemover::RemoveCurrentFabric(this, remoteDeviceId);
1146 : }
1147 :
1148 0 : void DeviceCommissioner::RendezvousCleanup(CHIP_ERROR status)
1149 : {
1150 0 : if (mDeviceInPASEEstablishment != nullptr)
1151 : {
1152 : // Release the commissionee device. For BLE, this is stored,
1153 : // for IP commissioning, we have taken a reference to the
1154 : // operational node to send the completion command.
1155 0 : ReleaseCommissioneeDevice(mDeviceInPASEEstablishment);
1156 :
1157 0 : if (mPairingDelegate != nullptr)
1158 : {
1159 0 : mPairingDelegate->OnPairingComplete(status);
1160 : }
1161 : }
1162 0 : }
1163 :
1164 0 : void DeviceCommissioner::OnSessionEstablishmentError(CHIP_ERROR err)
1165 : {
1166 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
1167 :
1168 0 : if (mPairingDelegate != nullptr)
1169 : {
1170 0 : mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingFailed);
1171 : }
1172 :
1173 0 : RendezvousCleanup(err);
1174 0 : }
1175 :
1176 0 : void DeviceCommissioner::OnSessionEstablished(const SessionHandle & session)
1177 : {
1178 : // PASE session established.
1179 0 : CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
1180 :
1181 : // We are in the callback for this pairing. Reset so we can pair another device.
1182 0 : mDeviceInPASEEstablishment = nullptr;
1183 :
1184 0 : VerifyOrReturn(device != nullptr, OnSessionEstablishmentError(CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR));
1185 :
1186 0 : CHIP_ERROR err = device->SetConnected(session);
1187 0 : if (err != CHIP_NO_ERROR)
1188 : {
1189 0 : ChipLogError(Controller, "Failed in setting up secure channel: %" CHIP_ERROR_FORMAT, err.Format());
1190 0 : OnSessionEstablishmentError(err);
1191 0 : return;
1192 : }
1193 :
1194 0 : ChipLogDetail(Controller, "Remote device completed SPAKE2+ handshake");
1195 :
1196 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
1197 0 : if (mPairingDelegate != nullptr)
1198 : {
1199 0 : mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR);
1200 : }
1201 :
1202 0 : if (mRunCommissioningAfterConnection)
1203 : {
1204 0 : mRunCommissioningAfterConnection = false;
1205 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
1206 0 : mDefaultCommissioner->StartCommissioning(this, device);
1207 : }
1208 : }
1209 :
1210 0 : CHIP_ERROR DeviceCommissioner::SendCertificateChainRequestCommand(DeviceProxy * device,
1211 : Credentials::CertificateType certificateType,
1212 : Optional<System::Clock::Timeout> timeout)
1213 : {
1214 : MATTER_TRACE_SCOPE("SendCertificateChainRequestCommand", "DeviceCommissioner");
1215 0 : ChipLogDetail(Controller, "Sending Certificate Chain request to %p device", device);
1216 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1217 :
1218 0 : OperationalCredentials::Commands::CertificateChainRequest::Type request;
1219 0 : request.certificateType = static_cast<OperationalCredentials::CertificateChainTypeEnum>(certificateType);
1220 0 : return SendCommissioningCommand(device, request, OnCertificateChainResponse, OnCertificateChainFailureResponse, kRootEndpointId,
1221 0 : timeout);
1222 : }
1223 :
1224 0 : void DeviceCommissioner::OnCertificateChainFailureResponse(void * context, CHIP_ERROR error)
1225 : {
1226 : MATTER_TRACE_SCOPE("OnCertificateChainFailureResponse", "DeviceCommissioner");
1227 0 : ChipLogProgress(Controller, "Device failed to receive the Certificate Chain request Response: %" CHIP_ERROR_FORMAT,
1228 : error.Format());
1229 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1230 0 : commissioner->CommissioningStageComplete(error);
1231 0 : }
1232 :
1233 0 : void DeviceCommissioner::OnCertificateChainResponse(
1234 : void * context, const chip::app::Clusters::OperationalCredentials::Commands::CertificateChainResponse::DecodableType & response)
1235 : {
1236 : MATTER_TRACE_SCOPE("OnCertificateChainResponse", "DeviceCommissioner");
1237 0 : ChipLogProgress(Controller, "Received certificate chain from the device");
1238 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1239 :
1240 0 : CommissioningDelegate::CommissioningReport report;
1241 0 : report.Set<RequestedCertificate>(RequestedCertificate(response.certificate));
1242 :
1243 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1244 0 : }
1245 :
1246 0 : CHIP_ERROR DeviceCommissioner::SendAttestationRequestCommand(DeviceProxy * device, const ByteSpan & attestationNonce,
1247 : Optional<System::Clock::Timeout> timeout)
1248 : {
1249 : MATTER_TRACE_SCOPE("SendAttestationRequestCommand", "DeviceCommissioner");
1250 0 : ChipLogDetail(Controller, "Sending Attestation request to %p device", device);
1251 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1252 :
1253 0 : OperationalCredentials::Commands::AttestationRequest::Type request;
1254 0 : request.attestationNonce = attestationNonce;
1255 :
1256 0 : ReturnErrorOnFailure(
1257 : SendCommissioningCommand(device, request, OnAttestationResponse, OnAttestationFailureResponse, kRootEndpointId, timeout));
1258 0 : ChipLogDetail(Controller, "Sent Attestation request, waiting for the Attestation Information");
1259 0 : return CHIP_NO_ERROR;
1260 : }
1261 :
1262 0 : void DeviceCommissioner::OnAttestationFailureResponse(void * context, CHIP_ERROR error)
1263 : {
1264 : MATTER_TRACE_SCOPE("OnAttestationFailureResponse", "DeviceCommissioner");
1265 0 : ChipLogProgress(Controller, "Device failed to receive the Attestation Information Response: %" CHIP_ERROR_FORMAT,
1266 : error.Format());
1267 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1268 0 : commissioner->CommissioningStageComplete(error);
1269 0 : }
1270 :
1271 0 : void DeviceCommissioner::OnAttestationResponse(void * context,
1272 : const OperationalCredentials::Commands::AttestationResponse::DecodableType & data)
1273 : {
1274 : MATTER_TRACE_SCOPE("OnAttestationResponse", "DeviceCommissioner");
1275 0 : ChipLogProgress(Controller, "Received Attestation Information from the device");
1276 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1277 :
1278 0 : CommissioningDelegate::CommissioningReport report;
1279 0 : report.Set<AttestationResponse>(AttestationResponse(data.attestationElements, data.attestationSignature));
1280 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1281 0 : }
1282 :
1283 0 : void DeviceCommissioner::OnDeviceAttestationInformationVerification(
1284 : void * context, const Credentials::DeviceAttestationVerifier::AttestationInfo & info, AttestationVerificationResult result)
1285 : {
1286 : MATTER_TRACE_SCOPE("OnDeviceAttestationInformationVerification", "DeviceCommissioner");
1287 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1288 :
1289 0 : if (commissioner->mCommissioningStage == CommissioningStage::kAttestationVerification)
1290 : {
1291 : // Check for revoked DAC Chain before calling delegate. Enter next stage.
1292 :
1293 0 : CommissioningDelegate::CommissioningReport report;
1294 0 : report.Set<AttestationErrorInfo>(result);
1295 :
1296 0 : return commissioner->CommissioningStageComplete(
1297 0 : result == AttestationVerificationResult::kSuccess ? CHIP_NO_ERROR : CHIP_ERROR_FAILED_DEVICE_ATTESTATION, report);
1298 0 : }
1299 :
1300 0 : if (!commissioner->mDeviceBeingCommissioned)
1301 : {
1302 0 : ChipLogError(Controller, "Device attestation verification result received when we're not commissioning a device");
1303 0 : return;
1304 : }
1305 :
1306 0 : auto & params = commissioner->mDefaultCommissioner->GetCommissioningParameters();
1307 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1308 :
1309 0 : if (params.GetCompletionStatus().attestationResult.HasValue())
1310 : {
1311 0 : auto previousResult = params.GetCompletionStatus().attestationResult.Value();
1312 0 : if (previousResult != AttestationVerificationResult::kSuccess)
1313 : {
1314 0 : result = previousResult;
1315 : }
1316 : }
1317 :
1318 0 : if (result != AttestationVerificationResult::kSuccess)
1319 : {
1320 0 : CommissioningDelegate::CommissioningReport report;
1321 0 : report.Set<AttestationErrorInfo>(result);
1322 0 : if (result == AttestationVerificationResult::kNotImplemented)
1323 : {
1324 0 : ChipLogError(Controller,
1325 : "Failed in verifying 'Attestation Information' command received from the device due to default "
1326 : "DeviceAttestationVerifier Class not being overridden by a real implementation.");
1327 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_NOT_IMPLEMENTED, report);
1328 0 : return;
1329 : }
1330 :
1331 0 : ChipLogError(Controller, "Failed in verifying 'Attestation Information' command received from the device: err %hu (%s)",
1332 : static_cast<uint16_t>(result), GetAttestationResultDescription(result));
1333 : // Go look at AttestationVerificationResult enum in src/credentials/attestation_verifier/DeviceAttestationVerifier.h to
1334 : // understand the errors.
1335 :
1336 : // If a device attestation status delegate is installed, delegate handling of failure to the client and let them
1337 : // decide on whether to proceed further or not.
1338 0 : if (deviceAttestationDelegate)
1339 : {
1340 0 : commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
1341 : }
1342 : else
1343 : {
1344 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION, report);
1345 : }
1346 0 : }
1347 : else
1348 : {
1349 0 : if (deviceAttestationDelegate && deviceAttestationDelegate->ShouldWaitAfterDeviceAttestation())
1350 : {
1351 0 : commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
1352 : }
1353 : else
1354 : {
1355 0 : ChipLogProgress(Controller, "Successfully validated 'Attestation Information' command received from the device.");
1356 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1357 : }
1358 : }
1359 : }
1360 :
1361 0 : void DeviceCommissioner::OnArmFailSafeExtendedForDeviceAttestation(
1362 : void * context, const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType &)
1363 : {
1364 0 : ChipLogProgress(Controller, "Successfully extended fail-safe timer to handle DA failure");
1365 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1366 :
1367 : // We have completed our command invoke, but we're not going to finish the
1368 : // commissioning step until our client examines the attestation
1369 : // information. Clear out mInvokeCancelFn (which points at the
1370 : // CommandSender we just finished using) now, so it's not dangling.
1371 0 : commissioner->mInvokeCancelFn = nullptr;
1372 :
1373 0 : commissioner->HandleDeviceAttestationCompleted();
1374 0 : }
1375 :
1376 0 : void DeviceCommissioner::HandleDeviceAttestationCompleted()
1377 : {
1378 0 : if (!mDeviceBeingCommissioned)
1379 : {
1380 0 : return;
1381 : }
1382 :
1383 0 : auto & params = mDefaultCommissioner->GetCommissioningParameters();
1384 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1385 0 : if (deviceAttestationDelegate)
1386 : {
1387 0 : ChipLogProgress(Controller, "Device attestation completed, delegating continuation to client");
1388 0 : deviceAttestationDelegate->OnDeviceAttestationCompleted(this, mDeviceBeingCommissioned, *mAttestationDeviceInfo,
1389 : mAttestationResult);
1390 : }
1391 : else
1392 : {
1393 0 : ChipLogError(Controller, "Need to wait for device attestation delegate, but no delegate available. Failing commissioning");
1394 0 : CommissioningDelegate::CommissioningReport report;
1395 0 : report.Set<AttestationErrorInfo>(mAttestationResult);
1396 0 : CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1397 0 : }
1398 : }
1399 :
1400 0 : void DeviceCommissioner::OnFailedToExtendedArmFailSafeDeviceAttestation(void * context, CHIP_ERROR error)
1401 : {
1402 0 : ChipLogProgress(Controller, "Failed to extend fail-safe timer to handle attestation failure: %" CHIP_ERROR_FORMAT,
1403 : error.Format());
1404 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1405 :
1406 0 : CommissioningDelegate::CommissioningReport report;
1407 0 : report.Set<AttestationErrorInfo>(commissioner->mAttestationResult);
1408 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1409 0 : }
1410 :
1411 0 : void DeviceCommissioner::OnICDManagementRegisterClientResponse(
1412 : void * context, const app::Clusters::IcdManagement::Commands::RegisterClientResponse::DecodableType & data)
1413 : {
1414 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1415 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1416 0 : VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
1417 0 : VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDRegistration, err = CHIP_ERROR_INCORRECT_STATE);
1418 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1419 :
1420 0 : if (commissioner->mPairingDelegate != nullptr)
1421 : {
1422 0 : commissioner->mPairingDelegate->OnICDRegistrationComplete(
1423 0 : ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()), data.ICDCounter);
1424 : }
1425 :
1426 0 : exit:
1427 0 : CommissioningDelegate::CommissioningReport report;
1428 0 : commissioner->CommissioningStageComplete(err, report);
1429 0 : }
1430 :
1431 0 : void DeviceCommissioner::OnICDManagementStayActiveResponse(
1432 : void * context, const app::Clusters::IcdManagement::Commands::StayActiveResponse::DecodableType & data)
1433 : {
1434 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1435 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1436 0 : VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
1437 0 : VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDSendStayActive, err = CHIP_ERROR_INCORRECT_STATE);
1438 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1439 :
1440 0 : if (commissioner->mPairingDelegate != nullptr)
1441 : {
1442 0 : commissioner->mPairingDelegate->OnICDStayActiveComplete(
1443 :
1444 0 : ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()),
1445 0 : data.promisedActiveDuration);
1446 : }
1447 :
1448 0 : exit:
1449 0 : CommissioningDelegate::CommissioningReport report;
1450 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1451 0 : }
1452 :
1453 0 : bool DeviceCommissioner::ExtendArmFailSafeInternal(DeviceProxy * proxy, CommissioningStage step, uint16_t armFailSafeTimeout,
1454 : Optional<System::Clock::Timeout> commandTimeout,
1455 : OnExtendFailsafeSuccess onSuccess, OnExtendFailsafeFailure onFailure,
1456 : bool fireAndForget)
1457 : {
1458 : using namespace System;
1459 : using namespace System::Clock;
1460 0 : auto now = SystemClock().GetMonotonicTimestamp();
1461 0 : auto newFailSafeTimeout = now + Seconds16(armFailSafeTimeout);
1462 0 : if (newFailSafeTimeout < proxy->GetFailSafeExpirationTimestamp())
1463 : {
1464 0 : ChipLogProgress(
1465 : Controller, "Skipping arming failsafe: new time (%u seconds from now) before old time (%u seconds from now)",
1466 : armFailSafeTimeout, std::chrono::duration_cast<Seconds16>(proxy->GetFailSafeExpirationTimestamp() - now).count());
1467 0 : return false;
1468 : }
1469 :
1470 0 : uint64_t breadcrumb = static_cast<uint64_t>(step);
1471 0 : GeneralCommissioning::Commands::ArmFailSafe::Type request;
1472 0 : request.expiryLengthSeconds = armFailSafeTimeout;
1473 0 : request.breadcrumb = breadcrumb;
1474 0 : ChipLogProgress(Controller, "Arming failsafe (%u seconds)", request.expiryLengthSeconds);
1475 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, onSuccess, onFailure, kRootEndpointId, commandTimeout, fireAndForget);
1476 0 : if (err != CHIP_NO_ERROR)
1477 : {
1478 0 : onFailure((!fireAndForget) ? this : nullptr, err);
1479 0 : return true; // we have called onFailure already
1480 : }
1481 :
1482 : // Note: The stored timestamp may become invalid if we fail asynchronously
1483 0 : proxy->SetFailSafeExpirationTimestamp(newFailSafeTimeout);
1484 0 : return true;
1485 : }
1486 :
1487 0 : void DeviceCommissioner::ExtendArmFailSafeForDeviceAttestation(const Credentials::DeviceAttestationVerifier::AttestationInfo & info,
1488 : Credentials::AttestationVerificationResult result)
1489 : {
1490 0 : mAttestationResult = result;
1491 :
1492 0 : auto & params = mDefaultCommissioner->GetCommissioningParameters();
1493 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1494 :
1495 0 : mAttestationDeviceInfo = Platform::MakeUnique<Credentials::DeviceAttestationVerifier::AttestationDeviceInfo>(info);
1496 :
1497 0 : auto expiryLengthSeconds = deviceAttestationDelegate->FailSafeExpiryTimeoutSecs();
1498 0 : bool waitForFailsafeExtension = expiryLengthSeconds.HasValue();
1499 0 : if (waitForFailsafeExtension)
1500 : {
1501 0 : ChipLogProgress(Controller, "Changing fail-safe timer to %u seconds to handle DA failure", expiryLengthSeconds.Value());
1502 : // Per spec, anything we do with the fail-safe armed must not time out
1503 : // in less than kMinimumCommissioningStepTimeout.
1504 : waitForFailsafeExtension =
1505 0 : ExtendArmFailSafeInternal(mDeviceBeingCommissioned, mCommissioningStage, expiryLengthSeconds.Value(),
1506 0 : MakeOptional(kMinimumCommissioningStepTimeout), OnArmFailSafeExtendedForDeviceAttestation,
1507 : OnFailedToExtendedArmFailSafeDeviceAttestation, /* fireAndForget = */ false);
1508 : }
1509 : else
1510 : {
1511 0 : ChipLogProgress(Controller, "Proceeding without changing fail-safe timer value as delegate has not set it");
1512 : }
1513 :
1514 0 : if (!waitForFailsafeExtension)
1515 : {
1516 0 : HandleDeviceAttestationCompleted();
1517 : }
1518 0 : }
1519 :
1520 0 : CHIP_ERROR DeviceCommissioner::ValidateAttestationInfo(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
1521 : {
1522 : MATTER_TRACE_SCOPE("ValidateAttestationInfo", "DeviceCommissioner");
1523 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1524 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1525 :
1526 0 : mDeviceAttestationVerifier->VerifyAttestationInformation(info, &mDeviceAttestationInformationVerificationCallback);
1527 :
1528 : // TODO: Validate Firmware Information
1529 :
1530 0 : return CHIP_NO_ERROR;
1531 : }
1532 :
1533 : CHIP_ERROR
1534 0 : DeviceCommissioner::CheckForRevokedDACChain(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
1535 : {
1536 : MATTER_TRACE_SCOPE("CheckForRevokedDACChain", "DeviceCommissioner");
1537 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1538 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1539 :
1540 0 : mDeviceAttestationVerifier->CheckForRevokedDACChain(info, &mDeviceAttestationInformationVerificationCallback);
1541 :
1542 0 : return CHIP_NO_ERROR;
1543 : }
1544 :
1545 0 : CHIP_ERROR DeviceCommissioner::ValidateCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
1546 : const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & csrNonce)
1547 : {
1548 : MATTER_TRACE_SCOPE("ValidateCSR", "DeviceCommissioner");
1549 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1550 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1551 :
1552 0 : P256PublicKey dacPubkey;
1553 0 : ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
1554 :
1555 : // Retrieve attestation challenge
1556 : ByteSpan attestationChallenge =
1557 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
1558 :
1559 : // The operational CA should also verify this on its end during NOC generation, if end-to-end attestation is desired.
1560 0 : return mDeviceAttestationVerifier->VerifyNodeOperationalCSRInformation(NOCSRElements, attestationChallenge,
1561 0 : AttestationSignature, dacPubkey, csrNonce);
1562 0 : }
1563 :
1564 0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificateSigningRequestCommand(DeviceProxy * device, const ByteSpan & csrNonce,
1565 : Optional<System::Clock::Timeout> timeout)
1566 : {
1567 : MATTER_TRACE_SCOPE("SendOperationalCertificateSigningRequestCommand", "DeviceCommissioner");
1568 0 : ChipLogDetail(Controller, "Sending CSR request to %p device", device);
1569 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1570 :
1571 0 : OperationalCredentials::Commands::CSRRequest::Type request;
1572 0 : request.CSRNonce = csrNonce;
1573 :
1574 0 : ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateSigningRequest, OnCSRFailureResponse,
1575 : kRootEndpointId, timeout));
1576 0 : ChipLogDetail(Controller, "Sent CSR request, waiting for the CSR");
1577 0 : return CHIP_NO_ERROR;
1578 : }
1579 :
1580 0 : void DeviceCommissioner::OnCSRFailureResponse(void * context, CHIP_ERROR error)
1581 : {
1582 : MATTER_TRACE_SCOPE("OnCSRFailureResponse", "DeviceCommissioner");
1583 0 : ChipLogProgress(Controller, "Device failed to receive the CSR request Response: %" CHIP_ERROR_FORMAT, error.Format());
1584 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1585 0 : commissioner->CommissioningStageComplete(error);
1586 0 : }
1587 :
1588 0 : void DeviceCommissioner::OnOperationalCertificateSigningRequest(
1589 : void * context, const OperationalCredentials::Commands::CSRResponse::DecodableType & data)
1590 : {
1591 : MATTER_TRACE_SCOPE("OnOperationalCertificateSigningRequest", "DeviceCommissioner");
1592 0 : ChipLogProgress(Controller, "Received certificate signing request from the device");
1593 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1594 :
1595 0 : CommissioningDelegate::CommissioningReport report;
1596 0 : report.Set<CSRResponse>(CSRResponse(data.NOCSRElements, data.attestationSignature));
1597 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1598 0 : }
1599 :
1600 0 : void DeviceCommissioner::OnDeviceNOCChainGeneration(void * context, CHIP_ERROR status, const ByteSpan & noc, const ByteSpan & icac,
1601 : const ByteSpan & rcac, Optional<IdentityProtectionKeySpan> ipk,
1602 : Optional<NodeId> adminSubject)
1603 : {
1604 : MATTER_TRACE_SCOPE("OnDeviceNOCChainGeneration", "DeviceCommissioner");
1605 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1606 :
1607 : // The placeholder IPK is not satisfactory, but is there to fill the NocChain struct on error. It will still fail.
1608 0 : const uint8_t placeHolderIpk[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1609 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1610 0 : if (status == CHIP_NO_ERROR && !ipk.HasValue())
1611 : {
1612 0 : ChipLogError(Controller, "Did not have an IPK from the OperationalCredentialsIssuer! Cannot commission.");
1613 0 : status = CHIP_ERROR_INVALID_ARGUMENT;
1614 : }
1615 :
1616 0 : ChipLogProgress(Controller, "Received callback from the CA for NOC Chain generation. Status: %" CHIP_ERROR_FORMAT,
1617 : status.Format());
1618 0 : if (status == CHIP_NO_ERROR && commissioner->mState != State::Initialized)
1619 : {
1620 0 : status = CHIP_ERROR_INCORRECT_STATE;
1621 : }
1622 0 : if (status != CHIP_NO_ERROR)
1623 : {
1624 0 : ChipLogError(Controller, "Failed in generating device's operational credentials. Error: %" CHIP_ERROR_FORMAT,
1625 : status.Format());
1626 : }
1627 :
1628 : // TODO - Verify that the generated root cert matches with commissioner's root cert
1629 0 : CommissioningDelegate::CommissioningReport report;
1630 0 : report.Set<NocChain>(NocChain(noc, icac, rcac, ipk.HasValue() ? ipk.Value() : IdentityProtectionKeySpan(placeHolderIpk),
1631 0 : adminSubject.HasValue() ? adminSubject.Value() : commissioner->GetNodeId()));
1632 0 : commissioner->CommissioningStageComplete(status, report);
1633 0 : }
1634 :
1635 0 : CHIP_ERROR DeviceCommissioner::IssueNOCChain(const ByteSpan & NOCSRElements, NodeId nodeId,
1636 : chip::Callback::Callback<OnNOCChainGeneration> * callback)
1637 : {
1638 : MATTER_TRACE_SCOPE("IssueNOCChain", "DeviceCommissioner");
1639 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1640 :
1641 0 : ChipLogProgress(Controller, "Getting certificate chain for the device on fabric idx %u", static_cast<unsigned>(mFabricIndex));
1642 :
1643 0 : mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(nodeId);
1644 :
1645 0 : if (mFabricIndex != kUndefinedFabricIndex)
1646 : {
1647 0 : mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
1648 : }
1649 :
1650 : // Note: we don't have attestationSignature, attestationChallenge, DAC, PAI so we are just providing an empty ByteSpan
1651 : // for those arguments.
1652 0 : return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, ByteSpan(), ByteSpan(), ByteSpan(), ByteSpan(),
1653 0 : ByteSpan(), callback);
1654 : }
1655 :
1656 0 : CHIP_ERROR DeviceCommissioner::ProcessCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
1657 : const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & pai,
1658 : const ByteSpan & csrNonce)
1659 : {
1660 : MATTER_TRACE_SCOPE("ProcessOpCSR", "DeviceCommissioner");
1661 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1662 :
1663 0 : ChipLogProgress(Controller, "Getting certificate chain for the device from the issuer");
1664 :
1665 0 : P256PublicKey dacPubkey;
1666 0 : ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
1667 :
1668 : // Retrieve attestation challenge
1669 : ByteSpan attestationChallenge =
1670 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
1671 :
1672 0 : mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(proxy->GetDeviceId());
1673 :
1674 0 : if (mFabricIndex != kUndefinedFabricIndex)
1675 : {
1676 0 : mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
1677 : }
1678 :
1679 0 : return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, csrNonce, AttestationSignature, attestationChallenge,
1680 0 : dac, pai, &mDeviceNOCChainCallback);
1681 0 : }
1682 :
1683 0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificate(DeviceProxy * device, const ByteSpan & nocCertBuf,
1684 : const Optional<ByteSpan> & icaCertBuf,
1685 : const IdentityProtectionKeySpan ipk, const NodeId adminSubject,
1686 : Optional<System::Clock::Timeout> timeout)
1687 : {
1688 : MATTER_TRACE_SCOPE("SendOperationalCertificate", "DeviceCommissioner");
1689 :
1690 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1691 :
1692 0 : OperationalCredentials::Commands::AddNOC::Type request;
1693 0 : request.NOCValue = nocCertBuf;
1694 0 : request.ICACValue = icaCertBuf;
1695 0 : request.IPKValue = ipk;
1696 0 : request.caseAdminSubject = adminSubject;
1697 0 : request.adminVendorId = mVendorId;
1698 :
1699 0 : ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateAddResponse, OnAddNOCFailureResponse,
1700 : kRootEndpointId, timeout));
1701 :
1702 0 : ChipLogProgress(Controller, "Sent operational certificate to the device");
1703 :
1704 0 : return CHIP_NO_ERROR;
1705 : }
1706 :
1707 0 : CHIP_ERROR DeviceCommissioner::ConvertFromOperationalCertStatus(OperationalCredentials::NodeOperationalCertStatusEnum err)
1708 : {
1709 : using OperationalCredentials::NodeOperationalCertStatusEnum;
1710 0 : switch (err)
1711 : {
1712 0 : case NodeOperationalCertStatusEnum::kOk:
1713 0 : return CHIP_NO_ERROR;
1714 0 : case NodeOperationalCertStatusEnum::kInvalidPublicKey:
1715 0 : return CHIP_ERROR_INVALID_PUBLIC_KEY;
1716 0 : case NodeOperationalCertStatusEnum::kInvalidNodeOpId:
1717 0 : return CHIP_ERROR_WRONG_NODE_ID;
1718 0 : case NodeOperationalCertStatusEnum::kInvalidNOC:
1719 0 : return CHIP_ERROR_UNSUPPORTED_CERT_FORMAT;
1720 0 : case NodeOperationalCertStatusEnum::kMissingCsr:
1721 0 : return CHIP_ERROR_INCORRECT_STATE;
1722 0 : case NodeOperationalCertStatusEnum::kTableFull:
1723 0 : return CHIP_ERROR_NO_MEMORY;
1724 0 : case NodeOperationalCertStatusEnum::kInvalidAdminSubject:
1725 0 : return CHIP_ERROR_INVALID_ADMIN_SUBJECT;
1726 0 : case NodeOperationalCertStatusEnum::kFabricConflict:
1727 0 : return CHIP_ERROR_FABRIC_EXISTS;
1728 0 : case NodeOperationalCertStatusEnum::kLabelConflict:
1729 0 : return CHIP_ERROR_INVALID_ARGUMENT;
1730 0 : case NodeOperationalCertStatusEnum::kInvalidFabricIndex:
1731 0 : return CHIP_ERROR_INVALID_FABRIC_INDEX;
1732 0 : case NodeOperationalCertStatusEnum::kUnknownEnumValue:
1733 : // Is this a reasonable value?
1734 0 : return CHIP_ERROR_CERT_LOAD_FAILED;
1735 : }
1736 :
1737 0 : return CHIP_ERROR_CERT_LOAD_FAILED;
1738 : }
1739 :
1740 0 : void DeviceCommissioner::OnAddNOCFailureResponse(void * context, CHIP_ERROR error)
1741 : {
1742 : MATTER_TRACE_SCOPE("OnAddNOCFailureResponse", "DeviceCommissioner");
1743 0 : ChipLogProgress(Controller, "Device failed to receive the operational certificate Response: %" CHIP_ERROR_FORMAT,
1744 : error.Format());
1745 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1746 0 : commissioner->CommissioningStageComplete(error);
1747 0 : }
1748 :
1749 0 : void DeviceCommissioner::OnOperationalCertificateAddResponse(
1750 : void * context, const OperationalCredentials::Commands::NOCResponse::DecodableType & data)
1751 : {
1752 : MATTER_TRACE_SCOPE("OnOperationalCertificateAddResponse", "DeviceCommissioner");
1753 0 : ChipLogProgress(Controller, "Device returned status %d on receiving the NOC", to_underlying(data.statusCode));
1754 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1755 :
1756 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1757 :
1758 0 : VerifyOrExit(commissioner->mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
1759 :
1760 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1761 :
1762 0 : err = ConvertFromOperationalCertStatus(data.statusCode);
1763 0 : SuccessOrExit(err);
1764 :
1765 0 : err = commissioner->OnOperationalCredentialsProvisioningCompletion(commissioner->mDeviceBeingCommissioned);
1766 :
1767 0 : exit:
1768 0 : if (err != CHIP_NO_ERROR)
1769 : {
1770 0 : ChipLogProgress(Controller, "Add NOC failed with error: %" CHIP_ERROR_FORMAT, err.Format());
1771 0 : commissioner->CommissioningStageComplete(err);
1772 : }
1773 0 : }
1774 :
1775 0 : CHIP_ERROR DeviceCommissioner::SendTrustedRootCertificate(DeviceProxy * device, const ByteSpan & rcac,
1776 : Optional<System::Clock::Timeout> timeout)
1777 : {
1778 : MATTER_TRACE_SCOPE("SendTrustedRootCertificate", "DeviceCommissioner");
1779 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1780 :
1781 0 : ChipLogProgress(Controller, "Sending root certificate to the device");
1782 :
1783 0 : OperationalCredentials::Commands::AddTrustedRootCertificate::Type request;
1784 0 : request.rootCACertificate = rcac;
1785 0 : ReturnErrorOnFailure(
1786 : SendCommissioningCommand(device, request, OnRootCertSuccessResponse, OnRootCertFailureResponse, kRootEndpointId, timeout));
1787 :
1788 0 : ChipLogProgress(Controller, "Sent root certificate to the device");
1789 :
1790 0 : return CHIP_NO_ERROR;
1791 : }
1792 :
1793 0 : void DeviceCommissioner::OnRootCertSuccessResponse(void * context, const chip::app::DataModel::NullObjectType &)
1794 : {
1795 : MATTER_TRACE_SCOPE("OnRootCertSuccessResponse", "DeviceCommissioner");
1796 0 : ChipLogProgress(Controller, "Device confirmed that it has received the root certificate");
1797 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1798 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1799 0 : }
1800 :
1801 0 : void DeviceCommissioner::OnRootCertFailureResponse(void * context, CHIP_ERROR error)
1802 : {
1803 : MATTER_TRACE_SCOPE("OnRootCertFailureResponse", "DeviceCommissioner");
1804 0 : ChipLogProgress(Controller, "Device failed to receive the root certificate Response: %" CHIP_ERROR_FORMAT, error.Format());
1805 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1806 0 : commissioner->CommissioningStageComplete(error);
1807 0 : }
1808 :
1809 0 : CHIP_ERROR DeviceCommissioner::OnOperationalCredentialsProvisioningCompletion(DeviceProxy * device)
1810 : {
1811 : MATTER_TRACE_SCOPE("OnOperationalCredentialsProvisioningCompletion", "DeviceCommissioner");
1812 0 : ChipLogProgress(Controller, "Operational credentials provisioned on device %p", device);
1813 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1814 :
1815 0 : if (mPairingDelegate != nullptr)
1816 : {
1817 0 : mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingSuccess);
1818 : }
1819 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1820 :
1821 0 : return CHIP_NO_ERROR;
1822 : }
1823 :
1824 : #if CONFIG_NETWORK_LAYER_BLE
1825 : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
1826 : void DeviceCommissioner::ConnectBleTransportToSelf()
1827 : {
1828 : Transport::BLEBase & transport = std::get<Transport::BLE<1>>(mSystemState->TransportMgr()->GetTransport().GetTransports());
1829 : if (!transport.IsBleLayerTransportSetToSelf())
1830 : {
1831 : transport.SetBleLayerTransportToSelf();
1832 : }
1833 : }
1834 : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
1835 :
1836 0 : void DeviceCommissioner::CloseBleConnection()
1837 : {
1838 : // It is fine since we can only commission one device at the same time.
1839 : // We should be able to distinguish different BLE connections if we want
1840 : // to commission multiple devices at the same time over BLE.
1841 0 : mSystemState->BleLayer()->CloseAllBleConnections();
1842 0 : }
1843 : #endif
1844 :
1845 0 : CHIP_ERROR DeviceCommissioner::DiscoverCommissionableNodes(Dnssd::DiscoveryFilter filter)
1846 : {
1847 0 : ReturnErrorOnFailure(SetUpNodeDiscovery());
1848 0 : return mDNSResolver.DiscoverCommissionableNodes(filter);
1849 : }
1850 :
1851 0 : CHIP_ERROR DeviceCommissioner::StopCommissionableDiscovery()
1852 : {
1853 0 : return mDNSResolver.StopDiscovery();
1854 : }
1855 :
1856 0 : const Dnssd::CommissionNodeData * DeviceCommissioner::GetDiscoveredDevice(int idx)
1857 : {
1858 0 : return GetDiscoveredNode(idx);
1859 : }
1860 :
1861 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
1862 :
1863 : CHIP_ERROR DeviceCommissioner::SetUdcListenPort(uint16_t listenPort)
1864 : {
1865 : if (mState == State::Initialized)
1866 : {
1867 : return CHIP_ERROR_INCORRECT_STATE;
1868 : }
1869 :
1870 : mUdcListenPort = listenPort;
1871 : return CHIP_NO_ERROR;
1872 : }
1873 :
1874 : void DeviceCommissioner::FindCommissionableNode(char * instanceName)
1875 : {
1876 : Dnssd::DiscoveryFilter filter(Dnssd::DiscoveryFilterType::kInstanceName, instanceName);
1877 : DiscoverCommissionableNodes(filter);
1878 : }
1879 :
1880 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1881 :
1882 0 : void DeviceCommissioner::OnNodeDiscovered(const chip::Dnssd::DiscoveredNodeData & nodeData)
1883 : {
1884 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1885 : if (mUdcServer != nullptr)
1886 : {
1887 : mUdcServer->OnCommissionableNodeFound(nodeData);
1888 : }
1889 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1890 0 : AbstractDnssdDiscoveryController::OnNodeDiscovered(nodeData);
1891 0 : mSetUpCodePairer.NotifyCommissionableDeviceDiscovered(nodeData);
1892 0 : }
1893 :
1894 0 : void DeviceCommissioner::OnBasicSuccess(void * context, const chip::app::DataModel::NullObjectType &)
1895 : {
1896 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1897 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1898 0 : }
1899 :
1900 0 : void DeviceCommissioner::OnBasicFailure(void * context, CHIP_ERROR error)
1901 : {
1902 0 : ChipLogProgress(Controller, "Received failure response: %" CHIP_ERROR_FORMAT, error.Format());
1903 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1904 0 : commissioner->CommissioningStageComplete(error);
1905 0 : }
1906 :
1907 0 : static GeneralCommissioning::Commands::ArmFailSafe::Type DisarmFailsafeRequest()
1908 : {
1909 0 : GeneralCommissioning::Commands::ArmFailSafe::Type request;
1910 0 : request.expiryLengthSeconds = 0; // Expire immediately.
1911 0 : request.breadcrumb = 0;
1912 0 : return request;
1913 : }
1914 :
1915 0 : static void MarkForEviction(const Optional<SessionHandle> & session)
1916 : {
1917 0 : if (session.HasValue())
1918 : {
1919 0 : session.Value()->AsSecureSession()->MarkForEviction();
1920 : }
1921 0 : }
1922 :
1923 0 : void DeviceCommissioner::CleanupCommissioning(DeviceProxy * proxy, NodeId nodeId, const CompletionStatus & completionStatus)
1924 : {
1925 : // At this point, proxy == mDeviceBeingCommissioned, nodeId == mDeviceBeingCommissioned->GetDeviceId()
1926 :
1927 0 : mCommissioningCompletionStatus = completionStatus;
1928 :
1929 0 : if (completionStatus.err == CHIP_NO_ERROR)
1930 : {
1931 : // CommissioningStageComplete uses mDeviceBeingCommissioned, which can
1932 : // be commissionee if we are cleaning up before we've gone operational. Normally
1933 : // that would not happen in this non-error case, _except_ if we were told to skip sending
1934 : // CommissioningComplete: in that case we do not have an operational DeviceProxy, so
1935 : // we're using our CommissioneeDeviceProxy to do a successful cleanup.
1936 : //
1937 : // This means we have to call CommissioningStageComplete() before we destroy commissionee.
1938 : //
1939 : // This should be safe, because CommissioningStageComplete() does not call CleanupCommissioning
1940 : // when called in the cleanup stage (which is where we are), and StopPairing does not directly release
1941 : // mDeviceBeingCommissioned.
1942 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1943 :
1944 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
1945 0 : if (commissionee != nullptr)
1946 : {
1947 0 : ReleaseCommissioneeDevice(commissionee);
1948 : }
1949 : // Send the callbacks, we're done.
1950 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
1951 : }
1952 0 : else if (completionStatus.err == CHIP_ERROR_CANCELLED)
1953 : {
1954 : // If we're cleaning up because cancellation has been requested via StopPairing(), expire the failsafe
1955 : // in the background and reset our state synchronously, so a new commissioning attempt can be started.
1956 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
1957 0 : SessionHolder session((commissionee == proxy) ? commissionee->DetachSecureSession().Value()
1958 0 : : proxy->GetSecureSession().Value());
1959 :
1960 0 : auto request = DisarmFailsafeRequest();
1961 0 : auto onSuccessCb = [session](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
1962 : const decltype(request)::ResponseType & responseData) {
1963 0 : ChipLogProgress(Controller, "Failsafe disarmed");
1964 0 : MarkForEviction(session.Get());
1965 0 : };
1966 0 : auto onFailureCb = [session](CHIP_ERROR aError) {
1967 0 : ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, aError.Format());
1968 0 : MarkForEviction(session.Get());
1969 0 : };
1970 :
1971 0 : ChipLogProgress(Controller, "Disarming failsafe on device %p in background", proxy);
1972 0 : CHIP_ERROR err = InvokeCommandRequest(proxy->GetExchangeManager(), session.Get().Value(), kRootEndpointId, request,
1973 : onSuccessCb, onFailureCb);
1974 0 : if (err != CHIP_NO_ERROR)
1975 : {
1976 0 : ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
1977 : }
1978 :
1979 0 : CleanupDoneAfterError();
1980 0 : }
1981 0 : else if (completionStatus.failedStage.HasValue() && completionStatus.failedStage.Value() >= kWiFiNetworkSetup)
1982 : {
1983 : // If we were already doing network setup, we need to retain the pase session and start again from network setup stage.
1984 : // We do not need to reset the failsafe here because we want to keep everything on the device up to this point, so just
1985 : // send the completion callbacks (see "Commissioning Flows Error Handling" in the spec).
1986 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1987 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
1988 : }
1989 : else
1990 : {
1991 : // If we've failed somewhere in the early stages (or we don't have a failedStage specified), we need to start from the
1992 : // beginning. However, because some of the commands can only be sent once per arm-failsafe, we also need to force a reset on
1993 : // the failsafe so we can start fresh on the next attempt.
1994 0 : ChipLogProgress(Controller, "Disarming failsafe on device %p", proxy);
1995 0 : auto request = DisarmFailsafeRequest();
1996 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnDisarmFailsafe, OnDisarmFailsafeFailure, kRootEndpointId);
1997 0 : if (err != CHIP_NO_ERROR)
1998 : {
1999 : // We won't get any async callbacks here, so just pretend like the command errored out async.
2000 0 : ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
2001 0 : CleanupDoneAfterError();
2002 : }
2003 : }
2004 0 : }
2005 :
2006 0 : void DeviceCommissioner::OnDisarmFailsafe(void * context,
2007 : const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2008 : {
2009 0 : ChipLogProgress(Controller, "Failsafe disarmed");
2010 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2011 0 : commissioner->CleanupDoneAfterError();
2012 0 : }
2013 :
2014 0 : void DeviceCommissioner::OnDisarmFailsafeFailure(void * context, CHIP_ERROR error)
2015 : {
2016 0 : ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, error.Format());
2017 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2018 0 : commissioner->CleanupDoneAfterError();
2019 0 : }
2020 :
2021 0 : void DeviceCommissioner::CleanupDoneAfterError()
2022 : {
2023 : // If someone nulled out our mDeviceBeingCommissioned, there's nothing else
2024 : // to do here.
2025 0 : VerifyOrReturn(mDeviceBeingCommissioned != nullptr);
2026 :
2027 0 : NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
2028 :
2029 : // Signal completion - this will reset mDeviceBeingCommissioned.
2030 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2031 :
2032 : // At this point, we also want to close off the pase session so we need to re-establish
2033 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
2034 :
2035 : // If we've disarmed the failsafe, it's because we're starting again, so kill the pase connection.
2036 0 : if (commissionee != nullptr)
2037 : {
2038 0 : ReleaseCommissioneeDevice(commissionee);
2039 : }
2040 :
2041 : // Invoke callbacks last, after we have cleared up all state.
2042 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
2043 : }
2044 :
2045 0 : void DeviceCommissioner::SendCommissioningCompleteCallbacks(NodeId nodeId, const CompletionStatus & completionStatus)
2046 : {
2047 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerCommission, completionStatus.err);
2048 :
2049 0 : ChipLogProgress(Controller, "Commissioning complete for node ID 0x" ChipLogFormatX64 ": %s", ChipLogValueX64(nodeId),
2050 : (completionStatus.err == CHIP_NO_ERROR ? "success" : completionStatus.err.AsString()));
2051 0 : mCommissioningStage = CommissioningStage::kSecurePairing;
2052 :
2053 0 : if (mPairingDelegate == nullptr)
2054 : {
2055 0 : return;
2056 : }
2057 :
2058 0 : mPairingDelegate->OnCommissioningComplete(nodeId, completionStatus.err);
2059 :
2060 0 : PeerId peerId(GetCompressedFabricId(), nodeId);
2061 0 : if (completionStatus.err == CHIP_NO_ERROR)
2062 : {
2063 0 : mPairingDelegate->OnCommissioningSuccess(peerId);
2064 : }
2065 : else
2066 : {
2067 : // TODO: We should propogate detailed error information (commissioningError, networkCommissioningStatus) from
2068 : // completionStatus.
2069 0 : mPairingDelegate->OnCommissioningFailure(peerId, completionStatus.err, completionStatus.failedStage.ValueOr(kError),
2070 0 : completionStatus.attestationResult);
2071 : }
2072 : }
2073 :
2074 0 : void DeviceCommissioner::CommissioningStageComplete(CHIP_ERROR err, CommissioningDelegate::CommissioningReport report)
2075 : {
2076 : // Once this stage is complete, reset mDeviceBeingCommissioned - this will be reset when the delegate calls the next step.
2077 : MATTER_TRACE_SCOPE("CommissioningStageComplete", "DeviceCommissioner");
2078 : MATTER_LOG_METRIC_END(MetricKeyForCommissioningStage(mCommissioningStage), err);
2079 0 : VerifyOrDie(mDeviceBeingCommissioned);
2080 :
2081 0 : NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
2082 0 : DeviceProxy * proxy = mDeviceBeingCommissioned;
2083 0 : mDeviceBeingCommissioned = nullptr;
2084 0 : mInvokeCancelFn = nullptr;
2085 0 : mWriteCancelFn = nullptr;
2086 :
2087 0 : if (mPairingDelegate != nullptr)
2088 : {
2089 0 : mPairingDelegate->OnCommissioningStatusUpdate(PeerId(GetCompressedFabricId(), nodeId), mCommissioningStage, err);
2090 : }
2091 :
2092 0 : if (mCommissioningDelegate == nullptr)
2093 : {
2094 0 : return;
2095 : }
2096 0 : report.stageCompleted = mCommissioningStage;
2097 0 : CHIP_ERROR status = mCommissioningDelegate->CommissioningStepFinished(err, report);
2098 0 : if (status != CHIP_NO_ERROR && mCommissioningStage != CommissioningStage::kCleanup)
2099 : {
2100 : // Commissioning delegate will only return error if it failed to perform the appropriate commissioning step.
2101 : // In this case, we should complete the commissioning for it.
2102 0 : CompletionStatus completionStatus;
2103 0 : completionStatus.err = status;
2104 0 : completionStatus.failedStage = MakeOptional(report.stageCompleted);
2105 0 : mCommissioningStage = CommissioningStage::kCleanup;
2106 0 : mDeviceBeingCommissioned = proxy;
2107 0 : CleanupCommissioning(proxy, nodeId, completionStatus);
2108 : }
2109 : }
2110 :
2111 0 : void DeviceCommissioner::OnDeviceConnectedFn(void * context, Messaging::ExchangeManager & exchangeMgr,
2112 : const SessionHandle & sessionHandle)
2113 : {
2114 : // CASE session established.
2115 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, CHIP_NO_ERROR);
2116 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2117 0 : VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
2118 : commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
2119 0 : VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == sessionHandle->GetPeer().GetNodeId());
2120 0 : commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
2121 :
2122 0 : CommissioningDelegate::CommissioningReport report;
2123 0 : report.Set<OperationalNodeFoundData>(OperationalNodeFoundData(OperationalDeviceProxy(&exchangeMgr, sessionHandle)));
2124 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
2125 0 : }
2126 :
2127 0 : void DeviceCommissioner::OnDeviceConnectionFailureFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error)
2128 : {
2129 : // CASE session establishment failed.
2130 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, error);
2131 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2132 0 : VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
2133 : commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
2134 0 : VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
2135 0 : commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
2136 :
2137 0 : if (error != CHIP_NO_ERROR)
2138 : {
2139 0 : ChipLogProgress(Controller, "Device connection failed. Error %" CHIP_ERROR_FORMAT, error.Format());
2140 : }
2141 : else
2142 : {
2143 : // Ensure that commissioning stage advancement is done based on seeing an error.
2144 0 : ChipLogError(Controller, "Device connection failed without a valid error code.");
2145 0 : error = CHIP_ERROR_INTERNAL;
2146 : }
2147 0 : commissioner->CommissioningStageComplete(error);
2148 0 : }
2149 :
2150 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
2151 : // No specific action to take on either success or failure here; we're just
2152 : // trying to bump the fail-safe, and if that fails it's not clear there's much
2153 : // we can to with that.
2154 0 : static void OnExtendFailsafeForCASERetryFailure(void * context, CHIP_ERROR error)
2155 : {
2156 0 : ChipLogError(Controller, "Failed to extend fail-safe for CASE retry: %" CHIP_ERROR_FORMAT, error.Format());
2157 0 : }
2158 : static void
2159 0 : OnExtendFailsafeForCASERetrySuccess(void * context,
2160 : const app::Clusters::GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2161 : {
2162 0 : ChipLogProgress(Controller, "Status of extending fail-safe for CASE retry: %u", to_underlying(data.errorCode));
2163 0 : }
2164 :
2165 0 : void DeviceCommissioner::OnDeviceConnectionRetryFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error,
2166 : System::Clock::Seconds16 retryTimeout)
2167 : {
2168 0 : ChipLogError(Controller,
2169 : "Session establishment failed for " ChipLogFormatScopedNodeId ", error: %" CHIP_ERROR_FORMAT
2170 : ". Next retry expected to get a response to Sigma1 or fail within %d seconds",
2171 : ChipLogValueScopedNodeId(peerId), error.Format(), retryTimeout.count());
2172 :
2173 0 : auto self = static_cast<DeviceCommissioner *>(context);
2174 0 : VerifyOrDie(self->GetCommissioningStage() == CommissioningStage::kFindOperationalForStayActive ||
2175 : self->GetCommissioningStage() == CommissioningStage::kFindOperationalForCommissioningComplete);
2176 0 : VerifyOrDie(self->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
2177 :
2178 : // We need to do the fail-safe arming over the PASE session.
2179 0 : auto * commissioneeDevice = self->FindCommissioneeDevice(peerId.GetNodeId());
2180 0 : if (!commissioneeDevice)
2181 : {
2182 : // Commissioning canceled, presumably. Just ignore the notification,
2183 : // not much we can do here.
2184 0 : return;
2185 : }
2186 :
2187 : // Extend by the default failsafe timeout plus our retry timeout, so we can
2188 : // be sure the fail-safe will not expire before we try the next time, if
2189 : // there will be a next time.
2190 : //
2191 : // TODO: Make it possible for our clients to control the exact timeout here?
2192 : uint16_t failsafeTimeout;
2193 0 : if (UINT16_MAX - retryTimeout.count() < kDefaultFailsafeTimeout)
2194 : {
2195 0 : failsafeTimeout = UINT16_MAX;
2196 : }
2197 : else
2198 : {
2199 0 : failsafeTimeout = static_cast<uint16_t>(retryTimeout.count() + kDefaultFailsafeTimeout);
2200 : }
2201 :
2202 : // A false return is fine; we don't want to make the fail-safe shorter here.
2203 0 : self->ExtendArmFailSafeInternal(commissioneeDevice, self->GetCommissioningStage(), failsafeTimeout,
2204 0 : MakeOptional(kMinimumCommissioningStepTimeout), OnExtendFailsafeForCASERetrySuccess,
2205 : OnExtendFailsafeForCASERetryFailure, /* fireAndForget = */ true);
2206 : }
2207 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
2208 :
2209 : // ClusterStateCache::Callback / ReadClient::Callback
2210 0 : void DeviceCommissioner::OnDone(app::ReadClient * readClient)
2211 : {
2212 0 : VerifyOrDie(readClient != nullptr && readClient == mReadClient.get());
2213 0 : mReadClient.reset();
2214 0 : switch (mCommissioningStage)
2215 : {
2216 0 : case CommissioningStage::kReadCommissioningInfo:
2217 0 : ContinueReadingCommissioningInfo(mCommissioningDelegate->GetCommissioningParameters());
2218 0 : break;
2219 0 : default:
2220 0 : VerifyOrDie(false);
2221 : break;
2222 : }
2223 0 : }
2224 :
2225 : namespace {
2226 : // Helper for grouping attribute paths into read interactions in ContinueReadingCommissioningInfo()
2227 : // below. The logic generates a sequence of calls to AddAttributePath(), stopping when the capacity
2228 : // of the builder is exceeded. When creating subsequent read requests, the same sequence of calls
2229 : // is generated again, but the builder will skip however many attributes were already read in
2230 : // previous requests. This makes it easy to have logic that conditionally reads attributes, without
2231 : // needing to write manual code to work out where subsequent reads need to resume -- the logic that
2232 : // decides which attributes to read simply needs to be repeatable / deterministic.
2233 : class ReadInteractionBuilder
2234 : {
2235 : static constexpr auto kCapacity = InteractionModelEngine::kMinSupportedPathsPerReadRequest;
2236 :
2237 : size_t mSkip = 0;
2238 : size_t mCount = 0;
2239 : app::AttributePathParams mPaths[kCapacity];
2240 :
2241 : public:
2242 0 : ReadInteractionBuilder(size_t skip = 0) : mSkip(skip) {}
2243 :
2244 0 : size_t size() { return std::min(mCount, kCapacity); }
2245 0 : bool exceeded() { return mCount > kCapacity; }
2246 0 : app::AttributePathParams * paths() { return mPaths; }
2247 :
2248 : // Adds an attribute path if within the current window.
2249 : // Returns false if the available space has been exceeded.
2250 : template <typename... Ts>
2251 0 : bool AddAttributePath(Ts &&... args)
2252 : {
2253 0 : if (mSkip > 0)
2254 : {
2255 0 : mSkip--;
2256 0 : return true;
2257 : }
2258 0 : if (mCount >= kCapacity)
2259 : {
2260 : // capacity exceeded
2261 0 : mCount = kCapacity + 1;
2262 0 : return false;
2263 : }
2264 0 : mPaths[mCount++] = app::AttributePathParams(std::forward<Ts>(args)...);
2265 0 : return true;
2266 : }
2267 : };
2268 : } // namespace
2269 :
2270 0 : void DeviceCommissioner::ContinueReadingCommissioningInfo(const CommissioningParameters & params)
2271 : {
2272 0 : VerifyOrDie(mCommissioningStage == CommissioningStage::kReadCommissioningInfo);
2273 :
2274 : // mReadCommissioningInfoProgress starts at 0 and counts the number of paths we have read.
2275 : // A marker value is used to indicate that there are no further attributes to read.
2276 : static constexpr auto kReadProgressNoFurtherAttributes = std::numeric_limits<decltype(mReadCommissioningInfoProgress)>::max();
2277 0 : if (mReadCommissioningInfoProgress == kReadProgressNoFurtherAttributes)
2278 : {
2279 0 : FinishReadingCommissioningInfo(params);
2280 0 : return;
2281 : }
2282 :
2283 : // We can ony read 9 paths per Read Interaction, since that is the minimum a server has to
2284 : // support per spec (see "Interaction Model Limits"), so we generally need to perform more
2285 : // that one interaction. To build the list of attributes for each interaction, we use a
2286 : // builder that skips adding paths that we already handled in a previous interaction, and
2287 : // returns false if the current request is exhausted. This construction avoids allocating
2288 : // memory to hold the complete list of attributes to read up front; however the logic to
2289 : // determine the attributes to include must be deterministic since it runs multiple times.
2290 : // The use of an immediately-invoked lambda is convenient for control flow.
2291 0 : ReadInteractionBuilder builder(mReadCommissioningInfoProgress);
2292 0 : [&]() -> void {
2293 : // General Commissioning
2294 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2295 : Clusters::GeneralCommissioning::Attributes::SupportsConcurrentConnection::Id));
2296 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2297 : Clusters::GeneralCommissioning::Attributes::Breadcrumb::Id));
2298 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2299 : Clusters::GeneralCommissioning::Attributes::BasicCommissioningInfo::Id));
2300 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2301 : Clusters::GeneralCommissioning::Attributes::RegulatoryConfig::Id));
2302 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2303 : Clusters::GeneralCommissioning::Attributes::LocationCapability::Id));
2304 :
2305 : // Basic Information: VID and PID for device attestation purposes
2306 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
2307 : Clusters::BasicInformation::Attributes::VendorID::Id));
2308 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
2309 : Clusters::BasicInformation::Attributes::ProductID::Id));
2310 :
2311 : // Time Synchronization: all attributes
2312 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::TimeSynchronization::Id));
2313 :
2314 : // Network Commissioning (all endpoints): Read the feature map and connect time
2315 : // TODO: Expose a flag that disables network setup so we don't need to read this
2316 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2317 : Clusters::NetworkCommissioning::Attributes::FeatureMap::Id));
2318 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2319 : Clusters::NetworkCommissioning::Attributes::ConnectMaxTimeSeconds::Id));
2320 :
2321 : // OperationalCredentials: existing fabrics, if necessary
2322 0 : if (params.GetCheckForMatchingFabric())
2323 : {
2324 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::OperationalCredentials::Id,
2325 : Clusters::OperationalCredentials::Attributes::Fabrics::Id));
2326 : }
2327 :
2328 : // ICD Management
2329 0 : if (params.GetICDRegistrationStrategy() != ICDRegistrationStrategy::kIgnore)
2330 : {
2331 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2332 : Clusters::IcdManagement::Attributes::FeatureMap::Id));
2333 : }
2334 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2335 : Clusters::IcdManagement::Attributes::UserActiveModeTriggerHint::Id));
2336 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2337 : Clusters::IcdManagement::Attributes::UserActiveModeTriggerInstruction::Id));
2338 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2339 : Clusters::IcdManagement::Attributes::IdleModeDuration::Id));
2340 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2341 : Clusters::IcdManagement::Attributes::ActiveModeDuration::Id));
2342 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2343 : Clusters::IcdManagement::Attributes::ActiveModeThreshold::Id));
2344 :
2345 : // Extra paths requested via CommissioningParameters
2346 0 : for (auto const & path : params.GetExtraReadPaths())
2347 : {
2348 0 : VerifyOrReturn(builder.AddAttributePath(path));
2349 : }
2350 0 : }();
2351 :
2352 0 : VerifyOrDie(builder.size() > 0); // our logic is broken if there is nothing to read
2353 0 : if (builder.exceeded())
2354 : {
2355 : // Keep track of the number of attributes we have read already so we can resume from there.
2356 0 : auto progress = mReadCommissioningInfoProgress + builder.size();
2357 0 : VerifyOrDie(progress < kReadProgressNoFurtherAttributes);
2358 0 : mReadCommissioningInfoProgress = static_cast<decltype(mReadCommissioningInfoProgress)>(progress);
2359 : }
2360 : else
2361 : {
2362 0 : mReadCommissioningInfoProgress = kReadProgressNoFurtherAttributes;
2363 : }
2364 :
2365 0 : SendCommissioningReadRequest(mDeviceBeingCommissioned, mCommissioningStepTimeout, builder.paths(), builder.size());
2366 : }
2367 :
2368 : namespace {
2369 0 : void AccumulateErrors(CHIP_ERROR & acc, CHIP_ERROR err)
2370 : {
2371 0 : if (acc == CHIP_NO_ERROR && err != CHIP_NO_ERROR)
2372 : {
2373 0 : acc = err;
2374 : }
2375 0 : }
2376 : } // namespace
2377 :
2378 0 : void DeviceCommissioner::FinishReadingCommissioningInfo(const CommissioningParameters & params)
2379 : {
2380 : // We want to parse as much information as possible, even if we eventually end
2381 : // up returning an error (e.g. because some mandatory information was missing).
2382 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2383 0 : ReadCommissioningInfo info;
2384 0 : info.attributes = mAttributeCache.get();
2385 0 : AccumulateErrors(err, ParseGeneralCommissioningInfo(info));
2386 0 : AccumulateErrors(err, ParseBasicInformation(info));
2387 0 : AccumulateErrors(err, ParseNetworkCommissioningInfo(info));
2388 0 : AccumulateErrors(err, ParseTimeSyncInfo(info));
2389 0 : AccumulateErrors(err, ParseFabrics(info));
2390 0 : AccumulateErrors(err, ParseICDInfo(info));
2391 0 : AccumulateErrors(err, ParseExtraCommissioningInfo(info, params));
2392 :
2393 0 : if (mPairingDelegate != nullptr && err == CHIP_NO_ERROR)
2394 : {
2395 0 : mPairingDelegate->OnReadCommissioningInfo(info);
2396 : }
2397 :
2398 0 : CommissioningDelegate::CommissioningReport report;
2399 0 : report.Set<ReadCommissioningInfo>(info);
2400 0 : CommissioningStageComplete(err, report);
2401 :
2402 : // Only release the attribute cache once `info` is no longer needed.
2403 0 : mAttributeCache.reset();
2404 0 : }
2405 :
2406 0 : CHIP_ERROR DeviceCommissioner::ParseGeneralCommissioningInfo(ReadCommissioningInfo & info)
2407 : {
2408 : using namespace GeneralCommissioning::Attributes;
2409 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2410 : CHIP_ERROR err;
2411 :
2412 0 : BasicCommissioningInfo::TypeInfo::DecodableType basicInfo;
2413 0 : err = mAttributeCache->Get<BasicCommissioningInfo::TypeInfo>(kRootEndpointId, basicInfo);
2414 0 : if (err == CHIP_NO_ERROR)
2415 : {
2416 0 : info.general.recommendedFailsafe = basicInfo.failSafeExpiryLengthSeconds;
2417 : }
2418 : else
2419 : {
2420 0 : ChipLogError(Controller, "Failed to read BasicCommissioningInfo: %" CHIP_ERROR_FORMAT, err.Format());
2421 0 : return_err = err;
2422 : }
2423 :
2424 0 : err = mAttributeCache->Get<RegulatoryConfig::TypeInfo>(kRootEndpointId, info.general.currentRegulatoryLocation);
2425 0 : if (err != CHIP_NO_ERROR)
2426 : {
2427 0 : ChipLogError(Controller, "Failed to read RegulatoryConfig: %" CHIP_ERROR_FORMAT, err.Format());
2428 0 : return_err = err;
2429 : }
2430 :
2431 0 : err = mAttributeCache->Get<LocationCapability::TypeInfo>(kRootEndpointId, info.general.locationCapability);
2432 0 : if (err != CHIP_NO_ERROR)
2433 : {
2434 0 : ChipLogError(Controller, "Failed to read LocationCapability: %" CHIP_ERROR_FORMAT, err.Format());
2435 0 : return_err = err;
2436 : }
2437 :
2438 0 : err = mAttributeCache->Get<Breadcrumb::TypeInfo>(kRootEndpointId, info.general.breadcrumb);
2439 0 : if (err != CHIP_NO_ERROR)
2440 : {
2441 0 : ChipLogError(Controller, "Failed to read Breadcrumb: %" CHIP_ERROR_FORMAT, err.Format());
2442 0 : return_err = err;
2443 : }
2444 :
2445 0 : err = mAttributeCache->Get<SupportsConcurrentConnection::TypeInfo>(kRootEndpointId, info.supportsConcurrentConnection);
2446 0 : if (err != CHIP_NO_ERROR)
2447 : {
2448 0 : ChipLogError(Controller, "Ignoring failure to read SupportsConcurrentConnection: %" CHIP_ERROR_FORMAT, err.Format());
2449 0 : info.supportsConcurrentConnection = true; // default to true (concurrent), not a fatal error
2450 : }
2451 :
2452 0 : return return_err;
2453 : }
2454 :
2455 0 : CHIP_ERROR DeviceCommissioner::ParseBasicInformation(ReadCommissioningInfo & info)
2456 : {
2457 : using namespace BasicInformation::Attributes;
2458 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2459 : CHIP_ERROR err;
2460 :
2461 0 : err = mAttributeCache->Get<VendorID::TypeInfo>(kRootEndpointId, info.basic.vendorId);
2462 0 : if (err != CHIP_NO_ERROR)
2463 : {
2464 0 : ChipLogError(Controller, "Failed to read VendorID: %" CHIP_ERROR_FORMAT, err.Format());
2465 0 : return_err = err;
2466 : }
2467 :
2468 0 : err = mAttributeCache->Get<ProductID::TypeInfo>(kRootEndpointId, info.basic.productId);
2469 0 : if (err != CHIP_NO_ERROR)
2470 : {
2471 0 : ChipLogError(Controller, "Failed to read ProductID: %" CHIP_ERROR_FORMAT, err.Format());
2472 0 : return_err = err;
2473 : }
2474 :
2475 0 : return return_err;
2476 : }
2477 :
2478 0 : CHIP_ERROR DeviceCommissioner::ParseNetworkCommissioningInfo(ReadCommissioningInfo & info)
2479 : {
2480 : using namespace NetworkCommissioning::Attributes;
2481 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2482 : CHIP_ERROR err;
2483 :
2484 : // Set the network cluster endpoints first so we can match up the connection
2485 : // times. Note that here we don't know what endpoints the network
2486 : // commissioning clusters might be on.
2487 0 : err = mAttributeCache->ForEachAttribute(NetworkCommissioning::Id, [this, &info](const ConcreteAttributePath & path) {
2488 0 : VerifyOrReturnError(path.mAttributeId == FeatureMap::Id, CHIP_NO_ERROR);
2489 0 : BitFlags<NetworkCommissioning::Feature> features;
2490 0 : if (mAttributeCache->Get<FeatureMap::TypeInfo>(path, *features.RawStorage()) == CHIP_NO_ERROR)
2491 : {
2492 0 : if (features.Has(NetworkCommissioning::Feature::kWiFiNetworkInterface))
2493 : {
2494 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has WiFi. endpointid = %u", path.mEndpointId);
2495 0 : info.network.wifi.endpoint = path.mEndpointId;
2496 : }
2497 0 : else if (features.Has(NetworkCommissioning::Feature::kThreadNetworkInterface))
2498 : {
2499 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has Thread. endpointid = %u", path.mEndpointId);
2500 0 : info.network.thread.endpoint = path.mEndpointId;
2501 : }
2502 0 : else if (features.Has(NetworkCommissioning::Feature::kEthernetNetworkInterface))
2503 : {
2504 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has Ethernet. endpointid = %u", path.mEndpointId);
2505 0 : info.network.eth.endpoint = path.mEndpointId;
2506 : }
2507 : }
2508 0 : return CHIP_NO_ERROR;
2509 : });
2510 0 : AccumulateErrors(return_err, err);
2511 :
2512 0 : if (info.network.thread.endpoint != kInvalidEndpointId)
2513 : {
2514 0 : err = mAttributeCache->Get<ConnectMaxTimeSeconds::TypeInfo>(info.network.thread.endpoint,
2515 0 : info.network.thread.minConnectionTime);
2516 0 : if (err != CHIP_NO_ERROR)
2517 : {
2518 0 : ChipLogError(Controller, "Failed to read Thread ConnectMaxTimeSeconds (endpoint %u): %" CHIP_ERROR_FORMAT,
2519 : info.network.thread.endpoint, err.Format());
2520 0 : return_err = err;
2521 : }
2522 : }
2523 :
2524 0 : if (info.network.wifi.endpoint != kInvalidEndpointId)
2525 : {
2526 : err =
2527 0 : mAttributeCache->Get<ConnectMaxTimeSeconds::TypeInfo>(info.network.wifi.endpoint, info.network.wifi.minConnectionTime);
2528 0 : if (err != CHIP_NO_ERROR)
2529 : {
2530 0 : ChipLogError(Controller, "Failed to read Wi-Fi ConnectMaxTimeSeconds (endpoint %u): %" CHIP_ERROR_FORMAT,
2531 : info.network.wifi.endpoint, err.Format());
2532 0 : return_err = err;
2533 : }
2534 : }
2535 :
2536 0 : if (return_err != CHIP_NO_ERROR)
2537 : {
2538 0 : ChipLogError(Controller, "Failed to parsing Network Commissioning information: %" CHIP_ERROR_FORMAT, return_err.Format());
2539 : }
2540 0 : return return_err;
2541 : }
2542 :
2543 0 : CHIP_ERROR DeviceCommissioner::ParseTimeSyncInfo(ReadCommissioningInfo & info)
2544 : {
2545 : using namespace TimeSynchronization::Attributes;
2546 : CHIP_ERROR err;
2547 :
2548 : // If we fail to get the feature map, there's no viable time cluster, don't set anything.
2549 0 : BitFlags<TimeSynchronization::Feature> featureMap;
2550 0 : err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
2551 0 : if (err != CHIP_NO_ERROR)
2552 : {
2553 0 : info.requiresUTC = false;
2554 0 : info.requiresTimeZone = false;
2555 0 : info.requiresDefaultNTP = false;
2556 0 : info.requiresTrustedTimeSource = false;
2557 0 : return CHIP_NO_ERROR;
2558 : }
2559 0 : info.requiresUTC = true;
2560 0 : info.requiresTimeZone = featureMap.Has(TimeSynchronization::Feature::kTimeZone);
2561 0 : info.requiresDefaultNTP = featureMap.Has(TimeSynchronization::Feature::kNTPClient);
2562 0 : info.requiresTrustedTimeSource = featureMap.Has(TimeSynchronization::Feature::kTimeSyncClient);
2563 :
2564 0 : if (info.requiresTimeZone)
2565 : {
2566 0 : err = mAttributeCache->Get<TimeZoneListMaxSize::TypeInfo>(kRootEndpointId, info.maxTimeZoneSize);
2567 0 : if (err != CHIP_NO_ERROR)
2568 : {
2569 : // This information should be available, let's do our best with what we have, but we can't set
2570 : // the time zone without this information
2571 0 : info.requiresTimeZone = false;
2572 : }
2573 0 : err = mAttributeCache->Get<DSTOffsetListMaxSize::TypeInfo>(kRootEndpointId, info.maxDSTSize);
2574 0 : if (err != CHIP_NO_ERROR)
2575 : {
2576 0 : info.requiresTimeZone = false;
2577 : }
2578 : }
2579 0 : if (info.requiresDefaultNTP)
2580 : {
2581 0 : DefaultNTP::TypeInfo::DecodableType defaultNTP;
2582 0 : err = mAttributeCache->Get<DefaultNTP::TypeInfo>(kRootEndpointId, defaultNTP);
2583 0 : if (err == CHIP_NO_ERROR && (!defaultNTP.IsNull()) && (defaultNTP.Value().size() != 0))
2584 : {
2585 0 : info.requiresDefaultNTP = false;
2586 : }
2587 : }
2588 0 : if (info.requiresTrustedTimeSource)
2589 : {
2590 0 : TrustedTimeSource::TypeInfo::DecodableType trustedTimeSource;
2591 0 : err = mAttributeCache->Get<TrustedTimeSource::TypeInfo>(kRootEndpointId, trustedTimeSource);
2592 0 : if (err == CHIP_NO_ERROR && !trustedTimeSource.IsNull())
2593 : {
2594 0 : info.requiresTrustedTimeSource = false;
2595 : }
2596 : }
2597 :
2598 0 : return CHIP_NO_ERROR;
2599 : }
2600 :
2601 0 : CHIP_ERROR DeviceCommissioner::ParseFabrics(ReadCommissioningInfo & info)
2602 : {
2603 : using namespace OperationalCredentials::Attributes;
2604 : CHIP_ERROR err;
2605 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2606 :
2607 : // We might not have requested a Fabrics attribute at all, so not having a
2608 : // value for it is not an error.
2609 0 : err = mAttributeCache->ForEachAttribute(OperationalCredentials::Id, [this, &info](const ConcreteAttributePath & path) {
2610 : using namespace chip::app::Clusters::OperationalCredentials::Attributes;
2611 : // this code is checking if the device is already on the commissioner's fabric.
2612 : // if a matching fabric is found, then remember the nodeId so that the commissioner
2613 : // can, if it decides to, cancel commissioning (before it fails in AddNoc) and know
2614 : // the device's nodeId on its fabric.
2615 0 : switch (path.mAttributeId)
2616 : {
2617 0 : case Fabrics::Id: {
2618 0 : Fabrics::TypeInfo::DecodableType fabrics;
2619 0 : ReturnErrorOnFailure(this->mAttributeCache->Get<Fabrics::TypeInfo>(path, fabrics));
2620 : // this is a best effort attempt to find a matching fabric, so no error checking on iter
2621 0 : auto iter = fabrics.begin();
2622 0 : while (iter.Next())
2623 : {
2624 0 : auto & fabricDescriptor = iter.GetValue();
2625 0 : ChipLogProgress(Controller,
2626 : "DeviceCommissioner::OnDone - fabric.vendorId=0x%04X fabric.fabricId=0x" ChipLogFormatX64
2627 : " fabric.nodeId=0x" ChipLogFormatX64,
2628 : fabricDescriptor.vendorID, ChipLogValueX64(fabricDescriptor.fabricID),
2629 : ChipLogValueX64(fabricDescriptor.nodeID));
2630 0 : if (GetFabricId() == fabricDescriptor.fabricID)
2631 : {
2632 0 : ChipLogProgress(Controller, "DeviceCommissioner::OnDone - found a matching fabric id");
2633 0 : chip::ByteSpan rootKeySpan = fabricDescriptor.rootPublicKey;
2634 0 : if (rootKeySpan.size() != Crypto::kP256_PublicKey_Length)
2635 : {
2636 0 : ChipLogError(Controller, "DeviceCommissioner::OnDone - fabric root key size mismatch %u != %u",
2637 : static_cast<unsigned>(rootKeySpan.size()),
2638 : static_cast<unsigned>(Crypto::kP256_PublicKey_Length));
2639 0 : continue;
2640 : }
2641 0 : P256PublicKeySpan rootPubKeySpan(rootKeySpan.data());
2642 0 : Crypto::P256PublicKey deviceRootPublicKey(rootPubKeySpan);
2643 :
2644 0 : Crypto::P256PublicKey commissionerRootPublicKey;
2645 0 : if (CHIP_NO_ERROR != GetRootPublicKey(commissionerRootPublicKey))
2646 : {
2647 0 : ChipLogError(Controller, "DeviceCommissioner::OnDone - error reading commissioner root public key");
2648 : }
2649 0 : else if (commissionerRootPublicKey.Matches(deviceRootPublicKey))
2650 : {
2651 0 : ChipLogProgress(Controller, "DeviceCommissioner::OnDone - fabric root keys match");
2652 0 : info.remoteNodeId = fabricDescriptor.nodeID;
2653 : }
2654 0 : }
2655 : }
2656 :
2657 0 : return CHIP_NO_ERROR;
2658 : }
2659 0 : default:
2660 0 : return CHIP_NO_ERROR;
2661 : }
2662 : });
2663 :
2664 0 : if (mPairingDelegate != nullptr)
2665 : {
2666 0 : mPairingDelegate->OnFabricCheck(info.remoteNodeId);
2667 : }
2668 :
2669 0 : return return_err;
2670 : }
2671 :
2672 0 : CHIP_ERROR DeviceCommissioner::ParseICDInfo(ReadCommissioningInfo & info)
2673 : {
2674 : using namespace IcdManagement::Attributes;
2675 : CHIP_ERROR err;
2676 :
2677 0 : bool hasUserActiveModeTrigger = false;
2678 0 : bool isICD = false;
2679 :
2680 0 : BitFlags<IcdManagement::Feature> featureMap;
2681 0 : err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
2682 0 : if (err == CHIP_NO_ERROR)
2683 : {
2684 0 : info.icd.isLIT = featureMap.Has(IcdManagement::Feature::kLongIdleTimeSupport);
2685 0 : info.icd.checkInProtocolSupport = featureMap.Has(IcdManagement::Feature::kCheckInProtocolSupport);
2686 0 : hasUserActiveModeTrigger = featureMap.Has(IcdManagement::Feature::kUserActiveModeTrigger);
2687 0 : isICD = true;
2688 : }
2689 0 : else if (err == CHIP_ERROR_KEY_NOT_FOUND)
2690 : {
2691 : // This key is optional so not an error
2692 0 : info.icd.isLIT = false;
2693 0 : err = CHIP_NO_ERROR;
2694 : }
2695 0 : else if (err == CHIP_ERROR_IM_STATUS_CODE_RECEIVED)
2696 : {
2697 0 : app::StatusIB statusIB;
2698 0 : err = mAttributeCache->GetStatus(app::ConcreteAttributePath(kRootEndpointId, IcdManagement::Id, FeatureMap::Id), statusIB);
2699 0 : if (err == CHIP_NO_ERROR)
2700 : {
2701 0 : if (statusIB.mStatus == Protocols::InteractionModel::Status::UnsupportedCluster)
2702 : {
2703 0 : info.icd.isLIT = false;
2704 : }
2705 : else
2706 : {
2707 0 : err = statusIB.ToChipError();
2708 : }
2709 : }
2710 : }
2711 :
2712 0 : ReturnErrorOnFailure(err);
2713 :
2714 0 : info.icd.userActiveModeTriggerHint.ClearAll();
2715 0 : info.icd.userActiveModeTriggerInstruction = CharSpan();
2716 :
2717 0 : if (hasUserActiveModeTrigger)
2718 : {
2719 : // Intentionally ignore errors since they are not mandatory.
2720 0 : bool activeModeTriggerInstructionRequired = false;
2721 :
2722 0 : err = mAttributeCache->Get<UserActiveModeTriggerHint::TypeInfo>(kRootEndpointId, info.icd.userActiveModeTriggerHint);
2723 0 : if (err != CHIP_NO_ERROR)
2724 : {
2725 0 : ChipLogError(Controller, "IcdManagement.UserActiveModeTriggerHint expected, but failed to read.");
2726 0 : return err;
2727 : }
2728 :
2729 : using IcdManagement::UserActiveModeTriggerBitmap;
2730 0 : activeModeTriggerInstructionRequired = info.icd.userActiveModeTriggerHint.HasAny(
2731 0 : UserActiveModeTriggerBitmap::kCustomInstruction, UserActiveModeTriggerBitmap::kActuateSensorSeconds,
2732 0 : UserActiveModeTriggerBitmap::kActuateSensorTimes, UserActiveModeTriggerBitmap::kActuateSensorLightsBlink,
2733 0 : UserActiveModeTriggerBitmap::kResetButtonLightsBlink, UserActiveModeTriggerBitmap::kResetButtonSeconds,
2734 0 : UserActiveModeTriggerBitmap::kResetButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonSeconds,
2735 0 : UserActiveModeTriggerBitmap::kSetupButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonTimes,
2736 0 : UserActiveModeTriggerBitmap::kAppDefinedButton);
2737 :
2738 0 : if (activeModeTriggerInstructionRequired)
2739 : {
2740 0 : err = mAttributeCache->Get<UserActiveModeTriggerInstruction::TypeInfo>(kRootEndpointId,
2741 0 : info.icd.userActiveModeTriggerInstruction);
2742 0 : if (err != CHIP_NO_ERROR)
2743 : {
2744 0 : ChipLogError(Controller,
2745 : "IcdManagement.UserActiveModeTriggerInstruction expected for given active mode trigger hint, but "
2746 : "failed to read.");
2747 0 : return err;
2748 : }
2749 : }
2750 : }
2751 :
2752 0 : if (!isICD)
2753 : {
2754 0 : info.icd.idleModeDuration = 0;
2755 0 : info.icd.activeModeDuration = 0;
2756 0 : info.icd.activeModeThreshold = 0;
2757 0 : return CHIP_NO_ERROR;
2758 : }
2759 :
2760 0 : err = mAttributeCache->Get<IdleModeDuration::TypeInfo>(kRootEndpointId, info.icd.idleModeDuration);
2761 0 : if (err != CHIP_NO_ERROR)
2762 : {
2763 0 : ChipLogError(Controller, "IcdManagement.IdleModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT, err.Format());
2764 0 : return err;
2765 : }
2766 :
2767 0 : err = mAttributeCache->Get<ActiveModeDuration::TypeInfo>(kRootEndpointId, info.icd.activeModeDuration);
2768 0 : if (err != CHIP_NO_ERROR)
2769 : {
2770 0 : ChipLogError(Controller, "IcdManagement.ActiveModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT,
2771 : err.Format());
2772 0 : return err;
2773 : }
2774 :
2775 0 : err = mAttributeCache->Get<ActiveModeThreshold::TypeInfo>(kRootEndpointId, info.icd.activeModeThreshold);
2776 0 : if (err != CHIP_NO_ERROR)
2777 : {
2778 0 : ChipLogError(Controller, "IcdManagement.ActiveModeThreshold expected, but failed to read: %" CHIP_ERROR_FORMAT,
2779 : err.Format());
2780 : }
2781 :
2782 0 : return err;
2783 : }
2784 :
2785 0 : void DeviceCommissioner::OnArmFailSafe(void * context,
2786 : const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2787 : {
2788 0 : CommissioningDelegate::CommissioningReport report;
2789 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2790 :
2791 0 : ChipLogProgress(Controller, "Received ArmFailSafe response errorCode=%u", to_underlying(data.errorCode));
2792 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2793 : {
2794 0 : err = CHIP_ERROR_INTERNAL;
2795 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2796 : }
2797 :
2798 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2799 0 : commissioner->CommissioningStageComplete(err, report);
2800 0 : }
2801 :
2802 0 : void DeviceCommissioner::OnSetRegulatoryConfigResponse(
2803 : void * context, const GeneralCommissioning::Commands::SetRegulatoryConfigResponse::DecodableType & data)
2804 : {
2805 0 : CommissioningDelegate::CommissioningReport report;
2806 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2807 :
2808 0 : ChipLogProgress(Controller, "Received SetRegulatoryConfig response errorCode=%u", to_underlying(data.errorCode));
2809 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2810 : {
2811 0 : err = CHIP_ERROR_INTERNAL;
2812 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2813 : }
2814 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2815 0 : commissioner->CommissioningStageComplete(err, report);
2816 0 : }
2817 :
2818 0 : void DeviceCommissioner::OnSetTCAcknowledgementsResponse(
2819 : void * context, const GeneralCommissioning::Commands::SetTCAcknowledgementsResponse::DecodableType & data)
2820 : {
2821 0 : CommissioningDelegate::CommissioningReport report;
2822 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2823 :
2824 0 : ChipLogProgress(Controller, "Received SetTCAcknowledgements response errorCode=%u", to_underlying(data.errorCode));
2825 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2826 : {
2827 0 : err = CHIP_ERROR_INTERNAL;
2828 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2829 : }
2830 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2831 0 : commissioner->CommissioningStageComplete(err, report);
2832 0 : }
2833 :
2834 0 : void DeviceCommissioner::OnSetTimeZoneResponse(void * context,
2835 : const TimeSynchronization::Commands::SetTimeZoneResponse::DecodableType & data)
2836 : {
2837 0 : CommissioningDelegate::CommissioningReport report;
2838 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2839 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2840 : TimeZoneResponseInfo info;
2841 0 : info.requiresDSTOffsets = data.DSTOffsetRequired;
2842 0 : report.Set<TimeZoneResponseInfo>(info);
2843 0 : commissioner->CommissioningStageComplete(err, report);
2844 0 : }
2845 :
2846 0 : void DeviceCommissioner::OnSetUTCError(void * context, CHIP_ERROR error)
2847 : {
2848 : // For SetUTCTime, we don't actually care if the commissionee didn't want out time, that's its choice
2849 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2850 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2851 0 : }
2852 :
2853 0 : void DeviceCommissioner::OnScanNetworksFailure(void * context, CHIP_ERROR error)
2854 : {
2855 0 : ChipLogProgress(Controller, "Received ScanNetworks failure response %" CHIP_ERROR_FORMAT, error.Format());
2856 :
2857 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2858 :
2859 : // advance to the kNeedsNetworkCreds waiting step
2860 : // clear error so that we don't abort the commissioning when ScanNetworks fails
2861 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2862 :
2863 0 : if (commissioner->GetPairingDelegate() != nullptr)
2864 : {
2865 0 : commissioner->GetPairingDelegate()->OnScanNetworksFailure(error);
2866 : }
2867 0 : }
2868 :
2869 0 : void DeviceCommissioner::OnScanNetworksResponse(void * context,
2870 : const NetworkCommissioning::Commands::ScanNetworksResponse::DecodableType & data)
2871 : {
2872 0 : CommissioningDelegate::CommissioningReport report;
2873 :
2874 0 : ChipLogProgress(Controller, "Received ScanNetwork response, networkingStatus=%u debugText=%s",
2875 : to_underlying(data.networkingStatus),
2876 : (data.debugText.HasValue() ? std::string(data.debugText.Value().data(), data.debugText.Value().size()).c_str()
2877 : : "none provided"));
2878 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2879 :
2880 : // advance to the kNeedsNetworkCreds waiting step
2881 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2882 :
2883 0 : if (commissioner->GetPairingDelegate() != nullptr)
2884 : {
2885 0 : commissioner->GetPairingDelegate()->OnScanNetworksSuccess(data);
2886 : }
2887 0 : }
2888 :
2889 0 : CHIP_ERROR DeviceCommissioner::NetworkCredentialsReady()
2890 : {
2891 0 : VerifyOrReturnError(mCommissioningStage == CommissioningStage::kNeedsNetworkCreds, CHIP_ERROR_INCORRECT_STATE);
2892 :
2893 : // need to advance to next step
2894 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2895 :
2896 0 : return CHIP_NO_ERROR;
2897 : }
2898 :
2899 0 : CHIP_ERROR DeviceCommissioner::ICDRegistrationInfoReady()
2900 : {
2901 0 : VerifyOrReturnError(mCommissioningStage == CommissioningStage::kICDGetRegistrationInfo, CHIP_ERROR_INCORRECT_STATE);
2902 :
2903 : // need to advance to next step
2904 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2905 :
2906 0 : return CHIP_NO_ERROR;
2907 : }
2908 :
2909 0 : void DeviceCommissioner::OnNetworkConfigResponse(void * context,
2910 : const NetworkCommissioning::Commands::NetworkConfigResponse::DecodableType & data)
2911 : {
2912 0 : CommissioningDelegate::CommissioningReport report;
2913 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2914 :
2915 0 : ChipLogProgress(Controller, "Received NetworkConfig response, networkingStatus=%u", to_underlying(data.networkingStatus));
2916 0 : if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
2917 : {
2918 0 : err = CHIP_ERROR_INTERNAL;
2919 0 : report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
2920 : }
2921 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2922 0 : commissioner->CommissioningStageComplete(err, report);
2923 0 : }
2924 :
2925 0 : void DeviceCommissioner::OnConnectNetworkResponse(
2926 : void * context, const NetworkCommissioning::Commands::ConnectNetworkResponse::DecodableType & data)
2927 : {
2928 0 : CommissioningDelegate::CommissioningReport report;
2929 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2930 :
2931 0 : ChipLogProgress(Controller, "Received ConnectNetwork response, networkingStatus=%u", to_underlying(data.networkingStatus));
2932 0 : if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
2933 : {
2934 0 : err = CHIP_ERROR_INTERNAL;
2935 0 : report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
2936 : }
2937 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2938 0 : commissioner->CommissioningStageComplete(err, report);
2939 0 : }
2940 :
2941 0 : void DeviceCommissioner::OnCommissioningCompleteResponse(
2942 : void * context, const GeneralCommissioning::Commands::CommissioningCompleteResponse::DecodableType & data)
2943 : {
2944 0 : CommissioningDelegate::CommissioningReport report;
2945 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2946 :
2947 0 : ChipLogProgress(Controller, "Received CommissioningComplete response, errorCode=%u", to_underlying(data.errorCode));
2948 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2949 : {
2950 0 : err = CHIP_ERROR_INTERNAL;
2951 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2952 : }
2953 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2954 0 : commissioner->CommissioningStageComplete(err, report);
2955 0 : }
2956 :
2957 : template <typename RequestObjectT>
2958 : CHIP_ERROR
2959 0 : DeviceCommissioner::SendCommissioningCommand(DeviceProxy * device, const RequestObjectT & request,
2960 : CommandResponseSuccessCallback<typename RequestObjectT::ResponseType> successCb,
2961 : CommandResponseFailureCallback failureCb, EndpointId endpoint,
2962 : Optional<System::Clock::Timeout> timeout, bool fireAndForget)
2963 :
2964 : {
2965 : // Default behavior is to make sequential, cancellable calls tracked via mInvokeCancelFn.
2966 : // Fire-and-forget calls are not cancellable and don't receive `this` as context in callbacks.
2967 0 : VerifyOrDie(fireAndForget || !mInvokeCancelFn); // we don't make parallel (cancellable) calls
2968 :
2969 0 : void * context = (!fireAndForget) ? this : nullptr;
2970 0 : auto onSuccessCb = [context, successCb](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
2971 : const typename RequestObjectT::ResponseType & responseData) {
2972 0 : successCb(context, responseData);
2973 : };
2974 0 : auto onFailureCb = [context, failureCb](CHIP_ERROR aError) { failureCb(context, aError); };
2975 :
2976 0 : return InvokeCommandRequest(device->GetExchangeManager(), device->GetSecureSession().Value(), endpoint, request, onSuccessCb,
2977 0 : onFailureCb, NullOptional, timeout, (!fireAndForget) ? &mInvokeCancelFn : nullptr);
2978 : }
2979 :
2980 : template <typename AttrType>
2981 : CHIP_ERROR DeviceCommissioner::SendCommissioningWriteRequest(DeviceProxy * device, EndpointId endpoint, ClusterId cluster,
2982 : AttributeId attribute, const AttrType & requestData,
2983 : WriteResponseSuccessCallback successCb,
2984 : WriteResponseFailureCallback failureCb)
2985 : {
2986 : VerifyOrDie(!mWriteCancelFn); // we don't make parallel (cancellable) calls
2987 : auto onSuccessCb = [this, successCb](const app::ConcreteAttributePath & aPath) { successCb(this); };
2988 : auto onFailureCb = [this, failureCb](const app::ConcreteAttributePath * aPath, CHIP_ERROR aError) { failureCb(this, aError); };
2989 : return WriteAttribute(device->GetSecureSession().Value(), endpoint, cluster, attribute, requestData, onSuccessCb, onFailureCb,
2990 : /* aTimedWriteTimeoutMs = */ NullOptional, /* onDoneCb = */ nullptr, /* aDataVersion = */ NullOptional,
2991 : /* outCancelFn = */ &mWriteCancelFn);
2992 : }
2993 :
2994 0 : void DeviceCommissioner::SendCommissioningReadRequest(DeviceProxy * proxy, Optional<System::Clock::Timeout> timeout,
2995 : app::AttributePathParams * readPaths, size_t readPathsSize)
2996 : {
2997 0 : VerifyOrDie(!mReadClient); // we don't perform parallel reads
2998 :
2999 0 : app::InteractionModelEngine * engine = app::InteractionModelEngine::GetInstance();
3000 0 : app::ReadPrepareParams readParams(proxy->GetSecureSession().Value());
3001 0 : readParams.mIsFabricFiltered = false;
3002 0 : if (timeout.HasValue())
3003 : {
3004 0 : readParams.mTimeout = timeout.Value();
3005 : }
3006 0 : readParams.mpAttributePathParamsList = readPaths;
3007 0 : readParams.mAttributePathParamsListSize = readPathsSize;
3008 :
3009 : // Take ownership of the attribute cache, so it can be released if SendRequest fails.
3010 0 : auto attributeCache = std::move(mAttributeCache);
3011 : auto readClient = chip::Platform::MakeUnique<app::ReadClient>(
3012 0 : engine, proxy->GetExchangeManager(), attributeCache->GetBufferedCallback(), app::ReadClient::InteractionType::Read);
3013 0 : CHIP_ERROR err = readClient->SendRequest(readParams);
3014 0 : if (err != CHIP_NO_ERROR)
3015 : {
3016 0 : ChipLogError(Controller, "Failed to send read request: %" CHIP_ERROR_FORMAT, err.Format());
3017 0 : CommissioningStageComplete(err);
3018 0 : return;
3019 : }
3020 0 : mAttributeCache = std::move(attributeCache);
3021 0 : mReadClient = std::move(readClient);
3022 0 : }
3023 :
3024 0 : void DeviceCommissioner::PerformCommissioningStep(DeviceProxy * proxy, CommissioningStage step, CommissioningParameters & params,
3025 : CommissioningDelegate * delegate, EndpointId endpoint,
3026 : Optional<System::Clock::Timeout> timeout)
3027 :
3028 : {
3029 : MATTER_LOG_METRIC(kMetricDeviceCommissionerCommissionStage, step);
3030 : MATTER_LOG_METRIC_BEGIN(MetricKeyForCommissioningStage(step));
3031 :
3032 0 : if (params.GetCompletionStatus().err == CHIP_NO_ERROR)
3033 : {
3034 0 : ChipLogProgress(Controller, "Performing next commissioning step '%s'", StageToString(step));
3035 : }
3036 : else
3037 : {
3038 0 : ChipLogProgress(Controller, "Performing next commissioning step '%s' with completion status = '%s'", StageToString(step),
3039 : params.GetCompletionStatus().err.AsString());
3040 : }
3041 :
3042 0 : mCommissioningStepTimeout = timeout;
3043 0 : mCommissioningStage = step;
3044 0 : mCommissioningDelegate = delegate;
3045 0 : mDeviceBeingCommissioned = proxy;
3046 :
3047 : // TODO: Extend timeouts to the DAC and Opcert requests.
3048 : // TODO(cecille): We probably want something better than this for breadcrumbs.
3049 0 : uint64_t breadcrumb = static_cast<uint64_t>(step);
3050 :
3051 0 : switch (step)
3052 : {
3053 0 : case CommissioningStage::kArmFailsafe: {
3054 0 : VerifyOrDie(endpoint == kRootEndpointId);
3055 : // Make sure the fail-safe value we set here actually ends up being used
3056 : // no matter what.
3057 0 : proxy->SetFailSafeExpirationTimestamp(System::Clock::kZero);
3058 0 : VerifyOrDie(ExtendArmFailSafeInternal(proxy, step, params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout),
3059 : timeout, OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false));
3060 : }
3061 0 : break;
3062 0 : case CommissioningStage::kReadCommissioningInfo: {
3063 0 : VerifyOrDie(endpoint == kRootEndpointId);
3064 0 : ChipLogProgress(Controller, "Sending read requests for commissioning information");
3065 :
3066 : // Allocate a ClusterStateCache to collect the data from our read requests.
3067 : // The cache will be released in:
3068 : // - SendCommissioningReadRequest when failing to send a read request.
3069 : // - FinishReadingCommissioningInfo when the ReadCommissioningInfo stage is completed.
3070 : // - CancelCommissioningInteractions
3071 0 : mAttributeCache = Platform::MakeUnique<app::ClusterStateCache>(*this);
3072 :
3073 : // Generally we need to make more than one read request, because as per spec a server only
3074 : // supports a limited number of paths per Read Interaction. Because the actual number of
3075 : // interactions we end up performing is dynamic, we track all of them within a single
3076 : // commissioning stage.
3077 0 : mReadCommissioningInfoProgress = 0;
3078 0 : ContinueReadingCommissioningInfo(params); // Note: assume params == delegate.GetCommissioningParameters()
3079 0 : break;
3080 : }
3081 0 : case CommissioningStage::kConfigureUTCTime: {
3082 0 : TimeSynchronization::Commands::SetUTCTime::Type request;
3083 0 : uint64_t kChipEpochUsSinceUnixEpoch = static_cast<uint64_t>(kChipEpochSecondsSinceUnixEpoch) * chip::kMicrosecondsPerSecond;
3084 : System::Clock::Microseconds64 utcTime;
3085 0 : if (System::SystemClock().GetClock_RealTime(utcTime) != CHIP_NO_ERROR || utcTime.count() <= kChipEpochUsSinceUnixEpoch)
3086 : {
3087 : // We have no time to give, but that's OK, just complete this stage
3088 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3089 0 : return;
3090 : }
3091 :
3092 0 : request.UTCTime = utcTime.count() - kChipEpochUsSinceUnixEpoch;
3093 : // For now, we assume a seconds granularity
3094 0 : request.granularity = TimeSynchronization::GranularityEnum::kSecondsGranularity;
3095 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnSetUTCError, endpoint, timeout);
3096 0 : if (err != CHIP_NO_ERROR)
3097 : {
3098 : // We won't get any async callbacks here, so just complete our stage.
3099 0 : ChipLogError(Controller, "Failed to send SetUTCTime command: %" CHIP_ERROR_FORMAT, err.Format());
3100 0 : CommissioningStageComplete(err);
3101 0 : return;
3102 : }
3103 0 : break;
3104 : }
3105 0 : case CommissioningStage::kConfigureTimeZone: {
3106 0 : if (!params.GetTimeZone().HasValue())
3107 : {
3108 0 : ChipLogError(Controller, "ConfigureTimeZone stage called with no time zone data");
3109 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3110 0 : return;
3111 : }
3112 0 : TimeSynchronization::Commands::SetTimeZone::Type request;
3113 0 : request.timeZone = params.GetTimeZone().Value();
3114 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetTimeZoneResponse, OnBasicFailure, endpoint, timeout);
3115 0 : if (err != CHIP_NO_ERROR)
3116 : {
3117 : // We won't get any async callbacks here, so just complete our stage.
3118 0 : ChipLogError(Controller, "Failed to send SetTimeZone command: %" CHIP_ERROR_FORMAT, err.Format());
3119 0 : CommissioningStageComplete(err);
3120 0 : return;
3121 : }
3122 0 : break;
3123 : }
3124 0 : case CommissioningStage::kConfigureDSTOffset: {
3125 0 : if (!params.GetDSTOffsets().HasValue())
3126 : {
3127 0 : ChipLogError(Controller, "ConfigureDSTOffset stage called with no DST data");
3128 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3129 0 : return;
3130 : }
3131 0 : TimeSynchronization::Commands::SetDSTOffset::Type request;
3132 0 : request.DSTOffset = params.GetDSTOffsets().Value();
3133 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3134 0 : if (err != CHIP_NO_ERROR)
3135 : {
3136 : // We won't get any async callbacks here, so just complete our stage.
3137 0 : ChipLogError(Controller, "Failed to send SetDSTOffset command: %" CHIP_ERROR_FORMAT, err.Format());
3138 0 : CommissioningStageComplete(err);
3139 0 : return;
3140 : }
3141 0 : break;
3142 : }
3143 0 : case CommissioningStage::kConfigureDefaultNTP: {
3144 0 : if (!params.GetDefaultNTP().HasValue())
3145 : {
3146 0 : ChipLogError(Controller, "ConfigureDefaultNTP stage called with no default NTP data");
3147 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3148 0 : return;
3149 : }
3150 0 : TimeSynchronization::Commands::SetDefaultNTP::Type request;
3151 0 : request.defaultNTP = params.GetDefaultNTP().Value();
3152 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3153 0 : if (err != CHIP_NO_ERROR)
3154 : {
3155 : // We won't get any async callbacks here, so just complete our stage.
3156 0 : ChipLogError(Controller, "Failed to send SetDefaultNTP command: %" CHIP_ERROR_FORMAT, err.Format());
3157 0 : CommissioningStageComplete(err);
3158 0 : return;
3159 : }
3160 0 : break;
3161 : }
3162 0 : case CommissioningStage::kScanNetworks: {
3163 0 : NetworkCommissioning::Commands::ScanNetworks::Type request;
3164 0 : if (params.GetWiFiCredentials().HasValue())
3165 : {
3166 0 : request.ssid.Emplace(params.GetWiFiCredentials().Value().ssid);
3167 : }
3168 0 : request.breadcrumb.Emplace(breadcrumb);
3169 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnScanNetworksResponse, OnScanNetworksFailure, endpoint, timeout);
3170 0 : if (err != CHIP_NO_ERROR)
3171 : {
3172 : // We won't get any async callbacks here, so just complete our stage.
3173 0 : ChipLogError(Controller, "Failed to send ScanNetworks command: %" CHIP_ERROR_FORMAT, err.Format());
3174 0 : CommissioningStageComplete(err);
3175 0 : return;
3176 : }
3177 0 : break;
3178 : }
3179 0 : case CommissioningStage::kNeedsNetworkCreds: {
3180 : // nothing to do, the OnScanNetworksSuccess and OnScanNetworksFailure callbacks provide indication to the
3181 : // DevicePairingDelegate that network credentials are needed.
3182 0 : break;
3183 : }
3184 0 : case CommissioningStage::kConfigRegulatory: {
3185 : // TODO(cecille): Worthwhile to keep this around as part of the class?
3186 : // TODO(cecille): Where is the country config actually set?
3187 0 : ChipLogProgress(Controller, "Setting Regulatory Config");
3188 : auto capability =
3189 0 : params.GetLocationCapability().ValueOr(app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor);
3190 : app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum regulatoryConfig;
3191 : // Value is only switchable on the devices with indoor/outdoor capability
3192 0 : if (capability == app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kIndoorOutdoor)
3193 : {
3194 : // If the device supports indoor and outdoor configs, use the setting from the commissioner, otherwise fall back to
3195 : // the current device setting then to outdoor (most restrictive)
3196 0 : if (params.GetDeviceRegulatoryLocation().HasValue())
3197 : {
3198 0 : regulatoryConfig = params.GetDeviceRegulatoryLocation().Value();
3199 0 : ChipLogProgress(Controller, "Setting regulatory config to %u from commissioner override",
3200 : static_cast<uint8_t>(regulatoryConfig));
3201 : }
3202 0 : else if (params.GetDefaultRegulatoryLocation().HasValue())
3203 : {
3204 0 : regulatoryConfig = params.GetDefaultRegulatoryLocation().Value();
3205 0 : ChipLogProgress(Controller, "No regulatory config supplied by controller, leaving as device default (%u)",
3206 : static_cast<uint8_t>(regulatoryConfig));
3207 : }
3208 : else
3209 : {
3210 0 : regulatoryConfig = app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor;
3211 0 : ChipLogProgress(Controller, "No overrride or device regulatory config supplied, setting to outdoor");
3212 : }
3213 : }
3214 : else
3215 : {
3216 0 : ChipLogProgress(Controller, "Device does not support configurable regulatory location");
3217 0 : regulatoryConfig = capability;
3218 : }
3219 :
3220 0 : CharSpan countryCode;
3221 0 : const auto & providedCountryCode = params.GetCountryCode();
3222 0 : if (providedCountryCode.HasValue())
3223 : {
3224 0 : countryCode = providedCountryCode.Value();
3225 : }
3226 : else
3227 : {
3228 : // Default to "XX", for lack of anything better.
3229 0 : countryCode = "XX"_span;
3230 : }
3231 :
3232 0 : GeneralCommissioning::Commands::SetRegulatoryConfig::Type request;
3233 0 : request.newRegulatoryConfig = regulatoryConfig;
3234 0 : request.countryCode = countryCode;
3235 0 : request.breadcrumb = breadcrumb;
3236 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetRegulatoryConfigResponse, OnBasicFailure, endpoint, timeout);
3237 0 : if (err != CHIP_NO_ERROR)
3238 : {
3239 : // We won't get any async callbacks here, so just complete our stage.
3240 0 : ChipLogError(Controller, "Failed to send SetRegulatoryConfig command: %" CHIP_ERROR_FORMAT, err.Format());
3241 0 : CommissioningStageComplete(err);
3242 0 : return;
3243 : }
3244 : }
3245 0 : break;
3246 0 : case CommissioningStage::kConfigureTCAcknowledgments: {
3247 0 : ChipLogProgress(Controller, "Setting Terms and Conditions");
3248 :
3249 0 : if (!params.GetTermsAndConditionsAcknowledgement().HasValue())
3250 : {
3251 0 : ChipLogProgress(Controller, "Setting Terms and Conditions: Skipped");
3252 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3253 0 : return;
3254 : }
3255 :
3256 0 : GeneralCommissioning::Commands::SetTCAcknowledgements::Type request;
3257 0 : TermsAndConditionsAcknowledgement termsAndConditionsAcknowledgement = params.GetTermsAndConditionsAcknowledgement().Value();
3258 0 : request.TCUserResponse = termsAndConditionsAcknowledgement.acceptedTermsAndConditions;
3259 0 : request.TCVersion = termsAndConditionsAcknowledgement.acceptedTermsAndConditionsVersion;
3260 :
3261 0 : ChipLogProgress(Controller, "Setting Terms and Conditions: %hu, %hu", request.TCUserResponse, request.TCVersion);
3262 : CHIP_ERROR err =
3263 0 : SendCommissioningCommand(proxy, request, OnSetTCAcknowledgementsResponse, OnBasicFailure, endpoint, timeout);
3264 0 : if (err != CHIP_NO_ERROR)
3265 : {
3266 0 : ChipLogError(Controller, "Failed to send SetTCAcknowledgements command: %" CHIP_ERROR_FORMAT, err.Format());
3267 0 : CommissioningStageComplete(err);
3268 0 : return;
3269 : }
3270 0 : break;
3271 : }
3272 0 : case CommissioningStage::kSendPAICertificateRequest: {
3273 0 : ChipLogProgress(Controller, "Sending request for PAI certificate");
3274 0 : CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kPAI, timeout);
3275 0 : if (err != CHIP_NO_ERROR)
3276 : {
3277 : // We won't get any async callbacks here, so just complete our stage.
3278 0 : ChipLogError(Controller, "Failed to send CertificateChainRequest command to get PAI: %" CHIP_ERROR_FORMAT,
3279 : err.Format());
3280 0 : CommissioningStageComplete(err);
3281 0 : return;
3282 : }
3283 0 : break;
3284 : }
3285 0 : case CommissioningStage::kSendDACCertificateRequest: {
3286 0 : ChipLogProgress(Controller, "Sending request for DAC certificate");
3287 0 : CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kDAC, timeout);
3288 0 : if (err != CHIP_NO_ERROR)
3289 : {
3290 : // We won't get any async callbacks here, so just complete our stage.
3291 0 : ChipLogError(Controller, "Failed to send CertificateChainRequest command to get DAC: %" CHIP_ERROR_FORMAT,
3292 : err.Format());
3293 0 : CommissioningStageComplete(err);
3294 0 : return;
3295 : }
3296 0 : break;
3297 : }
3298 0 : case CommissioningStage::kSendAttestationRequest: {
3299 0 : ChipLogProgress(Controller, "Sending Attestation Request to the device.");
3300 0 : if (!params.GetAttestationNonce().HasValue())
3301 : {
3302 0 : ChipLogError(Controller, "No attestation nonce found");
3303 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3304 0 : return;
3305 : }
3306 0 : CHIP_ERROR err = SendAttestationRequestCommand(proxy, params.GetAttestationNonce().Value(), timeout);
3307 0 : if (err != CHIP_NO_ERROR)
3308 : {
3309 : // We won't get any async callbacks here, so just complete our stage.
3310 0 : ChipLogError(Controller, "Failed to send AttestationRequest command: %" CHIP_ERROR_FORMAT, err.Format());
3311 0 : CommissioningStageComplete(err);
3312 0 : return;
3313 : }
3314 0 : break;
3315 : }
3316 0 : case CommissioningStage::kAttestationVerification: {
3317 0 : ChipLogProgress(Controller, "Verifying Device Attestation information received from the device");
3318 0 : if (IsAttestationInformationMissing(params))
3319 : {
3320 0 : ChipLogError(Controller, "Missing attestation information");
3321 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3322 0 : return;
3323 : }
3324 :
3325 : DeviceAttestationVerifier::AttestationInfo info(
3326 0 : params.GetAttestationElements().Value(),
3327 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
3328 0 : params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
3329 0 : params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
3330 :
3331 0 : CHIP_ERROR err = ValidateAttestationInfo(info);
3332 0 : if (err != CHIP_NO_ERROR)
3333 : {
3334 0 : ChipLogError(Controller, "Error validating attestation information: %" CHIP_ERROR_FORMAT, err.Format());
3335 0 : CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
3336 0 : return;
3337 : }
3338 : }
3339 0 : break;
3340 0 : case CommissioningStage::kAttestationRevocationCheck: {
3341 0 : ChipLogProgress(Controller, "Verifying the device's DAC chain revocation status");
3342 0 : if (IsAttestationInformationMissing(params))
3343 : {
3344 0 : ChipLogError(Controller, "Missing attestation information");
3345 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3346 0 : return;
3347 : }
3348 :
3349 : DeviceAttestationVerifier::AttestationInfo info(
3350 0 : params.GetAttestationElements().Value(),
3351 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
3352 0 : params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
3353 0 : params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
3354 :
3355 0 : CHIP_ERROR err = CheckForRevokedDACChain(info);
3356 :
3357 0 : if (err != CHIP_NO_ERROR)
3358 : {
3359 0 : ChipLogError(Controller, "Error validating device's DAC chain revocation status: %" CHIP_ERROR_FORMAT, err.Format());
3360 0 : CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
3361 0 : return;
3362 : }
3363 : }
3364 0 : break;
3365 0 : case CommissioningStage::kJCMTrustVerification: {
3366 0 : CHIP_ERROR err = StartJCMTrustVerification();
3367 0 : if (err != CHIP_NO_ERROR)
3368 : {
3369 0 : ChipLogError(Controller, "Failed to start JCM Trust Verification: %" CHIP_ERROR_FORMAT, err.Format());
3370 0 : CommissioningStageComplete(err);
3371 0 : return;
3372 : }
3373 0 : break;
3374 : }
3375 :
3376 0 : case CommissioningStage::kSendOpCertSigningRequest: {
3377 0 : if (!params.GetCSRNonce().HasValue())
3378 : {
3379 0 : ChipLogError(Controller, "No CSR nonce found");
3380 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3381 0 : return;
3382 : }
3383 0 : CHIP_ERROR err = SendOperationalCertificateSigningRequestCommand(proxy, params.GetCSRNonce().Value(), timeout);
3384 0 : if (err != CHIP_NO_ERROR)
3385 : {
3386 : // We won't get any async callbacks here, so just complete our stage.
3387 0 : ChipLogError(Controller, "Failed to send CSR request: %" CHIP_ERROR_FORMAT, err.Format());
3388 0 : CommissioningStageComplete(err);
3389 0 : return;
3390 : }
3391 0 : break;
3392 : }
3393 0 : case CommissioningStage::kValidateCSR: {
3394 0 : if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetCSRNonce().HasValue())
3395 : {
3396 0 : ChipLogError(Controller, "Unable to validate CSR");
3397 0 : return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3398 : }
3399 : // This is non-blocking, so send the callback immediately.
3400 0 : CHIP_ERROR err = ValidateCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
3401 0 : params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
3402 0 : params.GetCSRNonce().Value());
3403 0 : if (err != CHIP_NO_ERROR)
3404 : {
3405 0 : ChipLogError(Controller, "Failed to validate CSR: %" CHIP_ERROR_FORMAT, err.Format());
3406 : }
3407 0 : CommissioningStageComplete(err);
3408 0 : return;
3409 : }
3410 : break;
3411 0 : case CommissioningStage::kGenerateNOCChain: {
3412 0 : if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
3413 0 : !params.GetCSRNonce().HasValue())
3414 : {
3415 0 : ChipLogError(Controller, "Unable to generate NOC chain parameters");
3416 0 : return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3417 : }
3418 0 : CHIP_ERROR err = ProcessCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
3419 0 : params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
3420 0 : params.GetPAI().Value(), params.GetCSRNonce().Value());
3421 0 : if (err != CHIP_NO_ERROR)
3422 : {
3423 0 : ChipLogError(Controller, "Failed to process Operational Certificate Signing Request (CSR): %" CHIP_ERROR_FORMAT,
3424 : err.Format());
3425 0 : CommissioningStageComplete(err);
3426 0 : return;
3427 : }
3428 : }
3429 0 : break;
3430 0 : case CommissioningStage::kSendTrustedRootCert: {
3431 0 : if (!params.GetRootCert().HasValue() || !params.GetNoc().HasValue())
3432 : {
3433 0 : ChipLogError(Controller, "No trusted root cert or NOC specified");
3434 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3435 0 : return;
3436 : }
3437 0 : CHIP_ERROR err = SendTrustedRootCertificate(proxy, params.GetRootCert().Value(), timeout);
3438 0 : if (err != CHIP_NO_ERROR)
3439 : {
3440 0 : ChipLogError(Controller, "Error sending trusted root certificate: %" CHIP_ERROR_FORMAT, err.Format());
3441 0 : CommissioningStageComplete(err);
3442 0 : return;
3443 : }
3444 :
3445 0 : err = proxy->SetPeerId(params.GetRootCert().Value(), params.GetNoc().Value());
3446 0 : if (err != CHIP_NO_ERROR)
3447 : {
3448 0 : ChipLogError(Controller, "Error setting peer id: %" CHIP_ERROR_FORMAT, err.Format());
3449 0 : CommissioningStageComplete(err);
3450 0 : return;
3451 : }
3452 0 : if (!IsOperationalNodeId(proxy->GetDeviceId()))
3453 : {
3454 0 : ChipLogError(Controller, "Given node ID is not an operational node ID");
3455 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3456 0 : return;
3457 : }
3458 : }
3459 0 : break;
3460 0 : case CommissioningStage::kSendNOC: {
3461 0 : if (!params.GetNoc().HasValue() || !params.GetIpk().HasValue() || !params.GetAdminSubject().HasValue())
3462 : {
3463 0 : ChipLogError(Controller, "AddNOC contents not specified");
3464 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3465 0 : return;
3466 : }
3467 0 : CHIP_ERROR err = SendOperationalCertificate(proxy, params.GetNoc().Value(), params.GetIcac(), params.GetIpk().Value(),
3468 0 : params.GetAdminSubject().Value(), timeout);
3469 0 : if (err != CHIP_NO_ERROR)
3470 : {
3471 : // We won't get any async callbacks here, so just complete our stage.
3472 0 : ChipLogError(Controller, "Error installing operational certificate with AddNOC: %" CHIP_ERROR_FORMAT, err.Format());
3473 0 : CommissioningStageComplete(err);
3474 0 : return;
3475 : }
3476 0 : break;
3477 : }
3478 0 : case CommissioningStage::kConfigureTrustedTimeSource: {
3479 0 : if (!params.GetTrustedTimeSource().HasValue())
3480 : {
3481 0 : ChipLogError(Controller, "ConfigureTrustedTimeSource stage called with no trusted time source data!");
3482 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3483 0 : return;
3484 : }
3485 0 : TimeSynchronization::Commands::SetTrustedTimeSource::Type request;
3486 0 : request.trustedTimeSource = params.GetTrustedTimeSource().Value();
3487 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3488 0 : if (err != CHIP_NO_ERROR)
3489 : {
3490 : // We won't get any async callbacks here, so just complete our stage.
3491 0 : ChipLogError(Controller, "Failed to send SendTrustedTimeSource command: %" CHIP_ERROR_FORMAT, err.Format());
3492 0 : CommissioningStageComplete(err);
3493 0 : return;
3494 : }
3495 0 : break;
3496 : }
3497 0 : case CommissioningStage::kWiFiNetworkSetup: {
3498 0 : if (!params.GetWiFiCredentials().HasValue())
3499 : {
3500 0 : ChipLogError(Controller, "No wifi credentials specified");
3501 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3502 0 : return;
3503 : }
3504 :
3505 0 : NetworkCommissioning::Commands::AddOrUpdateWiFiNetwork::Type request;
3506 0 : request.ssid = params.GetWiFiCredentials().Value().ssid;
3507 0 : request.credentials = params.GetWiFiCredentials().Value().credentials;
3508 0 : request.breadcrumb.Emplace(breadcrumb);
3509 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3510 0 : if (err != CHIP_NO_ERROR)
3511 : {
3512 : // We won't get any async callbacks here, so just complete our stage.
3513 0 : ChipLogError(Controller, "Failed to send AddOrUpdateWiFiNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3514 0 : CommissioningStageComplete(err);
3515 0 : return;
3516 : }
3517 : }
3518 0 : break;
3519 0 : case CommissioningStage::kThreadNetworkSetup: {
3520 0 : if (!params.GetThreadOperationalDataset().HasValue())
3521 : {
3522 0 : ChipLogError(Controller, "No thread credentials specified");
3523 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3524 0 : return;
3525 : }
3526 0 : NetworkCommissioning::Commands::AddOrUpdateThreadNetwork::Type request;
3527 0 : request.operationalDataset = params.GetThreadOperationalDataset().Value();
3528 0 : request.breadcrumb.Emplace(breadcrumb);
3529 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3530 0 : if (err != CHIP_NO_ERROR)
3531 : {
3532 : // We won't get any async callbacks here, so just complete our stage.
3533 0 : ChipLogError(Controller, "Failed to send AddOrUpdateThreadNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3534 0 : CommissioningStageComplete(err);
3535 0 : return;
3536 : }
3537 : }
3538 0 : break;
3539 0 : case CommissioningStage::kFailsafeBeforeWiFiEnable:
3540 : FALLTHROUGH;
3541 : case CommissioningStage::kFailsafeBeforeThreadEnable:
3542 : // Before we try to do network enablement, make sure that our fail-safe
3543 : // is set far enough out that we can later try to do operational
3544 : // discovery without it timing out.
3545 0 : ExtendFailsafeBeforeNetworkEnable(proxy, params, step);
3546 0 : break;
3547 0 : case CommissioningStage::kWiFiNetworkEnable: {
3548 0 : if (!params.GetWiFiCredentials().HasValue())
3549 : {
3550 0 : ChipLogError(Controller, "No wifi credentials specified");
3551 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3552 0 : return;
3553 : }
3554 0 : NetworkCommissioning::Commands::ConnectNetwork::Type request;
3555 0 : request.networkID = params.GetWiFiCredentials().Value().ssid;
3556 0 : request.breadcrumb.Emplace(breadcrumb);
3557 :
3558 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3559 0 : ChipLogProgress(Controller, "SendCommand kWiFiNetworkEnable, supportsConcurrentConnection=%s",
3560 : params.GetSupportsConcurrentConnection().HasValue()
3561 : ? (params.GetSupportsConcurrentConnection().Value() ? "true" : "false")
3562 : : "missing");
3563 0 : err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
3564 :
3565 0 : if (err != CHIP_NO_ERROR)
3566 : {
3567 : // We won't get any async callbacks here, so just complete our stage.
3568 0 : ChipLogError(Controller, "Failed to send WiFi ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3569 0 : CommissioningStageComplete(err);
3570 0 : return;
3571 : }
3572 : }
3573 0 : break;
3574 0 : case CommissioningStage::kThreadNetworkEnable: {
3575 0 : ByteSpan extendedPanId;
3576 0 : chip::Thread::OperationalDataset operationalDataset;
3577 0 : if (!params.GetThreadOperationalDataset().HasValue() ||
3578 0 : operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
3579 0 : operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
3580 : {
3581 0 : ChipLogError(Controller, "Invalid Thread operational dataset configured at commissioner!");
3582 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3583 0 : return;
3584 : }
3585 0 : NetworkCommissioning::Commands::ConnectNetwork::Type request;
3586 0 : request.networkID = extendedPanId;
3587 0 : request.breadcrumb.Emplace(breadcrumb);
3588 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
3589 0 : if (err != CHIP_NO_ERROR)
3590 : {
3591 : // We won't get any async callbacks here, so just complete our stage.
3592 0 : ChipLogError(Controller, "Failed to send Thread ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3593 0 : CommissioningStageComplete(err);
3594 0 : return;
3595 : }
3596 : }
3597 0 : break;
3598 0 : case CommissioningStage::kICDGetRegistrationInfo: {
3599 0 : GetPairingDelegate()->OnICDRegistrationInfoRequired();
3600 0 : return;
3601 : }
3602 : break;
3603 0 : case CommissioningStage::kICDRegistration: {
3604 0 : IcdManagement::Commands::RegisterClient::Type request;
3605 :
3606 0 : if (!(params.GetICDCheckInNodeId().HasValue() && params.GetICDMonitoredSubject().HasValue() &&
3607 0 : params.GetICDSymmetricKey().HasValue()))
3608 : {
3609 0 : ChipLogError(Controller, "No ICD Registration information provided!");
3610 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE);
3611 0 : return;
3612 : }
3613 :
3614 0 : request.checkInNodeID = params.GetICDCheckInNodeId().Value();
3615 0 : request.monitoredSubject = params.GetICDMonitoredSubject().Value();
3616 0 : request.key = params.GetICDSymmetricKey().Value();
3617 :
3618 : CHIP_ERROR err =
3619 0 : SendCommissioningCommand(proxy, request, OnICDManagementRegisterClientResponse, OnBasicFailure, endpoint, timeout);
3620 0 : if (err != CHIP_NO_ERROR)
3621 : {
3622 : // We won't get any async callbacks here, so just complete our stage.
3623 0 : ChipLogError(Controller, "Failed to send IcdManagement.RegisterClient command: %" CHIP_ERROR_FORMAT, err.Format());
3624 0 : CommissioningStageComplete(err);
3625 0 : return;
3626 : }
3627 : }
3628 0 : break;
3629 0 : case CommissioningStage::kEvictPreviousCaseSessions: {
3630 0 : auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
3631 :
3632 : // If we ever had a commissioned device with this node ID before, we may
3633 : // have stale sessions to it. Make sure we don't re-use any of those,
3634 : // because clearly they are not related to this new device we are
3635 : // commissioning. We only care about sessions we might reuse, so just
3636 : // clearing the ones associated with our fabric index is good enough and
3637 : // we don't need to worry about ExpireAllSessionsOnLogicalFabric.
3638 0 : mSystemState->SessionMgr()->ExpireAllSessions(scopedPeerId);
3639 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3640 0 : return;
3641 : }
3642 0 : case CommissioningStage::kFindOperationalForStayActive:
3643 : case CommissioningStage::kFindOperationalForCommissioningComplete: {
3644 : // If there is an error, CommissioningStageComplete will be called from OnDeviceConnectionFailureFn.
3645 0 : auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
3646 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissioningOperationalSetup);
3647 0 : mSystemState->CASESessionMgr()->FindOrEstablishSession(scopedPeerId, &mOnDeviceConnectedCallback,
3648 : &mOnDeviceConnectionFailureCallback
3649 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
3650 : ,
3651 : /* attemptCount = */ 3, &mOnDeviceConnectionRetryCallback
3652 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
3653 : );
3654 : }
3655 0 : break;
3656 0 : case CommissioningStage::kPrimaryOperationalNetworkFailed: {
3657 : // nothing to do. This stage indicates that the primary operational network failed and the network config should be
3658 : // removed later.
3659 0 : break;
3660 : }
3661 0 : case CommissioningStage::kRemoveWiFiNetworkConfig: {
3662 0 : NetworkCommissioning::Commands::RemoveNetwork::Type request;
3663 0 : request.networkID = params.GetWiFiCredentials().Value().ssid;
3664 0 : request.breadcrumb.Emplace(breadcrumb);
3665 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3666 0 : if (err != CHIP_NO_ERROR)
3667 : {
3668 : // We won't get any async callbacks here, so just complete our stage.
3669 0 : ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3670 0 : CommissioningStageComplete(err);
3671 0 : return;
3672 : }
3673 0 : break;
3674 : }
3675 0 : case CommissioningStage::kRemoveThreadNetworkConfig: {
3676 0 : ByteSpan extendedPanId;
3677 0 : chip::Thread::OperationalDataset operationalDataset;
3678 0 : if (!params.GetThreadOperationalDataset().HasValue() ||
3679 0 : operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
3680 0 : operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
3681 : {
3682 0 : ChipLogError(Controller, "Invalid Thread operational dataset configured at commissioner!");
3683 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3684 0 : return;
3685 : }
3686 0 : NetworkCommissioning::Commands::RemoveNetwork::Type request;
3687 0 : request.networkID = extendedPanId;
3688 0 : request.breadcrumb.Emplace(breadcrumb);
3689 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3690 0 : if (err != CHIP_NO_ERROR)
3691 : {
3692 : // We won't get any async callbacks here, so just complete our stage.
3693 0 : ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3694 0 : CommissioningStageComplete(err);
3695 0 : return;
3696 : }
3697 0 : break;
3698 : }
3699 0 : case CommissioningStage::kICDSendStayActive: {
3700 0 : if (!(params.GetICDStayActiveDurationMsec().HasValue()))
3701 : {
3702 0 : ChipLogProgress(Controller, "Skipping kICDSendStayActive");
3703 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3704 0 : return;
3705 : }
3706 :
3707 : // StayActive Command happens over CASE Connection
3708 0 : IcdManagement::Commands::StayActiveRequest::Type request;
3709 0 : request.stayActiveDuration = params.GetICDStayActiveDurationMsec().Value();
3710 0 : ChipLogError(Controller, "Send ICD StayActive with Duration %u", request.stayActiveDuration);
3711 : CHIP_ERROR err =
3712 0 : SendCommissioningCommand(proxy, request, OnICDManagementStayActiveResponse, OnBasicFailure, endpoint, timeout);
3713 0 : if (err != CHIP_NO_ERROR)
3714 : {
3715 : // We won't get any async callbacks here, so just complete our stage.
3716 0 : ChipLogError(Controller, "Failed to send IcdManagement.StayActive command: %" CHIP_ERROR_FORMAT, err.Format());
3717 0 : CommissioningStageComplete(err);
3718 0 : return;
3719 : }
3720 : }
3721 0 : break;
3722 0 : case CommissioningStage::kSendComplete: {
3723 : // CommissioningComplete command happens over the CASE connection.
3724 : GeneralCommissioning::Commands::CommissioningComplete::Type request;
3725 : CHIP_ERROR err =
3726 0 : SendCommissioningCommand(proxy, request, OnCommissioningCompleteResponse, OnBasicFailure, endpoint, timeout);
3727 0 : if (err != CHIP_NO_ERROR)
3728 : {
3729 : // We won't get any async callbacks here, so just complete our stage.
3730 0 : ChipLogError(Controller, "Failed to send CommissioningComplete command: %" CHIP_ERROR_FORMAT, err.Format());
3731 0 : CommissioningStageComplete(err);
3732 0 : return;
3733 : }
3734 : }
3735 0 : break;
3736 0 : case CommissioningStage::kCleanup:
3737 0 : CleanupCommissioning(proxy, proxy->GetDeviceId(), params.GetCompletionStatus());
3738 0 : break;
3739 0 : case CommissioningStage::kError:
3740 0 : mCommissioningStage = CommissioningStage::kSecurePairing;
3741 0 : break;
3742 0 : case CommissioningStage::kSecurePairing:
3743 0 : break;
3744 : }
3745 : }
3746 :
3747 0 : void DeviceCommissioner::ExtendFailsafeBeforeNetworkEnable(DeviceProxy * device, CommissioningParameters & params,
3748 : CommissioningStage step)
3749 : {
3750 0 : auto * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
3751 0 : if (device != commissioneeDevice)
3752 : {
3753 : // Not a commissionee device; just return.
3754 0 : ChipLogError(Controller, "Trying to extend fail-safe for an unknown commissionee with device id " ChipLogFormatX64,
3755 : ChipLogValueX64(device->GetDeviceId()));
3756 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE, CommissioningDelegate::CommissioningReport());
3757 0 : return;
3758 : }
3759 :
3760 : // Try to make sure we have at least enough time for our expected
3761 : // commissioning bits plus the MRP retries for a Sigma1.
3762 0 : uint16_t failSafeTimeoutSecs = params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout);
3763 0 : auto sigma1Timeout = CASESession::ComputeSigma1ResponseTimeout(commissioneeDevice->GetPairing().GetRemoteMRPConfig());
3764 0 : uint16_t sigma1TimeoutSecs = std::chrono::duration_cast<System::Clock::Seconds16>(sigma1Timeout).count();
3765 0 : if (UINT16_MAX - failSafeTimeoutSecs < sigma1TimeoutSecs)
3766 : {
3767 0 : failSafeTimeoutSecs = UINT16_MAX;
3768 : }
3769 : else
3770 : {
3771 0 : failSafeTimeoutSecs = static_cast<uint16_t>(failSafeTimeoutSecs + sigma1TimeoutSecs);
3772 : }
3773 :
3774 0 : if (!ExtendArmFailSafeInternal(commissioneeDevice, step, failSafeTimeoutSecs, MakeOptional(kMinimumCommissioningStepTimeout),
3775 : OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false))
3776 : {
3777 : // A false return is fine; we don't want to make the fail-safe shorter here.
3778 0 : CommissioningStageComplete(CHIP_NO_ERROR, CommissioningDelegate::CommissioningReport());
3779 : }
3780 : }
3781 :
3782 0 : bool DeviceCommissioner::IsAttestationInformationMissing(const CommissioningParameters & params)
3783 : {
3784 0 : if (!params.GetAttestationElements().HasValue() || !params.GetAttestationSignature().HasValue() ||
3785 0 : !params.GetAttestationNonce().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
3786 0 : !params.GetRemoteVendorId().HasValue() || !params.GetRemoteProductId().HasValue())
3787 : {
3788 0 : return true;
3789 : }
3790 :
3791 0 : return false;
3792 : }
3793 :
3794 0 : CHIP_ERROR DeviceController::GetCompressedFabricIdBytes(MutableByteSpan & outBytes) const
3795 : {
3796 0 : const auto * fabricInfo = GetFabricInfo();
3797 0 : VerifyOrReturnError(fabricInfo != nullptr, CHIP_ERROR_INVALID_FABRIC_INDEX);
3798 0 : return fabricInfo->GetCompressedFabricIdBytes(outBytes);
3799 : }
3800 :
3801 0 : CHIP_ERROR DeviceController::GetRootPublicKey(Crypto::P256PublicKey & outRootPublicKey) const
3802 : {
3803 0 : const auto * fabricTable = GetFabricTable();
3804 0 : VerifyOrReturnError(fabricTable != nullptr, CHIP_ERROR_INCORRECT_STATE);
3805 0 : return fabricTable->FetchRootPubkey(mFabricIndex, outRootPublicKey);
3806 : }
3807 :
3808 0 : bool DeviceCommissioner::HasValidCommissioningMode(const Dnssd::CommissionNodeData & nodeData)
3809 : {
3810 0 : if (nodeData.commissioningMode == to_underlying(Dnssd::CommissioningMode::kDisabled))
3811 : {
3812 0 : ChipLogProgress(Controller, "Discovered device does not have an open commissioning window.");
3813 0 : return false;
3814 : }
3815 0 : return true;
3816 : }
3817 :
3818 : } // namespace Controller
3819 : } // namespace chip
|