Matter SDK Coverage Report
Current view: top level - controller - CHIPDeviceController.cpp (source / functions) Coverage Total Hit
Test: SHA:e021a368d10ac6f3f201c101585146211fdcdaa2 Lines: 0.5 % 1839 9
Test Date: 2026-02-13 08:13:38 Functions: 1.0 % 197 2

            Line data    Source code
       1              : /*
       2              :  *
       3              :  *    Copyright (c) 2020-2024 Project CHIP Authors
       4              :  *    Copyright (c) 2013-2017 Nest Labs, Inc.
       5              :  *    All rights reserved.
       6              :  *
       7              :  *    Licensed under the Apache License, Version 2.0 (the "License");
       8              :  *    you may not use this file except in compliance with the License.
       9              :  *    You may obtain a copy of the License at
      10              :  *
      11              :  *        http://www.apache.org/licenses/LICENSE-2.0
      12              :  *
      13              :  *    Unless required by applicable law or agreed to in writing, software
      14              :  *    distributed under the License is distributed on an "AS IS" BASIS,
      15              :  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      16              :  *    See the License for the specific language governing permissions and
      17              :  *    limitations under the License.
      18              :  */
      19              : 
      20              : /**
      21              :  *    @file
      22              :  *      Implementation of CHIP Device Controller, a common class
      23              :  *      that implements discovery, pairing and provisioning of CHIP
      24              :  *      devices.
      25              :  *
      26              :  */
      27              : 
      28              : // module header, comes first
      29              : #include <controller/CHIPDeviceController.h>
      30              : 
      31              : #include <app-common/zap-generated/ids/Attributes.h>
      32              : #include <app-common/zap-generated/ids/Clusters.h>
      33              : 
      34              : #include <app/InteractionModelEngine.h>
      35              : #include <app/OperationalSessionSetup.h>
      36              : #include <app/server/Dnssd.h>
      37              : #include <controller/CurrentFabricRemover.h>
      38              : #include <controller/InvokeInteraction.h>
      39              : #include <controller/WriteInteraction.h>
      40              : #include <credentials/CHIPCert.h>
      41              : #include <credentials/DeviceAttestationCredsProvider.h>
      42              : #include <crypto/CHIPCryptoPAL.h>
      43              : #include <lib/address_resolve/AddressResolve.h>
      44              : #include <lib/core/CHIPCore.h>
      45              : #include <lib/core/CHIPEncoding.h>
      46              : #include <lib/core/CHIPSafeCasts.h>
      47              : #include <lib/core/ErrorStr.h>
      48              : #include <lib/core/NodeId.h>
      49              : #include <lib/support/Base64.h>
      50              : #include <lib/support/CHIPMem.h>
      51              : #include <lib/support/CodeUtils.h>
      52              : #include <lib/support/PersistentStorageMacros.h>
      53              : #include <lib/support/SafeInt.h>
      54              : #include <lib/support/ScopedBuffer.h>
      55              : #include <lib/support/ThreadOperationalDataset.h>
      56              : #include <lib/support/TimeUtils.h>
      57              : #include <lib/support/logging/CHIPLogging.h>
      58              : #include <messaging/ExchangeContext.h>
      59              : #include <platform/LockTracker.h>
      60              : #include <protocols/secure_channel/MessageCounterManager.h>
      61              : #include <setup_payload/QRCodeSetupPayloadParser.h>
      62              : #include <tracing/macros.h>
      63              : #include <tracing/metric_event.h>
      64              : 
      65              : #if CONFIG_NETWORK_LAYER_BLE
      66              : #include <ble/Ble.h>
      67              : #include <transport/raw/BLE.h>
      68              : #endif
      69              : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
      70              : #include <transport/raw/WiFiPAF.h>
      71              : #endif
      72              : 
      73              : #if CHIP_DEVICE_CONFIG_ENABLE_NFC_BASED_COMMISSIONING
      74              : #include <platform/internal/NFCCommissioningManager.h>
      75              : #endif
      76              : 
      77              : #include <algorithm>
      78              : #include <array>
      79              : #include <errno.h>
      80              : #include <inttypes.h>
      81              : #include <limits>
      82              : #include <memory>
      83              : #include <stdint.h>
      84              : #include <stdlib.h>
      85              : #include <string>
      86              : #include <time.h>
      87              : 
      88              : using namespace chip::app;
      89              : using namespace chip::app::Clusters;
      90              : using namespace chip::Inet;
      91              : using namespace chip::System;
      92              : using namespace chip::Transport;
      93              : using namespace chip::Credentials;
      94              : using namespace chip::Crypto;
      95              : using namespace chip::Tracing;
      96              : 
      97              : namespace chip {
      98              : namespace Controller {
      99              : 
     100              : using namespace chip::Encoding;
     101              : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
     102              : using namespace chip::Protocols::UserDirectedCommissioning;
     103              : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
     104              : 
     105              : using chip::AddressResolve::Resolver;
     106              : using chip::AddressResolve::ResolveResult;
     107              : 
     108          165 : DeviceController::DeviceController()
     109              : {
     110           15 :     mState = State::NotInitialized;
     111           15 : }
     112              : 
     113            0 : CHIP_ERROR DeviceController::Init(ControllerInitParams params)
     114              : {
     115            0 :     assertChipStackLockedByCurrentThread();
     116              : 
     117            0 :     VerifyOrReturnError(mState == State::NotInitialized, CHIP_ERROR_INCORRECT_STATE);
     118            0 :     VerifyOrReturnError(params.systemState != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
     119              : 
     120            0 :     VerifyOrReturnError(params.systemState->SystemLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
     121            0 :     VerifyOrReturnError(params.systemState->UDPEndPointManager() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
     122              : 
     123              : #if CONFIG_NETWORK_LAYER_BLE
     124            0 :     VerifyOrReturnError(params.systemState->BleLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
     125              : #endif
     126              : 
     127            0 :     VerifyOrReturnError(params.systemState->TransportMgr() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
     128              : 
     129            0 :     ReturnErrorOnFailure(mDNSResolver.Init(params.systemState->UDPEndPointManager()));
     130            0 :     mDNSResolver.SetDiscoveryDelegate(this);
     131            0 :     RegisterDeviceDiscoveryDelegate(params.deviceDiscoveryDelegate);
     132              : 
     133            0 :     mVendorId = params.controllerVendorId;
     134            0 :     if (params.operationalKeypair != nullptr || !params.controllerNOC.empty() || !params.controllerRCAC.empty())
     135              :     {
     136            0 :         ReturnErrorOnFailure(InitControllerNOCChain(params));
     137              :     }
     138            0 :     else if (params.fabricIndex.HasValue())
     139              :     {
     140            0 :         VerifyOrReturnError(params.systemState->Fabrics()->FabricCount() > 0, CHIP_ERROR_INVALID_ARGUMENT);
     141            0 :         if (params.systemState->Fabrics()->FindFabricWithIndex(params.fabricIndex.Value()) != nullptr)
     142              :         {
     143            0 :             mFabricIndex = params.fabricIndex.Value();
     144              :         }
     145              :         else
     146              :         {
     147            0 :             ChipLogError(Controller, "There is no fabric corresponding to the given fabricIndex");
     148            0 :             return CHIP_ERROR_INVALID_ARGUMENT;
     149              :         }
     150              :     }
     151              : 
     152            0 :     mSystemState = params.systemState->Retain();
     153            0 :     mState       = State::Initialized;
     154              : 
     155            0 :     mRemoveFromFabricTableOnShutdown = params.removeFromFabricTableOnShutdown;
     156            0 :     mDeleteFromFabricTableOnShutdown = params.deleteFromFabricTableOnShutdown;
     157              : 
     158            0 :     if (GetFabricIndex() != kUndefinedFabricIndex)
     159              :     {
     160            0 :         ChipLogProgress(Controller,
     161              :                         "Joined the fabric at index %d. Fabric ID is 0x" ChipLogFormatX64
     162              :                         " (Compressed Fabric ID: " ChipLogFormatX64 ")",
     163              :                         GetFabricIndex(), ChipLogValueX64(GetFabricId()), ChipLogValueX64(GetCompressedFabricId()));
     164              :     }
     165              : 
     166            0 :     return CHIP_NO_ERROR;
     167              : }
     168              : 
     169            0 : CHIP_ERROR DeviceController::InitControllerNOCChain(const ControllerInitParams & params)
     170              : {
     171            0 :     FabricInfo newFabric;
     172            0 :     constexpr uint32_t chipCertAllocatedLen = kMaxCHIPCertLength;
     173            0 :     chip::Platform::ScopedMemoryBuffer<uint8_t> rcacBuf;
     174            0 :     chip::Platform::ScopedMemoryBuffer<uint8_t> icacBuf;
     175            0 :     chip::Platform::ScopedMemoryBuffer<uint8_t> nocBuf;
     176            0 :     Credentials::P256PublicKeySpan rootPublicKeySpan;
     177              :     FabricId fabricId;
     178              :     NodeId nodeId;
     179            0 :     bool hasExternallyOwnedKeypair                   = false;
     180            0 :     Crypto::P256Keypair * externalOperationalKeypair = nullptr;
     181            0 :     VendorId newFabricVendorId                       = params.controllerVendorId;
     182              : 
     183              :     // There are three possibilities here in terms of what happens with our
     184              :     // operational key:
     185              :     // 1) We have an externally owned operational keypair.
     186              :     // 2) We have an operational keypair that the fabric table should clone via
     187              :     //    serialize/deserialize.
     188              :     // 3) We have no keypair at all, and the fabric table has been initialized
     189              :     //    with a key store.
     190            0 :     if (params.operationalKeypair != nullptr)
     191              :     {
     192            0 :         hasExternallyOwnedKeypair  = params.hasExternallyOwnedOperationalKeypair;
     193            0 :         externalOperationalKeypair = params.operationalKeypair;
     194              :     }
     195              : 
     196            0 :     VerifyOrReturnError(rcacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
     197            0 :     VerifyOrReturnError(icacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
     198            0 :     VerifyOrReturnError(nocBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
     199              : 
     200            0 :     MutableByteSpan rcacSpan(rcacBuf.Get(), chipCertAllocatedLen);
     201              : 
     202            0 :     ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerRCAC, rcacSpan));
     203            0 :     ReturnErrorOnFailure(Credentials::ExtractPublicKeyFromChipCert(rcacSpan, rootPublicKeySpan));
     204            0 :     Crypto::P256PublicKey rootPublicKey{ rootPublicKeySpan };
     205              : 
     206            0 :     MutableByteSpan icacSpan;
     207            0 :     if (params.controllerICAC.empty())
     208              :     {
     209            0 :         ChipLogProgress(Controller, "Intermediate CA is not needed");
     210              :     }
     211              :     else
     212              :     {
     213            0 :         icacSpan = MutableByteSpan(icacBuf.Get(), chipCertAllocatedLen);
     214            0 :         ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerICAC, icacSpan));
     215              :     }
     216              : 
     217            0 :     MutableByteSpan nocSpan = MutableByteSpan(nocBuf.Get(), chipCertAllocatedLen);
     218              : 
     219            0 :     ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerNOC, nocSpan));
     220            0 :     ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(nocSpan, &nodeId, &fabricId));
     221              : 
     222            0 :     auto * fabricTable            = params.systemState->Fabrics();
     223            0 :     const FabricInfo * fabricInfo = nullptr;
     224              : 
     225              :     //
     226              :     // When multiple controllers are permitted on the same fabric, we need to find fabrics with
     227              :     // nodeId as an extra discriminant since we can have multiple FabricInfo objects that all
     228              :     // collide on the same fabric. Not doing so may result in a match with an existing FabricInfo
     229              :     // instance that matches the fabric in the provided NOC but is associated with a different NodeId
     230              :     // that is already in use by another active controller instance. That will effectively cause it
     231              :     // to change its identity inadvertently, which is not acceptable.
     232              :     //
     233              :     // TODO: Figure out how to clean up unreclaimed FabricInfos restored from persistent
     234              :     //       storage that are not in use by active DeviceController instances. Also, figure out
     235              :     //       how to reclaim FabricInfo slots when a DeviceController instance is deleted.
     236              :     //
     237            0 :     if (params.permitMultiControllerFabrics)
     238              :     {
     239            0 :         fabricInfo = fabricTable->FindIdentity(rootPublicKey, fabricId, nodeId);
     240              :     }
     241              :     else
     242              :     {
     243            0 :         fabricInfo = fabricTable->FindFabric(rootPublicKey, fabricId);
     244              :     }
     245              : 
     246            0 :     bool fabricFoundInTable = (fabricInfo != nullptr);
     247              : 
     248            0 :     FabricIndex fabricIndex = fabricFoundInTable ? fabricInfo->GetFabricIndex() : kUndefinedFabricIndex;
     249              : 
     250            0 :     CHIP_ERROR err = CHIP_NO_ERROR;
     251              : 
     252            0 :     auto advertiseOperational =
     253            0 :         params.enableServerInteractions ? FabricTable::AdvertiseIdentity::Yes : FabricTable::AdvertiseIdentity::No;
     254              : 
     255              :     //
     256              :     // We permit colliding fabrics when multiple controllers are present on the same logical fabric
     257              :     // since each controller is associated with a unique FabricInfo 'identity' object and consequently,
     258              :     // a unique FabricIndex.
     259              :     //
     260              :     // This sets a flag that will be cleared automatically when the fabric is committed/reverted later
     261              :     // in this function.
     262              :     //
     263            0 :     if (params.permitMultiControllerFabrics)
     264              :     {
     265            0 :         fabricTable->PermitCollidingFabrics();
     266              :     }
     267              : 
     268              :     // We have 4 cases to handle legacy usage of direct operational key injection
     269            0 :     if (externalOperationalKeypair)
     270              :     {
     271              :         // Cases 1 and 2: Injected operational keys
     272              : 
     273              :         // CASE 1: Fabric update with injected key
     274            0 :         if (fabricFoundInTable)
     275              :         {
     276            0 :             err = fabricTable->UpdatePendingFabricWithProvidedOpKey(fabricIndex, nocSpan, icacSpan, externalOperationalKeypair,
     277              :                                                                     hasExternallyOwnedKeypair, advertiseOperational);
     278              :         }
     279              :         else
     280              :         // CASE 2: New fabric with injected key
     281              :         {
     282            0 :             err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
     283            0 :             if (err == CHIP_NO_ERROR)
     284              :             {
     285            0 :                 err = fabricTable->AddNewPendingFabricWithProvidedOpKey(nocSpan, icacSpan, newFabricVendorId,
     286              :                                                                         externalOperationalKeypair, hasExternallyOwnedKeypair,
     287              :                                                                         &fabricIndex, advertiseOperational);
     288              :             }
     289              :         }
     290              :     }
     291              :     else
     292              :     {
     293              :         // Cases 3 and 4: OperationalKeystore has the keys
     294              : 
     295              :         // CASE 3: Fabric update with operational keystore
     296            0 :         if (fabricFoundInTable)
     297              :         {
     298            0 :             VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(fabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
     299              : 
     300            0 :             err = fabricTable->UpdatePendingFabricWithOperationalKeystore(fabricIndex, nocSpan, icacSpan, advertiseOperational);
     301              :         }
     302              :         else
     303              :         // CASE 4: New fabric with operational keystore
     304              :         {
     305            0 :             err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
     306            0 :             if (err == CHIP_NO_ERROR)
     307              :             {
     308            0 :                 err = fabricTable->AddNewPendingFabricWithOperationalKeystore(nocSpan, icacSpan, newFabricVendorId, &fabricIndex,
     309              :                                                                               advertiseOperational);
     310              :             }
     311              : 
     312            0 :             if (err == CHIP_NO_ERROR)
     313              :             {
     314              :                 // Now that we know our planned fabric index, verify that the
     315              :                 // keystore has a key for it.
     316            0 :                 if (!fabricTable->HasOperationalKeyForFabric(fabricIndex))
     317              :                 {
     318            0 :                     err = CHIP_ERROR_KEY_NOT_FOUND;
     319              :                 }
     320              :             }
     321              :         }
     322              :     }
     323              : 
     324              :     // Commit after setup, error-out on failure.
     325            0 :     if (err == CHIP_NO_ERROR)
     326              :     {
     327              :         // No need to revert on error: CommitPendingFabricData reverts internally on *any* error.
     328            0 :         err = fabricTable->CommitPendingFabricData();
     329              :     }
     330              :     else
     331              :     {
     332            0 :         fabricTable->RevertPendingFabricData();
     333              :     }
     334              : 
     335            0 :     ReturnErrorOnFailure(err);
     336            0 :     VerifyOrReturnError(fabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
     337              : 
     338            0 :     mFabricIndex       = fabricIndex;
     339            0 :     mAdvertiseIdentity = advertiseOperational;
     340            0 :     return CHIP_NO_ERROR;
     341            0 : }
     342              : 
     343            0 : CHIP_ERROR DeviceController::UpdateControllerNOCChain(const ByteSpan & noc, const ByteSpan & icac,
     344              :                                                       Crypto::P256Keypair * operationalKeypair,
     345              :                                                       bool operationalKeypairExternalOwned)
     346              : {
     347            0 :     VerifyOrReturnError(mFabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
     348            0 :     VerifyOrReturnError(mSystemState != nullptr, CHIP_ERROR_INTERNAL);
     349            0 :     FabricTable * fabricTable = mSystemState->Fabrics();
     350            0 :     CHIP_ERROR err            = CHIP_NO_ERROR;
     351              :     FabricId fabricId;
     352              :     NodeId nodeId;
     353            0 :     CATValues oldCats;
     354            0 :     CATValues newCats;
     355            0 :     ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(noc, &nodeId, &fabricId));
     356            0 :     ReturnErrorOnFailure(fabricTable->FetchCATs(mFabricIndex, oldCats));
     357            0 :     ReturnErrorOnFailure(ExtractCATsFromOpCert(noc, newCats));
     358              : 
     359            0 :     bool needCloseSession = true;
     360            0 :     if (GetFabricInfo()->GetNodeId() == nodeId && oldCats == newCats)
     361              :     {
     362            0 :         needCloseSession = false;
     363              :     }
     364              : 
     365            0 :     if (operationalKeypair != nullptr)
     366              :     {
     367            0 :         err = fabricTable->UpdatePendingFabricWithProvidedOpKey(mFabricIndex, noc, icac, operationalKeypair,
     368              :                                                                 operationalKeypairExternalOwned, mAdvertiseIdentity);
     369              :     }
     370              :     else
     371              :     {
     372            0 :         VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(mFabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
     373            0 :         err = fabricTable->UpdatePendingFabricWithOperationalKeystore(mFabricIndex, noc, icac, mAdvertiseIdentity);
     374              :     }
     375              : 
     376            0 :     if (err == CHIP_NO_ERROR)
     377              :     {
     378            0 :         err = fabricTable->CommitPendingFabricData();
     379              :     }
     380              :     else
     381              :     {
     382            0 :         fabricTable->RevertPendingFabricData();
     383              :     }
     384              : 
     385            0 :     ReturnErrorOnFailure(err);
     386            0 :     if (needCloseSession)
     387              :     {
     388              :         // If the node id or CATs have changed, our existing CASE sessions are no longer valid,
     389              :         // because the other side will think anything coming over those sessions comes from our
     390              :         // old node ID, and the new CATs might not satisfy the ACL requirements of the other side.
     391            0 :         mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
     392              :     }
     393            0 :     ChipLogProgress(Controller, "Controller NOC chain has updated");
     394            0 :     return CHIP_NO_ERROR;
     395              : }
     396              : 
     397            0 : void DeviceController::Shutdown()
     398              : {
     399            0 :     assertChipStackLockedByCurrentThread();
     400              : 
     401            0 :     VerifyOrReturn(mState != State::NotInitialized);
     402              : 
     403              :     // If our state is initialialized it means mSystemState is valid,
     404              :     // and we can use it below before we release our reference to it.
     405            0 :     ChipLogDetail(Controller, "Shutting down the controller");
     406            0 :     mState = State::NotInitialized;
     407              : 
     408            0 :     if (mFabricIndex != kUndefinedFabricIndex)
     409              :     {
     410              :         // Shut down any subscription clients for this fabric.
     411            0 :         app::InteractionModelEngine::GetInstance()->ShutdownSubscriptions(mFabricIndex);
     412              : 
     413              :         // Shut down any ongoing CASE session activity we have.  We're going to
     414              :         // assume that all sessions for our fabric belong to us here.
     415            0 :         mSystemState->CASESessionMgr()->ReleaseSessionsForFabric(mFabricIndex);
     416              : 
     417              :         // Shut down any bdx transfers we're acting as the server for.
     418            0 :         mSystemState->BDXTransferServer()->AbortTransfersForFabric(mFabricIndex);
     419              : 
     420              :         // TODO: The CASE session manager does not shut down existing CASE
     421              :         // sessions.  It just shuts down any ongoing CASE session establishment
     422              :         // we're in the middle of as initiator.  Maybe it should shut down
     423              :         // existing sessions too?
     424            0 :         mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
     425              : 
     426            0 :         if (mDeleteFromFabricTableOnShutdown)
     427              :         {
     428            0 :             TEMPORARY_RETURN_IGNORED mSystemState->Fabrics()->Delete(mFabricIndex);
     429              :         }
     430            0 :         else if (mRemoveFromFabricTableOnShutdown)
     431              :         {
     432            0 :             mSystemState->Fabrics()->Forget(mFabricIndex);
     433              :         }
     434              :     }
     435              : 
     436            0 :     mSystemState->Release();
     437            0 :     mSystemState = nullptr;
     438              : 
     439            0 :     mDNSResolver.Shutdown();
     440            0 :     mDeviceDiscoveryDelegate = nullptr;
     441              : }
     442              : 
     443            0 : CHIP_ERROR DeviceController::GetPeerAddressAndPort(NodeId peerId, Inet::IPAddress & addr, uint16_t & port)
     444              : {
     445            0 :     VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
     446            0 :     Transport::PeerAddress peerAddr;
     447            0 :     ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(peerId), peerAddr));
     448            0 :     addr = peerAddr.GetIPAddress();
     449            0 :     port = peerAddr.GetPort();
     450            0 :     return CHIP_NO_ERROR;
     451              : }
     452              : 
     453            0 : CHIP_ERROR DeviceController::GetPeerAddress(NodeId nodeId, Transport::PeerAddress & addr)
     454              : {
     455            0 :     VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
     456            0 :     ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(nodeId), addr));
     457              : 
     458            0 :     return CHIP_NO_ERROR;
     459              : }
     460              : 
     461            0 : CHIP_ERROR DeviceController::ComputePASEVerifier(uint32_t iterations, uint32_t setupPincode, const ByteSpan & salt,
     462              :                                                  Spake2pVerifier & outVerifier)
     463              : {
     464            0 :     ReturnErrorOnFailure(PASESession::GeneratePASEVerifier(outVerifier, iterations, salt, /* useRandomPIN= */ false, setupPincode));
     465              : 
     466            0 :     return CHIP_NO_ERROR;
     467              : }
     468              : 
     469            0 : ControllerDeviceInitParams DeviceController::GetControllerDeviceInitParams()
     470              : {
     471              :     return ControllerDeviceInitParams{
     472            0 :         .sessionManager = mSystemState->SessionMgr(),
     473            0 :         .exchangeMgr    = mSystemState->ExchangeMgr(),
     474            0 :     };
     475              : }
     476              : 
     477            7 : DeviceCommissioner::DeviceCommissioner() :
     478            7 :     mOnDeviceConnectedCallback(OnDeviceConnectedFn, this), mOnDeviceConnectionFailureCallback(OnDeviceConnectionFailureFn, this),
     479              : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
     480            7 :     mOnDeviceConnectionRetryCallback(OnDeviceConnectionRetryFn, this),
     481              : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
     482            7 :     mDeviceAttestationInformationVerificationCallback(OnDeviceAttestationInformationVerification, this),
     483           14 :     mDeviceNOCChainCallback(OnDeviceNOCChainGeneration, this), mSetUpCodePairer(this)
     484              : {
     485              : #if CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
     486              :     (void) mPeerAdminJFAdminClusterEndpointId;
     487              : #endif // CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
     488            7 : }
     489              : 
     490            0 : CHIP_ERROR DeviceCommissioner::Init(CommissionerInitParams params)
     491              : {
     492            0 :     VerifyOrReturnError(params.operationalCredentialsDelegate != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
     493            0 :     mOperationalCredentialsDelegate = params.operationalCredentialsDelegate;
     494            0 :     ReturnErrorOnFailure(DeviceController::Init(params));
     495              : 
     496            0 :     mPairingDelegate = params.pairingDelegate;
     497              : 
     498              :     // Configure device attestation validation
     499            0 :     mDeviceAttestationVerifier = params.deviceAttestationVerifier;
     500            0 :     if (mDeviceAttestationVerifier == nullptr)
     501              :     {
     502            0 :         mDeviceAttestationVerifier = Credentials::GetDeviceAttestationVerifier();
     503            0 :         if (mDeviceAttestationVerifier == nullptr)
     504              :         {
     505            0 :             ChipLogError(Controller,
     506              :                          "Missing DeviceAttestationVerifier configuration at DeviceCommissioner init and none set with "
     507              :                          "Credentials::SetDeviceAttestationVerifier()!");
     508            0 :             return CHIP_ERROR_INVALID_ARGUMENT;
     509              :         }
     510              : 
     511              :         // We fell back on a default from singleton accessor.
     512            0 :         ChipLogProgress(Controller,
     513              :                         "*** Missing DeviceAttestationVerifier configuration at DeviceCommissioner init: using global default, "
     514              :                         "consider passing one in CommissionerInitParams.");
     515              :     }
     516              : 
     517            0 :     if (params.defaultCommissioner != nullptr)
     518              :     {
     519            0 :         mDefaultCommissioner = params.defaultCommissioner;
     520              :     }
     521              :     // Otherwise leave it pointing to mAutoCommissioner.
     522              : 
     523              : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
     524              :     mUdcTransportMgr = chip::Platform::New<UdcTransportMgr>();
     525              :     ReturnErrorOnFailure(mUdcTransportMgr->Init(Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
     526              :                                                     .SetAddressType(Inet::IPAddressType::kIPv6)
     527              :                                                     .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
     528              : #if INET_CONFIG_ENABLE_IPV4
     529              :                                                     ,
     530              :                                                 Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
     531              :                                                     .SetAddressType(Inet::IPAddressType::kIPv4)
     532              :                                                     .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
     533              : #endif // INET_CONFIG_ENABLE_IPV4
     534              :                                                     ));
     535              : 
     536              :     mUdcServer = chip::Platform::New<UserDirectedCommissioningServer>();
     537              :     mUdcTransportMgr->SetSessionManager(mUdcServer);
     538              :     mUdcServer->SetTransportManager(mUdcTransportMgr);
     539              : 
     540              :     mUdcServer->SetInstanceNameResolver(this);
     541              : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
     542              : 
     543            0 :     mSetUpCodePairer.SetSystemLayer(mSystemState->SystemLayer());
     544              : #if CONFIG_NETWORK_LAYER_BLE
     545            0 :     mSetUpCodePairer.SetBleLayer(mSystemState->BleLayer());
     546              : #endif // CONFIG_NETWORK_LAYER_BLE
     547              : 
     548            0 :     return CHIP_NO_ERROR;
     549              : }
     550              : 
     551            0 : void DeviceCommissioner::Shutdown()
     552              : {
     553            0 :     VerifyOrReturn(mState != State::NotInitialized);
     554              : 
     555            0 :     ChipLogDetail(Controller, "Shutting down the commissioner");
     556              : 
     557            0 :     mSetUpCodePairer.StopPairing();
     558              : 
     559              :     // Check to see if pairing in progress before shutting down
     560            0 :     CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
     561            0 :     if (device != nullptr && device->IsSessionSetupInProgress())
     562              :     {
     563            0 :         ChipLogDetail(Controller, "Setup in progress, stopping setup before shutting down");
     564            0 :         OnSessionEstablishmentError(CHIP_ERROR_CONNECTION_ABORTED);
     565              :     }
     566              : 
     567            0 :     CancelCommissioningInteractions();
     568              : 
     569              : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
     570              :     if (mUdcTransportMgr != nullptr)
     571              :     {
     572              :         chip::Platform::Delete(mUdcTransportMgr);
     573              :         mUdcTransportMgr = nullptr;
     574              :     }
     575              :     if (mUdcServer != nullptr)
     576              :     {
     577              :         mUdcServer->SetInstanceNameResolver(nullptr);
     578              :         chip::Platform::Delete(mUdcServer);
     579              :         mUdcServer = nullptr;
     580              :     }
     581              : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
     582              : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
     583            0 :     WiFiPAF::WiFiPAFLayer::GetWiFiPAFLayer().Shutdown([](uint32_t id, WiFiPAF::WiFiPafRole role) {
     584            0 :         TEMPORARY_RETURN_IGNORED DeviceLayer::ConnectivityMgr().WiFiPAFShutdown(id, role);
     585            0 :     });
     586              : #endif
     587              : 
     588              :     // Release everything from the commissionee device pool here.
     589              :     // Make sure to use ReleaseCommissioneeDevice so we don't keep dangling
     590              :     // pointers to the device objects.
     591            0 :     mCommissioneeDevicePool.ForEachActiveObject([this](auto * commissioneeDevice) {
     592            0 :         ReleaseCommissioneeDevice(commissioneeDevice);
     593            0 :         return Loop::Continue;
     594              :     });
     595              : 
     596            0 :     DeviceController::Shutdown();
     597              : }
     598              : 
     599            0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(NodeId id)
     600              : {
     601              :     MATTER_TRACE_SCOPE("FindCommissioneeDevice", "DeviceCommissioner");
     602            0 :     CommissioneeDeviceProxy * foundDevice = nullptr;
     603            0 :     mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
     604            0 :         if (deviceProxy->GetDeviceId() == id || deviceProxy->GetTemporaryCommissioningId() == id)
     605              :         {
     606            0 :             foundDevice = deviceProxy;
     607            0 :             return Loop::Break;
     608              :         }
     609            0 :         return Loop::Continue;
     610              :     });
     611              : 
     612            0 :     return foundDevice;
     613              : }
     614              : 
     615            0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(const Transport::PeerAddress & peerAddress)
     616              : {
     617            0 :     CommissioneeDeviceProxy * foundDevice = nullptr;
     618            0 :     mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
     619            0 :         if (deviceProxy->GetPeerAddress() == peerAddress)
     620              :         {
     621            0 :             foundDevice = deviceProxy;
     622            0 :             return Loop::Break;
     623              :         }
     624            0 :         return Loop::Continue;
     625              :     });
     626              : 
     627            0 :     return foundDevice;
     628              : }
     629              : 
     630            0 : void DeviceCommissioner::ReleaseCommissioneeDevice(CommissioneeDeviceProxy * device)
     631              : {
     632              : #if CONFIG_NETWORK_LAYER_BLE
     633            0 :     if (mSystemState->BleLayer() != nullptr && device->GetDeviceTransportType() == Transport::Type::kBle)
     634              :     {
     635              :         // We only support one BLE connection, so if this is BLE, close it
     636            0 :         ChipLogProgress(Discovery, "Closing all BLE connections");
     637            0 :         mSystemState->BleLayer()->CloseAllBleConnections();
     638              :     }
     639              : #endif
     640              : 
     641              : #if CHIP_DEVICE_CONFIG_ENABLE_NFC_BASED_COMMISSIONING
     642              :     Nfc::NFCReaderTransport * readerTransport = DeviceLayer::Internal::NFCCommissioningMgr().GetNFCReaderTransport();
     643              :     if (readerTransport)
     644              :     {
     645              :         ChipLogProgress(Controller, "Stopping discovery of all NFC tags");
     646              :         TEMPORARY_RETURN_IGNORED readerTransport->StopDiscoveringTags();
     647              :     }
     648              : #endif
     649              : 
     650              :     // Make sure that there will be no dangling pointer
     651            0 :     if (mDeviceInPASEEstablishment == device)
     652              :     {
     653            0 :         mDeviceInPASEEstablishment = nullptr;
     654              :     }
     655            0 :     if (mDeviceBeingCommissioned == device)
     656              :     {
     657            0 :         mDeviceBeingCommissioned = nullptr;
     658              :     }
     659              : 
     660              :     // Release the commissionee device after we have nulled out our pointers,
     661              :     // because that can call back in to us with error notifications as the
     662              :     // session is released.
     663            0 :     mCommissioneeDevicePool.ReleaseObject(device);
     664            0 : }
     665              : 
     666            0 : CHIP_ERROR DeviceCommissioner::GetDeviceBeingCommissioned(NodeId deviceId, CommissioneeDeviceProxy ** out_device)
     667              : {
     668            0 :     VerifyOrReturnError(out_device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
     669            0 :     CommissioneeDeviceProxy * device = FindCommissioneeDevice(deviceId);
     670              : 
     671            0 :     VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
     672              : 
     673            0 :     *out_device = device;
     674              : 
     675            0 :     return CHIP_NO_ERROR;
     676              : }
     677              : 
     678            0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, const CommissioningParameters & params,
     679              :                                           DiscoveryType discoveryType, Optional<Dnssd::CommonResolutionData> resolutionData)
     680              : {
     681              :     MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
     682              : 
     683            0 :     ReturnErrorOnFailure(mDefaultCommissioner->SetCommissioningParameters(params));
     684              : 
     685            0 :     return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
     686            0 :                                        resolutionData);
     687              : }
     688              : 
     689            0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
     690              :                                           Optional<Dnssd::CommonResolutionData> resolutionData)
     691              : {
     692              :     MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
     693            0 :     return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
     694            0 :                                        resolutionData);
     695              : }
     696              : 
     697            0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & params)
     698              : {
     699              :     MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
     700            0 :     ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, params));
     701            0 :     auto errorCode = Commission(remoteDeviceId);
     702            0 :     VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
     703            0 :     return errorCode;
     704              : }
     705              : 
     706            0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & rendezvousParams,
     707              :                                           CommissioningParameters & commissioningParams)
     708              : {
     709              :     MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
     710            0 :     ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, rendezvousParams));
     711            0 :     auto errorCode = Commission(remoteDeviceId, commissioningParams);
     712            0 :     VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
     713            0 :     return errorCode;
     714              : }
     715              : 
     716            0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
     717              :                                                        Optional<Dnssd::CommonResolutionData> resolutionData)
     718              : {
     719              :     MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
     720            0 :     return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kPaseOnly, discoveryType,
     721            0 :                                        resolutionData);
     722              : }
     723              : 
     724            0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, RendezvousParameters & params)
     725              : {
     726              :     MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
     727              :     MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerPASESession);
     728              : 
     729            0 :     CHIP_ERROR err                     = CHIP_NO_ERROR;
     730            0 :     CommissioneeDeviceProxy * device   = nullptr;
     731            0 :     CommissioneeDeviceProxy * current  = nullptr;
     732            0 :     Transport::PeerAddress peerAddress = Transport::PeerAddress::UDP(Inet::IPAddress::Any);
     733              : 
     734            0 :     Messaging::ExchangeContext * exchangeCtxt = nullptr;
     735            0 :     Optional<SessionHandle> session;
     736              : 
     737            0 :     VerifyOrExit(mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
     738            0 :     VerifyOrExit(mDeviceInPASEEstablishment == nullptr, err = CHIP_ERROR_INCORRECT_STATE);
     739              : 
     740              :     // TODO(#13940): We need to specify the peer address for BLE transport in bindings.
     741            0 :     if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle ||
     742            0 :         params.GetPeerAddress().GetTransportType() == Transport::Type::kUndefined)
     743              :     {
     744              : #if CONFIG_NETWORK_LAYER_BLE
     745              : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
     746              :         ConnectBleTransportToSelf();
     747              : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
     748            0 :         if (!params.HasBleLayer())
     749              :         {
     750            0 :             params.SetPeerAddress(Transport::PeerAddress::BLE());
     751              :         }
     752            0 :         peerAddress = Transport::PeerAddress::BLE();
     753              : #endif // CONFIG_NETWORK_LAYER_BLE
     754              :     }
     755            0 :     else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kTcp ||
     756            0 :              params.GetPeerAddress().GetTransportType() == Transport::Type::kUdp)
     757              :     {
     758            0 :         peerAddress = Transport::PeerAddress::UDP(params.GetPeerAddress().GetIPAddress(), params.GetPeerAddress().GetPort(),
     759            0 :                                                   params.GetPeerAddress().GetInterface());
     760              :     }
     761              : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
     762            0 :     else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
     763              :     {
     764            0 :         peerAddress = Transport::PeerAddress::WiFiPAF(remoteDeviceId);
     765              :     }
     766              : #endif // CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
     767              : 
     768            0 :     current = FindCommissioneeDevice(peerAddress);
     769            0 :     if (current != nullptr)
     770              :     {
     771            0 :         if (current->GetDeviceId() == remoteDeviceId)
     772              :         {
     773              :             // We might be able to just reuse its connection if it has one or is
     774              :             // working on one.
     775            0 :             if (current->IsSecureConnected())
     776              :             {
     777            0 :                 if (mPairingDelegate)
     778              :                 {
     779              :                     // We already have an open secure session to this device, call the callback immediately and early return.
     780              :                     // We don't know what the right RendezvousParameters are here.
     781            0 :                     mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR, std::nullopt, std::nullopt);
     782              :                 }
     783              :                 MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
     784            0 :                 return CHIP_NO_ERROR;
     785              :             }
     786            0 :             if (current->IsSessionSetupInProgress())
     787              :             {
     788              :                 // We're not connected yet, but we're in the process of connecting. Pairing delegate will get a callback when
     789              :                 // connection completes
     790            0 :                 return CHIP_NO_ERROR;
     791              :             }
     792              :         }
     793              : 
     794              :         // Either the consumer wants to assign a different device id to this
     795              :         // peer address now (so we can't reuse the commissionee device we have
     796              :         // already) or something has gone strange. Delete the old device, try
     797              :         // again.
     798            0 :         ChipLogError(Controller, "Found unconnected device, removing");
     799            0 :         ReleaseCommissioneeDevice(current);
     800              :     }
     801              : 
     802            0 :     device = mCommissioneeDevicePool.CreateObject();
     803            0 :     VerifyOrExit(device != nullptr, err = CHIP_ERROR_NO_MEMORY);
     804              : 
     805            0 :     mDeviceInPASEEstablishment = device;
     806            0 :     device->Init(GetControllerDeviceInitParams(), remoteDeviceId, peerAddress);
     807            0 :     device->UpdateDeviceData(params.GetPeerAddress(), params.GetMRPConfig());
     808              : 
     809              : #if CONFIG_NETWORK_LAYER_BLE
     810            0 :     if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle)
     811              :     {
     812            0 :         if (params.HasConnectionObject())
     813              :         {
     814            0 :             SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetConnectionObject()));
     815              :         }
     816            0 :         else if (params.HasDiscoveredObject())
     817              :         {
     818              :             // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
     819              :             // for later.
     820            0 :             mRendezvousParametersForDeviceDiscoveredOverBle = params;
     821            0 :             ExitNow(err = mSystemState->BleLayer()->NewBleConnectionByObject(
     822              :                         params.GetDiscoveredObject(), this, OnDiscoveredDeviceOverBleSuccess, OnDiscoveredDeviceOverBleError));
     823              :         }
     824            0 :         else if (params.HasDiscriminator())
     825              :         {
     826              :             // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
     827              :             // for later.
     828            0 :             mRendezvousParametersForDeviceDiscoveredOverBle = params;
     829              : 
     830            0 :             ExitNow(err = mSystemState->BleLayer()->NewBleConnectionByDiscriminator(params.GetSetupDiscriminator().value(), this,
     831              :                                                                                     OnDiscoveredDeviceOverBleSuccess,
     832              :                                                                                     OnDiscoveredDeviceOverBleError));
     833              :         }
     834              :         else
     835              :         {
     836            0 :             ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
     837              :         }
     838              :     }
     839              : #endif
     840              : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
     841            0 :     if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
     842              :     {
     843            0 :         if (DeviceLayer::ConnectivityMgr().GetWiFiPAF()->GetWiFiPAFState() != WiFiPAF::State::kConnected)
     844              :         {
     845            0 :             ChipLogProgress(Controller, "WiFi-PAF: Subscribing to the NAN-USD devices, nodeId: %" PRIu64,
     846              :                             params.GetPeerAddress().GetRemoteId());
     847            0 :             mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = params;
     848            0 :             auto nodeId                                         = params.GetPeerAddress().GetRemoteId();
     849            0 :             const SetupDiscriminator connDiscriminator(params.GetSetupDiscriminator().value());
     850            0 :             VerifyOrReturnValue(!connDiscriminator.IsShortDiscriminator(), CHIP_ERROR_INVALID_ARGUMENT,
     851              :                                 ChipLogError(Controller, "Error, Long discriminator is required"));
     852            0 :             uint16_t discriminator              = connDiscriminator.GetLongValue();
     853            0 :             WiFiPAF::WiFiPAFSession sessionInfo = { .role          = WiFiPAF::WiFiPafRole::kWiFiPafRole_Subscriber,
     854              :                                                     .nodeId        = nodeId,
     855            0 :                                                     .discriminator = discriminator };
     856            0 :             ReturnErrorOnFailure(
     857              :                 DeviceLayer::ConnectivityMgr().GetWiFiPAF()->AddPafSession(WiFiPAF::PafInfoAccess::kAccNodeInfo, sessionInfo));
     858            0 :             ExitNow(err = DeviceLayer::ConnectivityMgr().WiFiPAFSubscribe(discriminator, reinterpret_cast<void *>(this),
     859              :                                                                           OnWiFiPAFSubscribeComplete, OnWiFiPAFSubscribeError));
     860              :         }
     861              :     }
     862              : #endif
     863            0 :     session = mSystemState->SessionMgr()->CreateUnauthenticatedSession(params.GetPeerAddress(), params.GetMRPConfig());
     864            0 :     VerifyOrExit(session.HasValue(), err = CHIP_ERROR_NO_MEMORY);
     865              : 
     866              :     // Allocate the exchange immediately before calling PASESession::Pair.
     867              :     //
     868              :     // PASESession::Pair takes ownership of the exchange and will free it on
     869              :     // error, but can only do this if it is actually called.  Allocating the
     870              :     // exchange context right before calling Pair ensures that if allocation
     871              :     // succeeds, PASESession has taken ownership.
     872            0 :     exchangeCtxt = mSystemState->ExchangeMgr()->NewContext(session.Value(), &device->GetPairing());
     873            0 :     VerifyOrExit(exchangeCtxt != nullptr, err = CHIP_ERROR_INTERNAL);
     874              : 
     875            0 :     err = device->GetPairing().Pair(*mSystemState->SessionMgr(), params.GetSetupPINCode(), GetLocalMRPConfig(), exchangeCtxt, this);
     876            0 :     SuccessOrExit(err);
     877              : 
     878            0 :     mRendezvousParametersForPASEEstablishment = params;
     879              : 
     880            0 : exit:
     881            0 :     if (err != CHIP_NO_ERROR)
     882              :     {
     883            0 :         if (device != nullptr)
     884              :         {
     885            0 :             ReleaseCommissioneeDevice(device);
     886              :         }
     887              :         MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
     888              :     }
     889              : 
     890            0 :     return err;
     891            0 : }
     892              : 
     893              : #if CONFIG_NETWORK_LAYER_BLE
     894            0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleSuccess(void * appState, BLE_CONNECTION_OBJECT connObj)
     895              : {
     896            0 :     auto self   = static_cast<DeviceCommissioner *>(appState);
     897            0 :     auto device = self->mDeviceInPASEEstablishment;
     898              : 
     899            0 :     if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
     900              :     {
     901            0 :         auto remoteId = device->GetDeviceId();
     902              : 
     903            0 :         auto params = self->mRendezvousParametersForDeviceDiscoveredOverBle;
     904            0 :         params.SetConnectionObject(connObj);
     905            0 :         self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
     906              : 
     907            0 :         self->ReleaseCommissioneeDevice(device);
     908            0 :         LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
     909              :     }
     910            0 : }
     911              : 
     912            0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleError(void * appState, CHIP_ERROR err)
     913              : {
     914            0 :     auto self   = static_cast<DeviceCommissioner *>(appState);
     915            0 :     auto device = self->mDeviceInPASEEstablishment;
     916              : 
     917            0 :     if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
     918              :     {
     919            0 :         self->ReleaseCommissioneeDevice(device);
     920            0 :         self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
     921              : 
     922              :         // Callback is required when BLE discovery fails, otherwise the caller will always be in a suspended state
     923              :         // A better way to handle it should define a new error code
     924            0 :         if (self->mPairingDelegate != nullptr)
     925              :         {
     926            0 :             self->mPairingDelegate->OnPairingComplete(err, std::nullopt, std::nullopt);
     927              :         }
     928              :     }
     929            0 : }
     930              : #endif // CONFIG_NETWORK_LAYER_BLE
     931              : 
     932              : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
     933            0 : void DeviceCommissioner::OnWiFiPAFSubscribeComplete(void * appState)
     934              : {
     935            0 :     auto self   = reinterpret_cast<DeviceCommissioner *>(appState);
     936            0 :     auto device = self->mDeviceInPASEEstablishment;
     937              : 
     938            0 :     if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
     939              :     {
     940            0 :         ChipLogProgress(Controller, "WiFi-PAF: Subscription Completed, dev_id = %" PRIu64, device->GetDeviceId());
     941            0 :         auto remoteId = device->GetDeviceId();
     942            0 :         auto params   = self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF;
     943              : 
     944            0 :         self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
     945            0 :         self->ReleaseCommissioneeDevice(device);
     946            0 :         LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
     947              :     }
     948            0 : }
     949              : 
     950            0 : void DeviceCommissioner::OnWiFiPAFSubscribeError(void * appState, CHIP_ERROR err)
     951              : {
     952            0 :     auto self   = (DeviceCommissioner *) appState;
     953            0 :     auto device = self->mDeviceInPASEEstablishment;
     954              : 
     955            0 :     if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
     956              :     {
     957            0 :         ChipLogError(Controller, "WiFi-PAF: Subscription Error, id = %" PRIu64 ", err = %" CHIP_ERROR_FORMAT, device->GetDeviceId(),
     958              :                      err.Format());
     959            0 :         self->ReleaseCommissioneeDevice(device);
     960            0 :         self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
     961            0 :         if (self->mPairingDelegate != nullptr)
     962              :         {
     963            0 :             self->mPairingDelegate->OnPairingComplete(err, std::nullopt, std::nullopt);
     964              :         }
     965              :     }
     966            0 : }
     967              : #endif
     968              : 
     969            0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId, CommissioningParameters & params)
     970              : {
     971            0 :     ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, mDefaultCommissioner->SetCommissioningParameters(params));
     972            0 :     auto errorCode = Commission(remoteDeviceId);
     973            0 :     VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
     974            0 :     return errorCode;
     975              : }
     976              : 
     977            0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId)
     978              : {
     979              :     MATTER_TRACE_SCOPE("Commission", "DeviceCommissioner");
     980              : 
     981              : #if CHIP_CONFIG_ENABLE_ADDRESS_RESOLVE_FALLBACK
     982              :     // Reset fallback from any previous commissioning session
     983              :     mFallbackOperationalResolveResult.ClearValue();
     984              : #endif // CHIP_CONFIG_ENABLE_ADDRESS_RESOLVE_FALLBACK
     985              : 
     986            0 :     CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
     987            0 :     if (device == nullptr || (!device->IsSecureConnected() && !device->IsSessionSetupInProgress()))
     988              :     {
     989            0 :         ChipLogError(Controller, "Invalid device for commissioning " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
     990            0 :         return CHIP_ERROR_INCORRECT_STATE;
     991              :     }
     992            0 :     if (!device->IsSecureConnected() && device != mDeviceInPASEEstablishment)
     993              :     {
     994              :         // We should not end up in this state because we won't attempt to establish more than one connection at a time.
     995            0 :         ChipLogError(Controller, "Device is not connected and not being paired " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
     996            0 :         return CHIP_ERROR_INCORRECT_STATE;
     997              :     }
     998              : 
     999            0 :     if (mCommissioningStage != CommissioningStage::kSecurePairing)
    1000              :     {
    1001            0 :         ChipLogError(Controller, "Commissioning already in progress (stage '%s') - not restarting",
    1002              :                      StageToString(mCommissioningStage));
    1003            0 :         return CHIP_ERROR_INCORRECT_STATE;
    1004              :     }
    1005              : 
    1006            0 :     ChipLogProgress(Controller, "Commission called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
    1007              : 
    1008            0 :     mDefaultCommissioner->SetOperationalCredentialsDelegate(mOperationalCredentialsDelegate);
    1009            0 :     if (device->IsSecureConnected())
    1010              :     {
    1011              :         MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
    1012            0 :         ReturnErrorOnFailure(mDefaultCommissioner->StartCommissioning(this, device));
    1013              :     }
    1014              :     else
    1015              :     {
    1016            0 :         mRunCommissioningAfterConnection = true;
    1017              :     }
    1018            0 :     return CHIP_NO_ERROR;
    1019              : }
    1020              : 
    1021              : CHIP_ERROR
    1022            0 : DeviceCommissioner::ContinueCommissioningAfterDeviceAttestation(DeviceProxy * device,
    1023              :                                                                 Credentials::AttestationVerificationResult attestationResult)
    1024              : {
    1025              :     MATTER_TRACE_SCOPE("continueCommissioningDevice", "DeviceCommissioner");
    1026              : 
    1027            0 :     if (device == nullptr || device != mDeviceBeingCommissioned)
    1028              :     {
    1029            0 :         ChipLogError(Controller, "Invalid device for commissioning %p", device);
    1030            0 :         return CHIP_ERROR_INCORRECT_STATE;
    1031              :     }
    1032            0 :     CommissioneeDeviceProxy * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
    1033            0 :     if (commissioneeDevice == nullptr)
    1034              :     {
    1035            0 :         ChipLogError(Controller, "Couldn't find commissionee device");
    1036            0 :         return CHIP_ERROR_INCORRECT_STATE;
    1037              :     }
    1038            0 :     if (!commissioneeDevice->IsSecureConnected() || commissioneeDevice != mDeviceBeingCommissioned)
    1039              :     {
    1040            0 :         ChipLogError(Controller, "Invalid device for commissioning after attestation failure: 0x" ChipLogFormatX64,
    1041              :                      ChipLogValueX64(commissioneeDevice->GetDeviceId()));
    1042            0 :         return CHIP_ERROR_INCORRECT_STATE;
    1043              :     }
    1044              : 
    1045            0 :     if (mCommissioningStage != CommissioningStage::kAttestationRevocationCheck)
    1046              :     {
    1047            0 :         ChipLogError(Controller, "Commissioning is not attestation verification phase");
    1048            0 :         return CHIP_ERROR_INCORRECT_STATE;
    1049              :     }
    1050              : 
    1051            0 :     ChipLogProgress(Controller, "Continuing commissioning after attestation failure for device ID 0x" ChipLogFormatX64,
    1052              :                     ChipLogValueX64(commissioneeDevice->GetDeviceId()));
    1053              : 
    1054            0 :     if (attestationResult != AttestationVerificationResult::kSuccess)
    1055              :     {
    1056            0 :         ChipLogError(Controller, "Client selected error: %u for failed 'Attestation Information' for device",
    1057              :                      to_underlying(attestationResult));
    1058              : 
    1059            0 :         CommissioningDelegate::CommissioningReport report;
    1060            0 :         report.Set<AttestationErrorInfo>(attestationResult);
    1061            0 :         CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
    1062            0 :     }
    1063              :     else
    1064              :     {
    1065            0 :         ChipLogProgress(Controller, "Overriding attestation failure per client and continuing commissioning");
    1066            0 :         CommissioningStageComplete(CHIP_NO_ERROR);
    1067              :     }
    1068            0 :     return CHIP_NO_ERROR;
    1069              : }
    1070              : 
    1071              : #if CHIP_DEVICE_CONFIG_ENABLE_NFC_BASED_COMMISSIONING
    1072              : CHIP_ERROR DeviceCommissioner::ContinueCommissioningAfterConnectNetworkRequest(NodeId remoteDeviceId)
    1073              : {
    1074              :     MATTER_TRACE_SCOPE("continueCommissioningAfterConnectNetworkRequest", "DeviceCommissioner");
    1075              : 
    1076              :     // Move to kEvictPreviousCaseSessions stage since the next stage will be to find the device
    1077              :     // on the operational network
    1078              :     mCommissioningStage = CommissioningStage::kEvictPreviousCaseSessions;
    1079              : 
    1080              :     // Setup device being commissioned
    1081              :     CommissioneeDeviceProxy * device = nullptr;
    1082              :     if (!mDeviceBeingCommissioned)
    1083              :     {
    1084              :         device = mCommissioneeDevicePool.CreateObject();
    1085              :         if (!device)
    1086              :             return CHIP_ERROR_NO_MEMORY;
    1087              : 
    1088              :         Transport::PeerAddress peerAddress = Transport::PeerAddress::UDP(Inet::IPAddress::Any);
    1089              :         device->Init(GetControllerDeviceInitParams(), remoteDeviceId, peerAddress);
    1090              :         mDeviceBeingCommissioned = device;
    1091              :     }
    1092              : 
    1093              :     mDefaultCommissioner->SetOperationalCredentialsDelegate(mOperationalCredentialsDelegate);
    1094              : 
    1095              :     ChipLogProgress(Controller, "Continuing commissioning after connect to network complete for device ID 0x" ChipLogFormatX64,
    1096              :                     ChipLogValueX64(remoteDeviceId));
    1097              : 
    1098              :     MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissioningOperationalSetup);
    1099              :     CHIP_ERROR err = mDefaultCommissioner->StartCommissioning(this, device);
    1100              :     if (err != CHIP_NO_ERROR)
    1101              :     {
    1102              :         MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, err);
    1103              :     }
    1104              :     return err;
    1105              : }
    1106              : #endif
    1107              : 
    1108            0 : CHIP_ERROR DeviceCommissioner::StopPairing(NodeId remoteDeviceId)
    1109              : {
    1110            0 :     VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
    1111            0 :     VerifyOrReturnError(remoteDeviceId != kUndefinedNodeId, CHIP_ERROR_INVALID_ARGUMENT);
    1112              : 
    1113            0 :     ChipLogProgress(Controller, "StopPairing called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
    1114              : 
    1115              :     // If we're still in the process of discovering the device, just stop the SetUpCodePairer
    1116            0 :     if (mSetUpCodePairer.StopPairing(remoteDeviceId))
    1117              :     {
    1118            0 :         mRunCommissioningAfterConnection = false;
    1119            0 :         OnSessionEstablishmentError(CHIP_ERROR_CANCELLED);
    1120            0 :         return CHIP_NO_ERROR;
    1121              :     }
    1122              : 
    1123              :     // Otherwise we might be pairing and / or commissioning it.
    1124            0 :     CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
    1125            0 :     VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR);
    1126              : 
    1127            0 :     if (mDeviceBeingCommissioned == device)
    1128              :     {
    1129            0 :         CancelCommissioningInteractions();
    1130            0 :         CommissioningStageComplete(CHIP_ERROR_CANCELLED);
    1131              :     }
    1132              :     else
    1133              :     {
    1134            0 :         ReleaseCommissioneeDevice(device);
    1135              :     }
    1136            0 :     return CHIP_NO_ERROR;
    1137              : }
    1138              : 
    1139            0 : void DeviceCommissioner::CancelCommissioningInteractions()
    1140              : {
    1141            0 :     if (mReadClient)
    1142              :     {
    1143            0 :         ChipLogDetail(Controller, "Cancelling read request for step '%s'", StageToString(mCommissioningStage));
    1144            0 :         mReadClient.reset(); // destructor cancels
    1145            0 :         mAttributeCache.reset();
    1146              :     }
    1147            0 :     if (mInvokeCancelFn)
    1148              :     {
    1149            0 :         ChipLogDetail(Controller, "Cancelling command invocation for step '%s'", StageToString(mCommissioningStage));
    1150            0 :         mInvokeCancelFn();
    1151            0 :         mInvokeCancelFn = nullptr;
    1152              :     }
    1153            0 :     if (mWriteCancelFn)
    1154              :     {
    1155            0 :         ChipLogDetail(Controller, "Cancelling write request for step '%s'", StageToString(mCommissioningStage));
    1156            0 :         mWriteCancelFn();
    1157            0 :         mWriteCancelFn = nullptr;
    1158              :     }
    1159            0 :     if (mOnDeviceConnectedCallback.IsRegistered())
    1160              :     {
    1161            0 :         ChipLogDetail(Controller, "Cancelling CASE setup for step '%s'", StageToString(mCommissioningStage));
    1162            0 :         CancelCASECallbacks();
    1163              :     }
    1164            0 : }
    1165              : 
    1166            0 : void DeviceCommissioner::CancelCASECallbacks()
    1167              : {
    1168            0 :     mOnDeviceConnectedCallback.Cancel();
    1169            0 :     mOnDeviceConnectionFailureCallback.Cancel();
    1170              : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
    1171            0 :     mOnDeviceConnectionRetryCallback.Cancel();
    1172              : #endif
    1173            0 : }
    1174              : 
    1175            0 : CHIP_ERROR DeviceCommissioner::UnpairDevice(NodeId remoteDeviceId)
    1176              : {
    1177              :     MATTER_TRACE_SCOPE("UnpairDevice", "DeviceCommissioner");
    1178            0 :     VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
    1179              : 
    1180            0 :     return AutoCurrentFabricRemover::RemoveCurrentFabric(this, remoteDeviceId);
    1181              : }
    1182              : 
    1183            0 : void DeviceCommissioner::RendezvousCleanup(CHIP_ERROR status)
    1184              : {
    1185            0 :     if (mDeviceInPASEEstablishment != nullptr)
    1186              :     {
    1187              :         // Release the commissionee device. For BLE, this is stored,
    1188              :         // for IP commissioning, we have taken a reference to the
    1189              :         // operational node to send the completion command.
    1190            0 :         ReleaseCommissioneeDevice(mDeviceInPASEEstablishment);
    1191              : 
    1192            0 :         if (mPairingDelegate != nullptr)
    1193              :         {
    1194            0 :             mPairingDelegate->OnPairingComplete(status, std::nullopt, std::nullopt);
    1195              :         }
    1196              :     }
    1197            0 : }
    1198              : 
    1199            0 : void DeviceCommissioner::OnSessionEstablishmentError(CHIP_ERROR err)
    1200              : {
    1201              :     MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
    1202              : 
    1203            0 :     mRendezvousParametersForPASEEstablishment.reset();
    1204              : 
    1205            0 :     if (mPairingDelegate != nullptr)
    1206              :     {
    1207            0 :         mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingFailed);
    1208              :     }
    1209              : 
    1210            0 :     RendezvousCleanup(err);
    1211            0 : }
    1212              : 
    1213            0 : void DeviceCommissioner::OnSessionEstablished(const SessionHandle & session)
    1214              : {
    1215              :     // PASE session established.
    1216            0 :     CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
    1217              : 
    1218              :     // We are in the callback for this pairing. Reset so we can pair another device.
    1219            0 :     mDeviceInPASEEstablishment = nullptr;
    1220              : 
    1221              :     // Make sure to clear out mRendezvousParametersForPASEEstablishment no
    1222              :     // matter what.
    1223            0 :     std::optional<RendezvousParameters> paseParameters;
    1224            0 :     paseParameters.swap(mRendezvousParametersForPASEEstablishment);
    1225              : 
    1226            0 :     VerifyOrReturn(device != nullptr, OnSessionEstablishmentError(CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR));
    1227              : 
    1228            0 :     CHIP_ERROR err = device->SetConnected(session);
    1229            0 :     if (err != CHIP_NO_ERROR)
    1230              :     {
    1231            0 :         ChipLogFailure(err, Controller, "Failed in setting up secure channel");
    1232            0 :         OnSessionEstablishmentError(err);
    1233            0 :         return;
    1234              :     }
    1235              : 
    1236            0 :     ChipLogDetail(Controller, "Remote device completed SPAKE2+ handshake");
    1237              : 
    1238              :     MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
    1239            0 :     if (mPairingDelegate != nullptr)
    1240              :     {
    1241              :         // If we started with a string payload, then at this point mPairingDelegate is
    1242              :         // mSetUpCodePairer, and it will provide the right SetupPayload argument to
    1243              :         // OnPairingComplete as needed.  If mPairingDelegate is not
    1244              :         // mSetUpCodePairer, then we don't have a SetupPayload to provide.
    1245            0 :         mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR, paseParameters, std::nullopt);
    1246              :     }
    1247              : 
    1248            0 :     if (mRunCommissioningAfterConnection)
    1249              :     {
    1250            0 :         mRunCommissioningAfterConnection = false;
    1251              :         MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
    1252            0 :         ReturnAndLogOnFailure(mDefaultCommissioner->StartCommissioning(this, device), Controller, "Failed to start commissioning");
    1253              :     }
    1254              : }
    1255              : 
    1256            0 : CHIP_ERROR DeviceCommissioner::SendCertificateChainRequestCommand(DeviceProxy * device,
    1257              :                                                                   Credentials::CertificateType certificateType,
    1258              :                                                                   Optional<System::Clock::Timeout> timeout)
    1259              : {
    1260              :     MATTER_TRACE_SCOPE("SendCertificateChainRequestCommand", "DeviceCommissioner");
    1261            0 :     ChipLogDetail(Controller, "Sending Certificate Chain request to %p device", device);
    1262            0 :     VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
    1263              : 
    1264            0 :     OperationalCredentials::Commands::CertificateChainRequest::Type request;
    1265            0 :     request.certificateType = static_cast<OperationalCredentials::CertificateChainTypeEnum>(certificateType);
    1266            0 :     return SendCommissioningCommand(device, request, OnCertificateChainResponse, OnCertificateChainFailureResponse, kRootEndpointId,
    1267            0 :                                     timeout);
    1268              : }
    1269              : 
    1270            0 : void DeviceCommissioner::OnCertificateChainFailureResponse(void * context, CHIP_ERROR error)
    1271              : {
    1272              :     MATTER_TRACE_SCOPE("OnCertificateChainFailureResponse", "DeviceCommissioner");
    1273            0 :     ChipLogProgress(Controller, "Device failed to receive the Certificate Chain request Response: %" CHIP_ERROR_FORMAT,
    1274              :                     error.Format());
    1275            0 :     DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
    1276            0 :     commissioner->CommissioningStageComplete(error);
    1277            0 : }
    1278              : 
    1279            0 : void DeviceCommissioner::OnCertificateChainResponse(
    1280              :     void * context, const chip::app::Clusters::OperationalCredentials::Commands::CertificateChainResponse::DecodableType & response)
    1281              : {
    1282              :     MATTER_TRACE_SCOPE("OnCertificateChainResponse", "DeviceCommissioner");
    1283            0 :     ChipLogProgress(Controller, "Received certificate chain from the device");
    1284            0 :     DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
    1285              : 
    1286            0 :     CommissioningDelegate::CommissioningReport report;
    1287            0 :     report.Set<RequestedCertificate>(RequestedCertificate(response.certificate));
    1288              : 
    1289            0 :     commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
    1290            0 : }
    1291              : 
    1292            0 : CHIP_ERROR DeviceCommissioner::SendAttestationRequestCommand(DeviceProxy * device, const ByteSpan & attestationNonce,
    1293              :                                                              Optional<System::Clock::Timeout> timeout)
    1294              : {
    1295              :     MATTER_TRACE_SCOPE("SendAttestationRequestCommand", "DeviceCommissioner");
    1296            0 :     ChipLogDetail(Controller, "Sending Attestation request to %p device", device);
    1297            0 :     VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
    1298              : 
    1299            0 :     OperationalCredentials::Commands::AttestationRequest::Type request;
    1300            0 :     request.attestationNonce = attestationNonce;
    1301              : 
    1302            0 :     ReturnErrorOnFailure(
    1303              :         SendCommissioningCommand(device, request, OnAttestationResponse, OnAttestationFailureResponse, kRootEndpointId, timeout));
    1304            0 :     ChipLogDetail(Controller, "Sent Attestation request, waiting for the Attestation Information");
    1305            0 :     return CHIP_NO_ERROR;
    1306              : }
    1307              : 
    1308            0 : void DeviceCommissioner::OnAttestationFailureResponse(void * context, CHIP_ERROR error)
    1309              : {
    1310              :     MATTER_TRACE_SCOPE("OnAttestationFailureResponse", "DeviceCommissioner");
    1311            0 :     ChipLogProgress(Controller, "Device failed to receive the Attestation Information Response: %" CHIP_ERROR_FORMAT,
    1312              :                     error.Format());
    1313            0 :     DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
    1314            0 :     commissioner->CommissioningStageComplete(error);
    1315            0 : }
    1316              : 
    1317            0 : void DeviceCommissioner::OnAttestationResponse(void * context,
    1318              :                                                const OperationalCredentials::Commands::AttestationResponse::DecodableType & data)
    1319              : {
    1320              :     MATTER_TRACE_SCOPE("OnAttestationResponse", "DeviceCommissioner");
    1321            0 :     ChipLogProgress(Controller, "Received Attestation Information from the device");
    1322            0 :     DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
    1323              : 
    1324            0 :     CommissioningDelegate::CommissioningReport report;
    1325            0 :     report.Set<AttestationResponse>(AttestationResponse(data.attestationElements, data.attestationSignature));
    1326            0 :     commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
    1327            0 : }
    1328              : 
    1329            0 : void DeviceCommissioner::OnDeviceAttestationInformationVerification(
    1330              :     void * context, const Credentials::DeviceAttestationVerifier::AttestationInfo & info, AttestationVerificationResult result)
    1331              : {
    1332              :     MATTER_TRACE_SCOPE("OnDeviceAttestationInformationVerification", "DeviceCommissioner");
    1333            0 :     DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
    1334              : 
    1335            0 :     if (commissioner->mCommissioningStage == CommissioningStage::kAttestationVerification)
    1336              :     {
    1337              :         // Check for revoked DAC Chain before calling delegate. Enter next stage.
    1338              : 
    1339            0 :         CommissioningDelegate::CommissioningReport report;
    1340            0 :         report.Set<AttestationErrorInfo>(result);
    1341              : 
    1342            0 :         return commissioner->CommissioningStageComplete(
    1343            0 :             result == AttestationVerificationResult::kSuccess ? CHIP_NO_ERROR : CHIP_ERROR_FAILED_DEVICE_ATTESTATION, report);
    1344            0 :     }
    1345              : 
    1346            0 :     if (!commissioner->mDeviceBeingCommissioned)
    1347              :     {
    1348            0 :         ChipLogError(Controller, "Device attestation verification result received when we're not commissioning a device");
    1349            0 :         return;
    1350              :     }
    1351              : 
    1352            0 :     auto & params = commissioner->mDefaultCommissioner->GetCommissioningParameters();
    1353            0 :     Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
    1354              : 
    1355            0 :     if (params.GetCompletionStatus().attestationResult.HasValue())
    1356              :     {
    1357            0 :         auto previousResult = params.GetCompletionStatus().attestationResult.Value();
    1358            0 :         if (previousResult != AttestationVerificationResult::kSuccess)
    1359              :         {
    1360            0 :             result = previousResult;
    1361              :         }
    1362              :     }
    1363              : 
    1364            0 :     if (result != AttestationVerificationResult::kSuccess)
    1365              :     {
    1366            0 :         CommissioningDelegate::CommissioningReport report;
    1367            0 :         report.Set<AttestationErrorInfo>(result);
    1368            0 :         if (result == AttestationVerificationResult::kNotImplemented)
    1369              :         {
    1370            0 :             ChipLogError(Controller,
    1371              :                          "Failed in verifying 'Attestation Information' command received from the device due to default "
    1372              :                          "DeviceAttestationVerifier Class not being overridden by a real implementation.");
    1373            0 :             commissioner->CommissioningStageComplete(CHIP_ERROR_NOT_IMPLEMENTED, report);
    1374            0 :             return;
    1375              :         }
    1376              : 
    1377            0 :         ChipLogError(Controller, "Failed in verifying 'Attestation Information' command received from the device: err %hu (%s)",
    1378              :                      static_cast<uint16_t>(result), GetAttestationResultDescription(result));
    1379              :         // Go look at AttestationVerificationResult enum in src/credentials/attestation_verifier/DeviceAttestationVerifier.h to
    1380              :         // understand the errors.
    1381              : 
    1382              :         // If a device attestation status delegate is installed, delegate handling of failure to the client and let them
    1383              :         // decide on whether to proceed further or not.
    1384            0 :         if (deviceAttestationDelegate)
    1385              :         {
    1386            0 :             commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
    1387              :         }
    1388              :         else
    1389              :         {
    1390            0 :             commissioner->CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION, report);
    1391              :         }
    1392            0 :     }
    1393              :     else
    1394              :     {
    1395            0 :         if (deviceAttestationDelegate && deviceAttestationDelegate->ShouldWaitAfterDeviceAttestation())
    1396              :         {
    1397            0 :             commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
    1398              :         }
    1399              :         else
    1400              :         {
    1401            0 :             ChipLogProgress(Controller, "Successfully validated 'Attestation Information' command received from the device.");
    1402            0 :             commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
    1403              :         }
    1404              :     }
    1405              : }
    1406              : 
    1407            0 : void DeviceCommissioner::OnArmFailSafeExtendedForDeviceAttestation(
    1408              :     void * context, const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType &)
    1409              : {
    1410            0 :     ChipLogProgress(Controller, "Successfully extended fail-safe timer to handle DA failure");
    1411            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1412              : 
    1413              :     // We have completed our command invoke, but we're not going to finish the
    1414              :     // commissioning step until our client examines the attestation
    1415              :     // information.  Clear out mInvokeCancelFn (which points at the
    1416              :     // CommandSender we just finished using) now, so it's not dangling.
    1417            0 :     commissioner->mInvokeCancelFn = nullptr;
    1418              : 
    1419            0 :     commissioner->HandleDeviceAttestationCompleted();
    1420            0 : }
    1421              : 
    1422            0 : void DeviceCommissioner::HandleDeviceAttestationCompleted()
    1423              : {
    1424            0 :     if (!mDeviceBeingCommissioned)
    1425              :     {
    1426            0 :         return;
    1427              :     }
    1428              : 
    1429            0 :     auto & params                                                      = mDefaultCommissioner->GetCommissioningParameters();
    1430            0 :     Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
    1431            0 :     if (deviceAttestationDelegate)
    1432              :     {
    1433            0 :         ChipLogProgress(Controller, "Device attestation completed, delegating continuation to client");
    1434            0 :         deviceAttestationDelegate->OnDeviceAttestationCompleted(this, mDeviceBeingCommissioned, *mAttestationDeviceInfo,
    1435              :                                                                 mAttestationResult);
    1436              :     }
    1437              :     else
    1438              :     {
    1439            0 :         ChipLogError(Controller, "Need to wait for device attestation delegate, but no delegate available. Failing commissioning");
    1440            0 :         CommissioningDelegate::CommissioningReport report;
    1441            0 :         report.Set<AttestationErrorInfo>(mAttestationResult);
    1442            0 :         CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
    1443            0 :     }
    1444              : }
    1445              : 
    1446            0 : void DeviceCommissioner::OnFailedToExtendedArmFailSafeDeviceAttestation(void * context, CHIP_ERROR error)
    1447              : {
    1448            0 :     ChipLogProgress(Controller, "Failed to extend fail-safe timer to handle attestation failure: %" CHIP_ERROR_FORMAT,
    1449              :                     error.Format());
    1450            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1451              : 
    1452            0 :     CommissioningDelegate::CommissioningReport report;
    1453            0 :     report.Set<AttestationErrorInfo>(commissioner->mAttestationResult);
    1454            0 :     commissioner->CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
    1455            0 : }
    1456              : 
    1457            0 : void DeviceCommissioner::OnICDManagementRegisterClientResponse(
    1458              :     void * context, const app::Clusters::IcdManagement::Commands::RegisterClientResponse::DecodableType & data)
    1459              : {
    1460            0 :     CHIP_ERROR err                    = CHIP_NO_ERROR;
    1461            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1462            0 :     VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
    1463            0 :     VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDRegistration, err = CHIP_ERROR_INCORRECT_STATE);
    1464            0 :     VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
    1465              : 
    1466            0 :     if (commissioner->mPairingDelegate != nullptr)
    1467              :     {
    1468            0 :         commissioner->mPairingDelegate->OnICDRegistrationComplete(
    1469            0 :             ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()), data.ICDCounter);
    1470              :     }
    1471              : 
    1472            0 : exit:
    1473            0 :     CommissioningDelegate::CommissioningReport report;
    1474            0 :     commissioner->CommissioningStageComplete(err, report);
    1475            0 : }
    1476              : 
    1477            0 : void DeviceCommissioner::OnICDManagementStayActiveResponse(
    1478              :     void * context, const app::Clusters::IcdManagement::Commands::StayActiveResponse::DecodableType & data)
    1479              : {
    1480            0 :     CHIP_ERROR err                    = CHIP_NO_ERROR;
    1481            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1482            0 :     VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
    1483            0 :     VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDSendStayActive, err = CHIP_ERROR_INCORRECT_STATE);
    1484            0 :     VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
    1485              : 
    1486            0 :     if (commissioner->mPairingDelegate != nullptr)
    1487              :     {
    1488            0 :         commissioner->mPairingDelegate->OnICDStayActiveComplete(
    1489              : 
    1490            0 :             ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()),
    1491            0 :             data.promisedActiveDuration);
    1492              :     }
    1493              : 
    1494            0 : exit:
    1495            0 :     CommissioningDelegate::CommissioningReport report;
    1496            0 :     commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
    1497            0 : }
    1498              : 
    1499            0 : bool DeviceCommissioner::ExtendArmFailSafeInternal(DeviceProxy * proxy, CommissioningStage step, uint16_t armFailSafeTimeout,
    1500              :                                                    Optional<System::Clock::Timeout> commandTimeout,
    1501              :                                                    OnExtendFailsafeSuccess onSuccess, OnExtendFailsafeFailure onFailure,
    1502              :                                                    bool fireAndForget)
    1503              : {
    1504              :     using namespace System;
    1505              :     using namespace System::Clock;
    1506            0 :     auto now                = SystemClock().GetMonotonicTimestamp();
    1507            0 :     auto newFailSafeTimeout = now + Seconds16(armFailSafeTimeout);
    1508            0 :     if (newFailSafeTimeout < proxy->GetFailSafeExpirationTimestamp())
    1509              :     {
    1510            0 :         ChipLogProgress(
    1511              :             Controller, "Skipping arming failsafe: new time (%u seconds from now) before old time (%u seconds from now)",
    1512              :             armFailSafeTimeout, std::chrono::duration_cast<Seconds16>(proxy->GetFailSafeExpirationTimestamp() - now).count());
    1513            0 :         return false;
    1514              :     }
    1515              : 
    1516            0 :     uint64_t breadcrumb = static_cast<uint64_t>(step);
    1517            0 :     GeneralCommissioning::Commands::ArmFailSafe::Type request;
    1518            0 :     request.expiryLengthSeconds = armFailSafeTimeout;
    1519            0 :     request.breadcrumb          = breadcrumb;
    1520            0 :     ChipLogProgress(Controller, "Arming failsafe (%u seconds)", request.expiryLengthSeconds);
    1521            0 :     CHIP_ERROR err = SendCommissioningCommand(proxy, request, onSuccess, onFailure, kRootEndpointId, commandTimeout, fireAndForget);
    1522            0 :     if (err != CHIP_NO_ERROR)
    1523              :     {
    1524            0 :         onFailure((!fireAndForget) ? this : nullptr, err);
    1525            0 :         return true; // we have called onFailure already
    1526              :     }
    1527              : 
    1528              :     // Note: The stored timestamp may become invalid if we fail asynchronously
    1529            0 :     proxy->SetFailSafeExpirationTimestamp(newFailSafeTimeout);
    1530            0 :     return true;
    1531              : }
    1532              : 
    1533            0 : void DeviceCommissioner::ExtendArmFailSafeForDeviceAttestation(const Credentials::DeviceAttestationVerifier::AttestationInfo & info,
    1534              :                                                                Credentials::AttestationVerificationResult result)
    1535              : {
    1536            0 :     mAttestationResult = result;
    1537              : 
    1538            0 :     auto & params                                                      = mDefaultCommissioner->GetCommissioningParameters();
    1539            0 :     Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
    1540              : 
    1541            0 :     mAttestationDeviceInfo = Platform::MakeUnique<Credentials::DeviceAttestationVerifier::AttestationDeviceInfo>(info);
    1542              : 
    1543            0 :     auto expiryLengthSeconds      = deviceAttestationDelegate->FailSafeExpiryTimeoutSecs();
    1544            0 :     bool waitForFailsafeExtension = expiryLengthSeconds.HasValue();
    1545            0 :     if (waitForFailsafeExtension)
    1546              :     {
    1547            0 :         ChipLogProgress(Controller, "Changing fail-safe timer to %u seconds to handle DA failure", expiryLengthSeconds.Value());
    1548              :         // Per spec, anything we do with the fail-safe armed must not time out
    1549              :         // in less than kMinimumCommissioningStepTimeout.
    1550              :         waitForFailsafeExtension =
    1551            0 :             ExtendArmFailSafeInternal(mDeviceBeingCommissioned, mCommissioningStage, expiryLengthSeconds.Value(),
    1552            0 :                                       MakeOptional(kMinimumCommissioningStepTimeout), OnArmFailSafeExtendedForDeviceAttestation,
    1553              :                                       OnFailedToExtendedArmFailSafeDeviceAttestation, /* fireAndForget = */ false);
    1554              :     }
    1555              :     else
    1556              :     {
    1557            0 :         ChipLogProgress(Controller, "Proceeding without changing fail-safe timer value as delegate has not set it");
    1558              :     }
    1559              : 
    1560            0 :     if (!waitForFailsafeExtension)
    1561              :     {
    1562            0 :         HandleDeviceAttestationCompleted();
    1563              :     }
    1564            0 : }
    1565              : 
    1566            0 : CHIP_ERROR DeviceCommissioner::ValidateAttestationInfo(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
    1567              : {
    1568              :     MATTER_TRACE_SCOPE("ValidateAttestationInfo", "DeviceCommissioner");
    1569            0 :     VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
    1570            0 :     VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
    1571              : 
    1572            0 :     mDeviceAttestationVerifier->VerifyAttestationInformation(info, &mDeviceAttestationInformationVerificationCallback);
    1573              : 
    1574              :     // TODO: Validate Firmware Information
    1575              : 
    1576            0 :     return CHIP_NO_ERROR;
    1577              : }
    1578              : 
    1579              : CHIP_ERROR
    1580            0 : DeviceCommissioner::CheckForRevokedDACChain(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
    1581              : {
    1582              :     MATTER_TRACE_SCOPE("CheckForRevokedDACChain", "DeviceCommissioner");
    1583            0 :     VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
    1584            0 :     VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
    1585              : 
    1586            0 :     mDeviceAttestationVerifier->CheckForRevokedDACChain(info, &mDeviceAttestationInformationVerificationCallback);
    1587              : 
    1588            0 :     return CHIP_NO_ERROR;
    1589              : }
    1590              : 
    1591            0 : CHIP_ERROR DeviceCommissioner::ValidateCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
    1592              :                                            const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & csrNonce)
    1593              : {
    1594              :     MATTER_TRACE_SCOPE("ValidateCSR", "DeviceCommissioner");
    1595            0 :     VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
    1596            0 :     VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
    1597              : 
    1598            0 :     P256PublicKey dacPubkey;
    1599            0 :     ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
    1600              : 
    1601              :     // Retrieve attestation challenge
    1602              :     ByteSpan attestationChallenge =
    1603            0 :         proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
    1604              : 
    1605              :     // The operational CA should also verify this on its end during NOC generation, if end-to-end attestation is desired.
    1606            0 :     return mDeviceAttestationVerifier->VerifyNodeOperationalCSRInformation(NOCSRElements, attestationChallenge,
    1607            0 :                                                                            AttestationSignature, dacPubkey, csrNonce);
    1608            0 : }
    1609              : 
    1610            0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificateSigningRequestCommand(DeviceProxy * device, const ByteSpan & csrNonce,
    1611              :                                                                                Optional<System::Clock::Timeout> timeout)
    1612              : {
    1613              :     MATTER_TRACE_SCOPE("SendOperationalCertificateSigningRequestCommand", "DeviceCommissioner");
    1614            0 :     ChipLogDetail(Controller, "Sending CSR request to %p device", device);
    1615            0 :     VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
    1616              : 
    1617            0 :     OperationalCredentials::Commands::CSRRequest::Type request;
    1618            0 :     request.CSRNonce = csrNonce;
    1619              : 
    1620            0 :     ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateSigningRequest, OnCSRFailureResponse,
    1621              :                                                   kRootEndpointId, timeout));
    1622            0 :     ChipLogDetail(Controller, "Sent CSR request, waiting for the CSR");
    1623            0 :     return CHIP_NO_ERROR;
    1624              : }
    1625              : 
    1626            0 : void DeviceCommissioner::OnCSRFailureResponse(void * context, CHIP_ERROR error)
    1627              : {
    1628              :     MATTER_TRACE_SCOPE("OnCSRFailureResponse", "DeviceCommissioner");
    1629            0 :     ChipLogProgress(Controller, "Device failed to receive the CSR request Response: %" CHIP_ERROR_FORMAT, error.Format());
    1630            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1631            0 :     commissioner->CommissioningStageComplete(error);
    1632            0 : }
    1633              : 
    1634            0 : void DeviceCommissioner::OnOperationalCertificateSigningRequest(
    1635              :     void * context, const OperationalCredentials::Commands::CSRResponse::DecodableType & data)
    1636              : {
    1637              :     MATTER_TRACE_SCOPE("OnOperationalCertificateSigningRequest", "DeviceCommissioner");
    1638            0 :     ChipLogProgress(Controller, "Received certificate signing request from the device");
    1639            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1640              : 
    1641            0 :     CommissioningDelegate::CommissioningReport report;
    1642            0 :     report.Set<CSRResponse>(CSRResponse(data.NOCSRElements, data.attestationSignature));
    1643            0 :     commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
    1644            0 : }
    1645              : 
    1646            0 : void DeviceCommissioner::OnDeviceNOCChainGeneration(void * context, CHIP_ERROR status, const ByteSpan & noc, const ByteSpan & icac,
    1647              :                                                     const ByteSpan & rcac, Optional<IdentityProtectionKeySpan> ipk,
    1648              :                                                     Optional<NodeId> adminSubject)
    1649              : {
    1650              :     MATTER_TRACE_SCOPE("OnDeviceNOCChainGeneration", "DeviceCommissioner");
    1651            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1652              : 
    1653              :     // The placeholder IPK is not satisfactory, but is there to fill the NocChain struct on error. It will still fail.
    1654            0 :     const uint8_t placeHolderIpk[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    1655              :                                        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
    1656            0 :     if (status == CHIP_NO_ERROR && !ipk.HasValue())
    1657              :     {
    1658            0 :         ChipLogError(Controller, "Did not have an IPK from the OperationalCredentialsIssuer! Cannot commission.");
    1659            0 :         status = CHIP_ERROR_INVALID_ARGUMENT;
    1660              :     }
    1661              : 
    1662            0 :     ChipLogProgress(Controller, "Received callback from the CA for NOC Chain generation. Status: %" CHIP_ERROR_FORMAT,
    1663              :                     status.Format());
    1664            0 :     if (status == CHIP_NO_ERROR && commissioner->mState != State::Initialized)
    1665              :     {
    1666            0 :         status = CHIP_ERROR_INCORRECT_STATE;
    1667              :     }
    1668            0 :     if (status != CHIP_NO_ERROR)
    1669              :     {
    1670            0 :         ChipLogError(Controller, "Failed in generating device's operational credentials. Error: %" CHIP_ERROR_FORMAT,
    1671              :                      status.Format());
    1672              :     }
    1673              : 
    1674              :     // TODO - Verify that the generated root cert matches with commissioner's root cert
    1675            0 :     CommissioningDelegate::CommissioningReport report;
    1676            0 :     report.Set<NocChain>(NocChain(noc, icac, rcac, ipk.HasValue() ? ipk.Value() : IdentityProtectionKeySpan(placeHolderIpk),
    1677            0 :                                   adminSubject.HasValue() ? adminSubject.Value() : commissioner->GetNodeId()));
    1678            0 :     commissioner->CommissioningStageComplete(status, report);
    1679            0 : }
    1680              : 
    1681            0 : CHIP_ERROR DeviceCommissioner::IssueNOCChain(const ByteSpan & NOCSRElements, NodeId nodeId,
    1682              :                                              chip::Callback::Callback<OnNOCChainGeneration> * callback)
    1683              : {
    1684              :     MATTER_TRACE_SCOPE("IssueNOCChain", "DeviceCommissioner");
    1685            0 :     VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
    1686              : 
    1687            0 :     ChipLogProgress(Controller, "Getting certificate chain for the device on fabric idx %u", static_cast<unsigned>(mFabricIndex));
    1688              : 
    1689            0 :     mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(nodeId);
    1690              : 
    1691            0 :     if (mFabricIndex != kUndefinedFabricIndex)
    1692              :     {
    1693            0 :         mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
    1694              :     }
    1695              : 
    1696              :     // Note: we don't have attestationSignature, attestationChallenge, DAC, PAI so we are just providing an empty ByteSpan
    1697              :     // for those arguments.
    1698            0 :     return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, ByteSpan(), ByteSpan(), ByteSpan(), ByteSpan(),
    1699            0 :                                                              ByteSpan(), callback);
    1700              : }
    1701              : 
    1702            0 : CHIP_ERROR DeviceCommissioner::ProcessCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
    1703              :                                           const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & pai,
    1704              :                                           const ByteSpan & csrNonce)
    1705              : {
    1706              :     MATTER_TRACE_SCOPE("ProcessOpCSR", "DeviceCommissioner");
    1707            0 :     VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
    1708              : 
    1709            0 :     ChipLogProgress(Controller, "Getting certificate chain for the device from the issuer");
    1710              : 
    1711            0 :     P256PublicKey dacPubkey;
    1712            0 :     ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
    1713              : 
    1714              :     // Retrieve attestation challenge
    1715              :     ByteSpan attestationChallenge =
    1716            0 :         proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
    1717              : 
    1718            0 :     mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(proxy->GetDeviceId());
    1719              : 
    1720            0 :     if (mFabricIndex != kUndefinedFabricIndex)
    1721              :     {
    1722            0 :         mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
    1723              :     }
    1724              : 
    1725            0 :     return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, csrNonce, AttestationSignature, attestationChallenge,
    1726            0 :                                                              dac, pai, &mDeviceNOCChainCallback);
    1727            0 : }
    1728              : 
    1729            0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificate(DeviceProxy * device, const ByteSpan & nocCertBuf,
    1730              :                                                           const Optional<ByteSpan> & icaCertBuf,
    1731              :                                                           const IdentityProtectionKeySpan ipk, const NodeId adminSubject,
    1732              :                                                           Optional<System::Clock::Timeout> timeout)
    1733              : {
    1734              :     MATTER_TRACE_SCOPE("SendOperationalCertificate", "DeviceCommissioner");
    1735              : 
    1736            0 :     VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
    1737              : 
    1738            0 :     OperationalCredentials::Commands::AddNOC::Type request;
    1739            0 :     request.NOCValue         = nocCertBuf;
    1740            0 :     request.ICACValue        = icaCertBuf;
    1741            0 :     request.IPKValue         = ipk;
    1742            0 :     request.caseAdminSubject = adminSubject;
    1743            0 :     request.adminVendorId    = mVendorId;
    1744              : 
    1745            0 :     ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateAddResponse, OnAddNOCFailureResponse,
    1746              :                                                   kRootEndpointId, timeout));
    1747              : 
    1748            0 :     ChipLogProgress(Controller, "Sent operational certificate to the device");
    1749              : 
    1750            0 :     return CHIP_NO_ERROR;
    1751              : }
    1752              : 
    1753            0 : CHIP_ERROR DeviceCommissioner::ConvertFromOperationalCertStatus(OperationalCredentials::NodeOperationalCertStatusEnum err)
    1754              : {
    1755              :     using OperationalCredentials::NodeOperationalCertStatusEnum;
    1756            0 :     switch (err)
    1757              :     {
    1758            0 :     case NodeOperationalCertStatusEnum::kOk:
    1759            0 :         return CHIP_NO_ERROR;
    1760            0 :     case NodeOperationalCertStatusEnum::kInvalidPublicKey:
    1761            0 :         return CHIP_ERROR_INVALID_PUBLIC_KEY;
    1762            0 :     case NodeOperationalCertStatusEnum::kInvalidNodeOpId:
    1763            0 :         return CHIP_ERROR_WRONG_NODE_ID;
    1764            0 :     case NodeOperationalCertStatusEnum::kInvalidNOC:
    1765            0 :         return CHIP_ERROR_UNSUPPORTED_CERT_FORMAT;
    1766            0 :     case NodeOperationalCertStatusEnum::kMissingCsr:
    1767            0 :         return CHIP_ERROR_INCORRECT_STATE;
    1768            0 :     case NodeOperationalCertStatusEnum::kTableFull:
    1769            0 :         return CHIP_ERROR_NO_MEMORY;
    1770            0 :     case NodeOperationalCertStatusEnum::kInvalidAdminSubject:
    1771            0 :         return CHIP_ERROR_INVALID_ADMIN_SUBJECT;
    1772            0 :     case NodeOperationalCertStatusEnum::kFabricConflict:
    1773            0 :         return CHIP_ERROR_FABRIC_EXISTS;
    1774            0 :     case NodeOperationalCertStatusEnum::kLabelConflict:
    1775            0 :         return CHIP_ERROR_INVALID_ARGUMENT;
    1776            0 :     case NodeOperationalCertStatusEnum::kInvalidFabricIndex:
    1777            0 :         return CHIP_ERROR_INVALID_FABRIC_INDEX;
    1778            0 :     case NodeOperationalCertStatusEnum::kUnknownEnumValue:
    1779              :         // Is this a reasonable value?
    1780            0 :         return CHIP_ERROR_CERT_LOAD_FAILED;
    1781              :     }
    1782              : 
    1783            0 :     return CHIP_ERROR_CERT_LOAD_FAILED;
    1784              : }
    1785              : 
    1786            0 : void DeviceCommissioner::OnAddNOCFailureResponse(void * context, CHIP_ERROR error)
    1787              : {
    1788              :     MATTER_TRACE_SCOPE("OnAddNOCFailureResponse", "DeviceCommissioner");
    1789            0 :     ChipLogProgress(Controller, "Device failed to receive the operational certificate Response: %" CHIP_ERROR_FORMAT,
    1790              :                     error.Format());
    1791            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1792            0 :     commissioner->CommissioningStageComplete(error);
    1793            0 : }
    1794              : 
    1795            0 : void DeviceCommissioner::OnOperationalCertificateAddResponse(
    1796              :     void * context, const OperationalCredentials::Commands::NOCResponse::DecodableType & data)
    1797              : {
    1798              :     MATTER_TRACE_SCOPE("OnOperationalCertificateAddResponse", "DeviceCommissioner");
    1799            0 :     ChipLogProgress(Controller, "Device returned status %d on receiving the NOC", to_underlying(data.statusCode));
    1800            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1801              : 
    1802            0 :     CHIP_ERROR err = CHIP_NO_ERROR;
    1803              : 
    1804            0 :     VerifyOrExit(commissioner->mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
    1805              : 
    1806            0 :     VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
    1807              : 
    1808            0 :     err = ConvertFromOperationalCertStatus(data.statusCode);
    1809            0 :     SuccessOrExit(err);
    1810              : 
    1811            0 :     err = commissioner->OnOperationalCredentialsProvisioningCompletion(commissioner->mDeviceBeingCommissioned);
    1812              : 
    1813            0 : exit:
    1814            0 :     if (err != CHIP_NO_ERROR)
    1815              :     {
    1816            0 :         ChipLogProgress(Controller, "Add NOC failed with error: %" CHIP_ERROR_FORMAT, err.Format());
    1817            0 :         commissioner->CommissioningStageComplete(err);
    1818              :     }
    1819            0 : }
    1820              : 
    1821            0 : CHIP_ERROR DeviceCommissioner::SendTrustedRootCertificate(DeviceProxy * device, const ByteSpan & rcac,
    1822              :                                                           Optional<System::Clock::Timeout> timeout)
    1823              : {
    1824              :     MATTER_TRACE_SCOPE("SendTrustedRootCertificate", "DeviceCommissioner");
    1825            0 :     VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
    1826              : 
    1827            0 :     ChipLogProgress(Controller, "Sending root certificate to the device");
    1828              : 
    1829            0 :     OperationalCredentials::Commands::AddTrustedRootCertificate::Type request;
    1830            0 :     request.rootCACertificate = rcac;
    1831            0 :     ReturnErrorOnFailure(
    1832              :         SendCommissioningCommand(device, request, OnRootCertSuccessResponse, OnRootCertFailureResponse, kRootEndpointId, timeout));
    1833              : 
    1834            0 :     ChipLogProgress(Controller, "Sent root certificate to the device");
    1835              : 
    1836            0 :     return CHIP_NO_ERROR;
    1837              : }
    1838              : 
    1839            0 : void DeviceCommissioner::OnRootCertSuccessResponse(void * context, const chip::app::DataModel::NullObjectType &)
    1840              : {
    1841              :     MATTER_TRACE_SCOPE("OnRootCertSuccessResponse", "DeviceCommissioner");
    1842            0 :     ChipLogProgress(Controller, "Device confirmed that it has received the root certificate");
    1843            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1844            0 :     commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
    1845            0 : }
    1846              : 
    1847            0 : void DeviceCommissioner::OnRootCertFailureResponse(void * context, CHIP_ERROR error)
    1848              : {
    1849              :     MATTER_TRACE_SCOPE("OnRootCertFailureResponse", "DeviceCommissioner");
    1850            0 :     ChipLogProgress(Controller, "Device failed to receive the root certificate Response: %" CHIP_ERROR_FORMAT, error.Format());
    1851            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1852            0 :     commissioner->CommissioningStageComplete(error);
    1853            0 : }
    1854              : 
    1855            0 : CHIP_ERROR DeviceCommissioner::OnOperationalCredentialsProvisioningCompletion(DeviceProxy * device)
    1856              : {
    1857              :     MATTER_TRACE_SCOPE("OnOperationalCredentialsProvisioningCompletion", "DeviceCommissioner");
    1858            0 :     ChipLogProgress(Controller, "Operational credentials provisioned on device %p", device);
    1859            0 :     VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
    1860              : 
    1861            0 :     if (mPairingDelegate != nullptr)
    1862              :     {
    1863            0 :         mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingSuccess);
    1864              :     }
    1865            0 :     CommissioningStageComplete(CHIP_NO_ERROR);
    1866              : 
    1867            0 :     return CHIP_NO_ERROR;
    1868              : }
    1869              : 
    1870              : #if CONFIG_NETWORK_LAYER_BLE
    1871              : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
    1872              : void DeviceCommissioner::ConnectBleTransportToSelf()
    1873              : {
    1874              :     Transport::BLEBase & transport = std::get<Transport::BLE<1>>(mSystemState->TransportMgr()->GetTransport().GetTransports());
    1875              :     if (!transport.IsBleLayerTransportSetToSelf())
    1876              :     {
    1877              :         transport.SetBleLayerTransportToSelf();
    1878              :     }
    1879              : }
    1880              : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
    1881              : 
    1882            0 : void DeviceCommissioner::CloseBleConnection()
    1883              : {
    1884              :     // It is fine since we can only commission one device at the same time.
    1885              :     // We should be able to distinguish different BLE connections if we want
    1886              :     // to commission multiple devices at the same time over BLE.
    1887            0 :     mSystemState->BleLayer()->CloseAllBleConnections();
    1888            0 : }
    1889              : #endif
    1890              : 
    1891            0 : CHIP_ERROR DeviceCommissioner::DiscoverCommissionableNodes(Dnssd::DiscoveryFilter filter)
    1892              : {
    1893            0 :     ReturnErrorOnFailure(SetUpNodeDiscovery());
    1894            0 :     return mDNSResolver.DiscoverCommissionableNodes(filter);
    1895              : }
    1896              : 
    1897            0 : CHIP_ERROR DeviceCommissioner::StopCommissionableDiscovery()
    1898              : {
    1899            0 :     return mDNSResolver.StopDiscovery();
    1900              : }
    1901              : 
    1902            0 : const Dnssd::CommissionNodeData * DeviceCommissioner::GetDiscoveredDevice(int idx)
    1903              : {
    1904            0 :     return GetDiscoveredNode(idx);
    1905              : }
    1906              : 
    1907              : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
    1908              : 
    1909              : CHIP_ERROR DeviceCommissioner::SetUdcListenPort(uint16_t listenPort)
    1910              : {
    1911              :     if (mState == State::Initialized)
    1912              :     {
    1913              :         return CHIP_ERROR_INCORRECT_STATE;
    1914              :     }
    1915              : 
    1916              :     mUdcListenPort = listenPort;
    1917              :     return CHIP_NO_ERROR;
    1918              : }
    1919              : 
    1920              : void DeviceCommissioner::FindCommissionableNode(char * instanceName)
    1921              : {
    1922              :     Dnssd::DiscoveryFilter filter(Dnssd::DiscoveryFilterType::kInstanceName, instanceName);
    1923              :     TEMPORARY_RETURN_IGNORED DiscoverCommissionableNodes(filter);
    1924              : }
    1925              : 
    1926              : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
    1927              : 
    1928            0 : void DeviceCommissioner::OnNodeDiscovered(const chip::Dnssd::DiscoveredNodeData & nodeData)
    1929              : {
    1930              : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
    1931              :     if (mUdcServer != nullptr)
    1932              :     {
    1933              :         mUdcServer->OnCommissionableNodeFound(nodeData);
    1934              :     }
    1935              : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
    1936            0 :     if (nodeData.Get<Dnssd::CommissionNodeData>().threadMeshcop)
    1937              :     {
    1938            0 :         mAutoCommissioner.SetNetworkSetupNeeded(true);
    1939              :     }
    1940            0 :     AbstractDnssdDiscoveryController::OnNodeDiscovered(nodeData);
    1941            0 :     mSetUpCodePairer.NotifyCommissionableDeviceDiscovered(nodeData);
    1942            0 : }
    1943              : 
    1944            0 : void DeviceCommissioner::OnBasicSuccess(void * context, const chip::app::DataModel::NullObjectType &)
    1945              : {
    1946            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1947            0 :     commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
    1948            0 : }
    1949              : 
    1950            0 : void DeviceCommissioner::OnBasicFailure(void * context, CHIP_ERROR error)
    1951              : {
    1952            0 :     ChipLogProgress(Controller, "Received failure response: %" CHIP_ERROR_FORMAT, error.Format());
    1953            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    1954            0 :     commissioner->CommissioningStageComplete(error);
    1955            0 : }
    1956              : 
    1957            0 : static GeneralCommissioning::Commands::ArmFailSafe::Type DisarmFailsafeRequest()
    1958              : {
    1959            0 :     GeneralCommissioning::Commands::ArmFailSafe::Type request;
    1960            0 :     request.expiryLengthSeconds = 0; // Expire immediately.
    1961            0 :     request.breadcrumb          = 0;
    1962            0 :     return request;
    1963              : }
    1964              : 
    1965            0 : static void MarkForEviction(const Optional<SessionHandle> & session)
    1966              : {
    1967            0 :     if (session.HasValue())
    1968              :     {
    1969            0 :         session.Value()->AsSecureSession()->MarkForEviction();
    1970              :     }
    1971            0 : }
    1972              : 
    1973            0 : void DeviceCommissioner::CleanupCommissioning(DeviceProxy * proxy, NodeId nodeId, const CompletionStatus & completionStatus)
    1974              : {
    1975              :     // At this point, proxy == mDeviceBeingCommissioned, nodeId == mDeviceBeingCommissioned->GetDeviceId()
    1976              : 
    1977            0 :     mCommissioningCompletionStatus = completionStatus;
    1978              : 
    1979            0 :     if (completionStatus.err == CHIP_NO_ERROR)
    1980              :     {
    1981              :         // CommissioningStageComplete uses mDeviceBeingCommissioned, which can
    1982              :         // be commissionee if we are cleaning up before we've gone operational.  Normally
    1983              :         // that would not happen in this non-error case, _except_ if we were told to skip sending
    1984              :         // CommissioningComplete: in that case we do not have an operational DeviceProxy, so
    1985              :         // we're using our CommissioneeDeviceProxy to do a successful cleanup.
    1986              :         //
    1987              :         // This means we have to call CommissioningStageComplete() before we destroy commissionee.
    1988              :         //
    1989              :         // This should be safe, because CommissioningStageComplete() does not call CleanupCommissioning
    1990              :         // when called in the cleanup stage (which is where we are), and StopPairing does not directly release
    1991              :         // mDeviceBeingCommissioned.
    1992            0 :         CommissioningStageComplete(CHIP_NO_ERROR);
    1993              : 
    1994            0 :         CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
    1995            0 :         if (commissionee != nullptr)
    1996              :         {
    1997            0 :             ReleaseCommissioneeDevice(commissionee);
    1998              :         }
    1999              :         // Send the callbacks, we're done.
    2000            0 :         SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
    2001              :     }
    2002            0 :     else if (completionStatus.err == CHIP_ERROR_CANCELLED)
    2003              :     {
    2004              :         // If we're cleaning up because cancellation has been requested via StopPairing(), expire the failsafe
    2005              :         // in the background and reset our state synchronously, so a new commissioning attempt can be started.
    2006            0 :         CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
    2007            0 :         SessionHolder session((commissionee == proxy) ? commissionee->DetachSecureSession().Value()
    2008            0 :                                                       : proxy->GetSecureSession().Value());
    2009              : 
    2010            0 :         auto request     = DisarmFailsafeRequest();
    2011            0 :         auto onSuccessCb = [session](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
    2012              :                                      const decltype(request)::ResponseType & responseData) {
    2013            0 :             ChipLogProgress(Controller, "Failsafe disarmed");
    2014            0 :             MarkForEviction(session.Get());
    2015            0 :         };
    2016            0 :         auto onFailureCb = [session](CHIP_ERROR aError) {
    2017            0 :             ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, aError.Format());
    2018            0 :             MarkForEviction(session.Get());
    2019            0 :         };
    2020              : 
    2021            0 :         ChipLogProgress(Controller, "Disarming failsafe on device %p in background", proxy);
    2022            0 :         CHIP_ERROR err = InvokeCommandRequest(proxy->GetExchangeManager(), session.Get().Value(), kRootEndpointId, request,
    2023              :                                               onSuccessCb, onFailureCb);
    2024            0 :         if (err != CHIP_NO_ERROR)
    2025              :         {
    2026            0 :             ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
    2027              :         }
    2028              : 
    2029            0 :         CleanupDoneAfterError();
    2030            0 :     }
    2031            0 :     else if (completionStatus.failedStage.HasValue() && completionStatus.failedStage.Value() >= kWiFiNetworkSetup)
    2032              :     {
    2033              :         // If we were already doing network setup, we need to retain the pase session and start again from network setup stage.
    2034              :         // We do not need to reset the failsafe here because we want to keep everything on the device up to this point, so just
    2035              :         // send the completion callbacks (see "Commissioning Flows Error Handling" in the spec).
    2036            0 :         CommissioningStageComplete(CHIP_NO_ERROR);
    2037            0 :         SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
    2038              :     }
    2039              :     else
    2040              :     {
    2041              :         // If we've failed somewhere in the early stages (or we don't have a failedStage specified), we need to start from the
    2042              :         // beginning. However, because some of the commands can only be sent once per arm-failsafe, we also need to force a reset on
    2043              :         // the failsafe so we can start fresh on the next attempt.
    2044            0 :         ChipLogProgress(Controller, "Disarming failsafe on device %p", proxy);
    2045            0 :         auto request   = DisarmFailsafeRequest();
    2046            0 :         CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnDisarmFailsafe, OnDisarmFailsafeFailure, kRootEndpointId);
    2047            0 :         if (err != CHIP_NO_ERROR)
    2048              :         {
    2049              :             // We won't get any async callbacks here, so just pretend like the command errored out async.
    2050            0 :             ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
    2051            0 :             CleanupDoneAfterError();
    2052              :         }
    2053              :     }
    2054            0 : }
    2055              : 
    2056            0 : void DeviceCommissioner::OnDisarmFailsafe(void * context,
    2057              :                                           const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
    2058              : {
    2059            0 :     ChipLogProgress(Controller, "Failsafe disarmed");
    2060            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2061            0 :     commissioner->CleanupDoneAfterError();
    2062            0 : }
    2063              : 
    2064            0 : void DeviceCommissioner::OnDisarmFailsafeFailure(void * context, CHIP_ERROR error)
    2065              : {
    2066            0 :     ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, error.Format());
    2067            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2068            0 :     commissioner->CleanupDoneAfterError();
    2069            0 : }
    2070              : 
    2071            0 : void DeviceCommissioner::CleanupDoneAfterError()
    2072              : {
    2073              :     // If someone nulled out our mDeviceBeingCommissioned, there's nothing else
    2074              :     // to do here.
    2075            0 :     VerifyOrReturn(mDeviceBeingCommissioned != nullptr);
    2076              : 
    2077            0 :     NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
    2078              : 
    2079              :     // Signal completion - this will reset mDeviceBeingCommissioned.
    2080            0 :     CommissioningStageComplete(CHIP_NO_ERROR);
    2081              : 
    2082              :     // At this point, we also want to close off the pase session so we need to re-establish
    2083            0 :     CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
    2084              : 
    2085              :     // If we've disarmed the failsafe, it's because we're starting again, so kill the pase connection.
    2086            0 :     if (commissionee != nullptr)
    2087              :     {
    2088            0 :         ReleaseCommissioneeDevice(commissionee);
    2089              :     }
    2090              : 
    2091              :     // Invoke callbacks last, after we have cleared up all state.
    2092            0 :     SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
    2093              : }
    2094              : 
    2095            0 : void DeviceCommissioner::SendCommissioningCompleteCallbacks(NodeId nodeId, const CompletionStatus & completionStatus)
    2096              : {
    2097              :     MATTER_LOG_METRIC_END(kMetricDeviceCommissionerCommission, completionStatus.err);
    2098              : 
    2099            0 :     ChipLogProgress(Controller, "Commissioning complete for node ID 0x" ChipLogFormatX64 ": %s", ChipLogValueX64(nodeId),
    2100              :                     (completionStatus.err == CHIP_NO_ERROR ? "success" : completionStatus.err.AsString()));
    2101            0 :     mCommissioningStage = CommissioningStage::kSecurePairing;
    2102              : 
    2103            0 :     if (mPairingDelegate == nullptr)
    2104              :     {
    2105            0 :         return;
    2106              :     }
    2107              : 
    2108            0 :     mPairingDelegate->OnCommissioningComplete(nodeId, completionStatus.err);
    2109              : 
    2110            0 :     PeerId peerId(GetCompressedFabricId(), nodeId);
    2111            0 :     if (completionStatus.err == CHIP_NO_ERROR)
    2112              :     {
    2113            0 :         mPairingDelegate->OnCommissioningSuccess(peerId);
    2114              :     }
    2115              :     else
    2116              :     {
    2117              :         // TODO: We should propogate detailed error information (commissioningError, networkCommissioningStatus) from
    2118              :         // completionStatus.
    2119            0 :         mPairingDelegate->OnCommissioningFailure(peerId, completionStatus.err, completionStatus.failedStage.ValueOr(kError),
    2120            0 :                                                  completionStatus.attestationResult);
    2121              :     }
    2122              : }
    2123              : 
    2124            0 : void DeviceCommissioner::CommissioningStageComplete(CHIP_ERROR err, CommissioningDelegate::CommissioningReport report)
    2125              : {
    2126              :     // Once this stage is complete, reset mDeviceBeingCommissioned - this will be reset when the delegate calls the next step.
    2127              :     MATTER_TRACE_SCOPE("CommissioningStageComplete", "DeviceCommissioner");
    2128              :     MATTER_LOG_METRIC_END(MetricKeyForCommissioningStage(mCommissioningStage), err);
    2129            0 :     VerifyOrDie(mDeviceBeingCommissioned);
    2130              : 
    2131            0 :     NodeId nodeId            = mDeviceBeingCommissioned->GetDeviceId();
    2132            0 :     DeviceProxy * proxy      = mDeviceBeingCommissioned;
    2133            0 :     mDeviceBeingCommissioned = nullptr;
    2134            0 :     mInvokeCancelFn          = nullptr;
    2135            0 :     mWriteCancelFn           = nullptr;
    2136              : 
    2137            0 :     if (mPairingDelegate != nullptr)
    2138              :     {
    2139            0 :         mPairingDelegate->OnCommissioningStatusUpdate(PeerId(GetCompressedFabricId(), nodeId), mCommissioningStage, err);
    2140              :     }
    2141              : 
    2142            0 :     if (mCommissioningDelegate == nullptr)
    2143              :     {
    2144            0 :         return;
    2145              :     }
    2146            0 :     report.stageCompleted = mCommissioningStage;
    2147            0 :     CHIP_ERROR status     = mCommissioningDelegate->CommissioningStepFinished(err, report);
    2148            0 :     if (status != CHIP_NO_ERROR && mCommissioningStage != CommissioningStage::kCleanup)
    2149              :     {
    2150              :         // Commissioning delegate will only return error if it failed to perform the appropriate commissioning step.
    2151              :         // In this case, we should complete the commissioning for it.
    2152            0 :         CompletionStatus completionStatus;
    2153            0 :         completionStatus.err         = status;
    2154            0 :         completionStatus.failedStage = MakeOptional(report.stageCompleted);
    2155            0 :         mCommissioningStage          = CommissioningStage::kCleanup;
    2156            0 :         mDeviceBeingCommissioned     = proxy;
    2157            0 :         CleanupCommissioning(proxy, nodeId, completionStatus);
    2158              :     }
    2159              : }
    2160              : 
    2161            0 : void DeviceCommissioner::OnDeviceConnectedFn(void * context, Messaging::ExchangeManager & exchangeMgr,
    2162              :                                              const SessionHandle & sessionHandle)
    2163              : {
    2164              :     // CASE session established.
    2165              :     MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, CHIP_NO_ERROR);
    2166            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2167            0 :     VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
    2168              :                 commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
    2169            0 :     VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == sessionHandle->GetPeer().GetNodeId());
    2170            0 :     commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
    2171              : 
    2172            0 :     CommissioningDelegate::CommissioningReport report;
    2173            0 :     report.Set<OperationalNodeFoundData>(OperationalNodeFoundData(OperationalDeviceProxy(&exchangeMgr, sessionHandle)));
    2174            0 :     commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
    2175            0 : }
    2176              : 
    2177            0 : void DeviceCommissioner::OnDeviceConnectionFailureFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error)
    2178              : {
    2179              :     // CASE session establishment failed.
    2180              :     MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, error);
    2181            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2182            0 :     VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
    2183              :                 commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
    2184            0 :     VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
    2185            0 :     commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
    2186              : 
    2187            0 :     if (error != CHIP_NO_ERROR)
    2188              :     {
    2189            0 :         ChipLogProgress(Controller, "Device connection failed. Error %" CHIP_ERROR_FORMAT, error.Format());
    2190              :     }
    2191              :     else
    2192              :     {
    2193              :         // Ensure that commissioning stage advancement is done based on seeing an error.
    2194            0 :         ChipLogError(Controller, "Device connection failed without a valid error code.");
    2195            0 :         error = CHIP_ERROR_INTERNAL;
    2196              :     }
    2197            0 :     commissioner->CommissioningStageComplete(error);
    2198            0 : }
    2199              : 
    2200              : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
    2201              : // No specific action to take on either success or failure here; we're just
    2202              : // trying to bump the fail-safe, and if that fails it's not clear there's much
    2203              : // we can to with that.
    2204            0 : static void OnExtendFailsafeForCASERetryFailure(void * context, CHIP_ERROR error)
    2205              : {
    2206            0 :     ChipLogError(Controller, "Failed to extend fail-safe for CASE retry: %" CHIP_ERROR_FORMAT, error.Format());
    2207            0 : }
    2208              : static void
    2209            0 : OnExtendFailsafeForCASERetrySuccess(void * context,
    2210              :                                     const app::Clusters::GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
    2211              : {
    2212            0 :     ChipLogProgress(Controller, "Status of extending fail-safe for CASE retry: %u", to_underlying(data.errorCode));
    2213            0 : }
    2214              : 
    2215            0 : void DeviceCommissioner::OnDeviceConnectionRetryFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error,
    2216              :                                                    System::Clock::Seconds16 retryTimeout)
    2217              : {
    2218            0 :     ChipLogError(Controller,
    2219              :                  "Session establishment failed for " ChipLogFormatScopedNodeId ", error: %" CHIP_ERROR_FORMAT
    2220              :                  ".  Next retry expected to get a response to Sigma1 or fail within %d seconds",
    2221              :                  ChipLogValueScopedNodeId(peerId), error.Format(), retryTimeout.count());
    2222              : 
    2223            0 :     auto self = static_cast<DeviceCommissioner *>(context);
    2224            0 :     VerifyOrDie(self->GetCommissioningStage() == CommissioningStage::kFindOperationalForStayActive ||
    2225              :                 self->GetCommissioningStage() == CommissioningStage::kFindOperationalForCommissioningComplete);
    2226            0 :     VerifyOrDie(self->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
    2227              : 
    2228              :     bool supportsConcurrent =
    2229            0 :         self->mCommissioningDelegate->GetCommissioningParameters().GetSupportsConcurrentConnection().ValueOr(true);
    2230            0 :     if (!supportsConcurrent)
    2231              :     {
    2232              :         // Concurrent mode not supported.
    2233              :         // We are in operational phase so the commissioning channel is not
    2234              :         // available anymore and it is not possible to re-arm the fail-safe timer.
    2235            0 :         return;
    2236              :     }
    2237              : 
    2238              :     // We need to do the fail-safe arming over the PASE session.
    2239            0 :     auto * commissioneeDevice = self->FindCommissioneeDevice(peerId.GetNodeId());
    2240            0 :     if (!commissioneeDevice)
    2241              :     {
    2242              :         // Commissioning canceled, presumably.  Just ignore the notification,
    2243              :         // not much we can do here.
    2244            0 :         return;
    2245              :     }
    2246              : 
    2247              :     // Extend by the default failsafe timeout plus our retry timeout, so we can
    2248              :     // be sure the fail-safe will not expire before we try the next time, if
    2249              :     // there will be a next time.
    2250              :     //
    2251              :     // TODO: Make it possible for our clients to control the exact timeout here?
    2252              :     uint16_t failsafeTimeout;
    2253            0 :     if (UINT16_MAX - retryTimeout.count() < kDefaultFailsafeTimeout)
    2254              :     {
    2255            0 :         failsafeTimeout = UINT16_MAX;
    2256              :     }
    2257              :     else
    2258              :     {
    2259            0 :         failsafeTimeout = static_cast<uint16_t>(retryTimeout.count() + kDefaultFailsafeTimeout);
    2260              :     }
    2261              : 
    2262              :     // A false return is fine; we don't want to make the fail-safe shorter here.
    2263            0 :     self->ExtendArmFailSafeInternal(commissioneeDevice, self->GetCommissioningStage(), failsafeTimeout,
    2264            0 :                                     MakeOptional(kMinimumCommissioningStepTimeout), OnExtendFailsafeForCASERetrySuccess,
    2265              :                                     OnExtendFailsafeForCASERetryFailure, /* fireAndForget = */ true);
    2266              : }
    2267              : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
    2268              : 
    2269              : // ClusterStateCache::Callback / ReadClient::Callback
    2270            0 : void DeviceCommissioner::OnDone(app::ReadClient * readClient)
    2271              : {
    2272            0 :     VerifyOrDie(readClient != nullptr && readClient == mReadClient.get());
    2273            0 :     mReadClient.reset();
    2274            0 :     switch (mCommissioningStage)
    2275              :     {
    2276            0 :     case CommissioningStage::kReadCommissioningInfo:
    2277            0 :         ContinueReadingCommissioningInfo(mCommissioningDelegate->GetCommissioningParameters());
    2278            0 :         break;
    2279            0 :     default:
    2280            0 :         VerifyOrDie(false);
    2281              :         break;
    2282              :     }
    2283            0 : }
    2284              : 
    2285              : namespace {
    2286              : // Helper for grouping attribute paths into read interactions in ContinueReadingCommissioningInfo()
    2287              : // below. The logic generates a sequence of calls to AddAttributePath(), stopping when the capacity
    2288              : // of the builder is exceeded. When creating subsequent read requests, the same sequence of calls
    2289              : // is generated again, but the builder will skip however many attributes were already read in
    2290              : // previous requests. This makes it easy to have logic that conditionally reads attributes, without
    2291              : // needing to write manual code to work out where subsequent reads need to resume -- the logic that
    2292              : // decides which attributes to read simply needs to be repeatable / deterministic.
    2293              : class ReadInteractionBuilder
    2294              : {
    2295              :     static constexpr auto kCapacity = InteractionModelEngine::kMinSupportedPathsPerReadRequest;
    2296              : 
    2297              :     size_t mSkip  = 0;
    2298              :     size_t mCount = 0;
    2299              :     app::AttributePathParams mPaths[kCapacity];
    2300              : 
    2301              : public:
    2302            0 :     ReadInteractionBuilder(size_t skip = 0) : mSkip(skip) {}
    2303              : 
    2304            0 :     size_t size() { return std::min(mCount, kCapacity); }
    2305            0 :     bool exceeded() { return mCount > kCapacity; }
    2306            0 :     app::AttributePathParams * paths() { return mPaths; }
    2307              : 
    2308              :     // Adds an attribute path if within the current window.
    2309              :     // Returns false if the available space has been exceeded.
    2310              :     template <typename... Ts>
    2311            0 :     bool AddAttributePath(Ts &&... args)
    2312              :     {
    2313            0 :         if (mSkip > 0)
    2314              :         {
    2315            0 :             mSkip--;
    2316            0 :             return true;
    2317              :         }
    2318            0 :         if (mCount >= kCapacity)
    2319              :         {
    2320              :             // capacity exceeded
    2321            0 :             mCount = kCapacity + 1;
    2322            0 :             return false;
    2323              :         }
    2324            0 :         mPaths[mCount++] = app::AttributePathParams(std::forward<Ts>(args)...);
    2325            0 :         return true;
    2326              :     }
    2327              : };
    2328              : } // namespace
    2329              : 
    2330            0 : void DeviceCommissioner::ContinueReadingCommissioningInfo(const CommissioningParameters & params)
    2331              : {
    2332            0 :     VerifyOrDie(mCommissioningStage == CommissioningStage::kReadCommissioningInfo);
    2333              : 
    2334              :     // mReadCommissioningInfoProgress starts at 0 and counts the number of paths we have read.
    2335              :     // A marker value is used to indicate that there are no further attributes to read.
    2336              :     static constexpr auto kReadProgressNoFurtherAttributes = std::numeric_limits<decltype(mReadCommissioningInfoProgress)>::max();
    2337            0 :     if (mReadCommissioningInfoProgress == kReadProgressNoFurtherAttributes)
    2338              :     {
    2339            0 :         FinishReadingCommissioningInfo(params);
    2340            0 :         return;
    2341              :     }
    2342              : 
    2343              :     // We can ony read 9 paths per Read Interaction, since that is the minimum a server has to
    2344              :     // support per spec (see "Interaction Model Limits"), so we generally need to perform more
    2345              :     // that one interaction. To build the list of attributes for each interaction, we use a
    2346              :     // builder that skips adding paths that we already handled in a previous interaction, and
    2347              :     // returns false if the current request is exhausted. This construction avoids allocating
    2348              :     // memory to hold the complete list of attributes to read up front; however the logic to
    2349              :     // determine the attributes to include must be deterministic since it runs multiple times.
    2350              :     // The use of an immediately-invoked lambda is convenient for control flow.
    2351            0 :     ReadInteractionBuilder builder(mReadCommissioningInfoProgress);
    2352            0 :     [&]() -> void {
    2353              :         // General Commissioning
    2354            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
    2355              :                                                 Clusters::GeneralCommissioning::Attributes::SupportsConcurrentConnection::Id));
    2356            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
    2357              :                                                 Clusters::GeneralCommissioning::Attributes::Breadcrumb::Id));
    2358            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
    2359              :                                                 Clusters::GeneralCommissioning::Attributes::BasicCommissioningInfo::Id));
    2360            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
    2361              :                                                 Clusters::GeneralCommissioning::Attributes::RegulatoryConfig::Id));
    2362            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
    2363              :                                                 Clusters::GeneralCommissioning::Attributes::LocationCapability::Id));
    2364            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
    2365              :                                                 Clusters::GeneralCommissioning::Attributes::IsCommissioningWithoutPower::Id));
    2366              : 
    2367              :         // Basic Information: VID and PID for device attestation purposes
    2368            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
    2369              :                                                 Clusters::BasicInformation::Attributes::VendorID::Id));
    2370            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
    2371              :                                                 Clusters::BasicInformation::Attributes::ProductID::Id));
    2372              : 
    2373              :         // Time Synchronization: all attributes
    2374            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::TimeSynchronization::Id));
    2375              : 
    2376              :         // Network Commissioning (all endpoints): Read the feature map and connect time
    2377              :         // TODO: Expose a flag that disables network setup so we don't need to read this
    2378            0 :         VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
    2379              :                                                 Clusters::NetworkCommissioning::Attributes::FeatureMap::Id));
    2380            0 :         VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
    2381              :                                                 Clusters::NetworkCommissioning::Attributes::ConnectMaxTimeSeconds::Id));
    2382              : 
    2383              :         // If we were asked to do network scans, also read ScanMaxTimeSeconds,
    2384              :         // so we know how long to wait for those.
    2385            0 :         if (params.GetAttemptWiFiNetworkScan().ValueOr(false) || params.GetAttemptThreadNetworkScan().ValueOr(false))
    2386              :         {
    2387            0 :             VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
    2388              :                                                     Clusters::NetworkCommissioning::Attributes::ScanMaxTimeSeconds::Id));
    2389              :         }
    2390              : 
    2391              :         // OperationalCredentials: existing fabrics, if necessary
    2392            0 :         if (params.GetCheckForMatchingFabric())
    2393              :         {
    2394            0 :             VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::OperationalCredentials::Id,
    2395              :                                                     Clusters::OperationalCredentials::Attributes::Fabrics::Id));
    2396              :         }
    2397              : 
    2398              :         // ICD Management
    2399            0 :         if (params.GetICDRegistrationStrategy() != ICDRegistrationStrategy::kIgnore)
    2400              :         {
    2401            0 :             VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
    2402              :                                                     Clusters::IcdManagement::Attributes::FeatureMap::Id));
    2403              :         }
    2404            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
    2405              :                                                 Clusters::IcdManagement::Attributes::UserActiveModeTriggerHint::Id));
    2406            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
    2407              :                                                 Clusters::IcdManagement::Attributes::UserActiveModeTriggerInstruction::Id));
    2408            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
    2409              :                                                 Clusters::IcdManagement::Attributes::IdleModeDuration::Id));
    2410            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
    2411              :                                                 Clusters::IcdManagement::Attributes::ActiveModeDuration::Id));
    2412            0 :         VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
    2413              :                                                 Clusters::IcdManagement::Attributes::ActiveModeThreshold::Id));
    2414              : 
    2415              :         // Extra paths requested via CommissioningParameters
    2416            0 :         for (auto const & path : params.GetExtraReadPaths())
    2417              :         {
    2418            0 :             VerifyOrReturn(builder.AddAttributePath(path));
    2419              :         }
    2420            0 :     }();
    2421              : 
    2422            0 :     VerifyOrDie(builder.size() > 0); // our logic is broken if there is nothing to read
    2423            0 :     if (builder.exceeded())
    2424              :     {
    2425              :         // Keep track of the number of attributes we have read already so we can resume from there.
    2426            0 :         auto progress = mReadCommissioningInfoProgress + builder.size();
    2427            0 :         VerifyOrDie(progress < kReadProgressNoFurtherAttributes);
    2428            0 :         mReadCommissioningInfoProgress = static_cast<decltype(mReadCommissioningInfoProgress)>(progress);
    2429              :     }
    2430              :     else
    2431              :     {
    2432            0 :         mReadCommissioningInfoProgress = kReadProgressNoFurtherAttributes;
    2433              :     }
    2434              : 
    2435            0 :     SendCommissioningReadRequest(mDeviceBeingCommissioned, mCommissioningStepTimeout, builder.paths(), builder.size());
    2436              : }
    2437              : 
    2438              : namespace {
    2439            0 : void AccumulateErrors(CHIP_ERROR & acc, CHIP_ERROR err)
    2440              : {
    2441            0 :     if (acc == CHIP_NO_ERROR && err != CHIP_NO_ERROR)
    2442              :     {
    2443            0 :         acc = err;
    2444              :     }
    2445            0 : }
    2446              : } // namespace
    2447              : 
    2448            0 : void DeviceCommissioner::FinishReadingCommissioningInfo(const CommissioningParameters & params)
    2449              : {
    2450              :     // We want to parse as much information as possible, even if we eventually end
    2451              :     // up returning an error (e.g. because some mandatory information was missing).
    2452            0 :     CHIP_ERROR err = CHIP_NO_ERROR;
    2453            0 :     ReadCommissioningInfo info;
    2454            0 :     info.attributes = mAttributeCache.get();
    2455            0 :     AccumulateErrors(err, ParseGeneralCommissioningInfo(info));
    2456            0 :     AccumulateErrors(err, ParseBasicInformation(info));
    2457            0 :     AccumulateErrors(err, ParseNetworkCommissioningInfo(info));
    2458            0 :     AccumulateErrors(err, ParseTimeSyncInfo(info));
    2459            0 :     AccumulateErrors(err, ParseFabrics(info));
    2460            0 :     AccumulateErrors(err, ParseICDInfo(info));
    2461            0 :     AccumulateErrors(err, ParseExtraCommissioningInfo(info, params));
    2462              : 
    2463            0 :     if (mPairingDelegate != nullptr && err == CHIP_NO_ERROR)
    2464              :     {
    2465            0 :         mPairingDelegate->OnReadCommissioningInfo(info);
    2466              :     }
    2467              : 
    2468            0 :     CommissioningDelegate::CommissioningReport report;
    2469            0 :     report.Set<ReadCommissioningInfo>(info);
    2470            0 :     CommissioningStageComplete(err, report);
    2471              : 
    2472              :     // Only release the attribute cache once `info` is no longer needed.
    2473            0 :     mAttributeCache.reset();
    2474            0 : }
    2475              : 
    2476            0 : CHIP_ERROR DeviceCommissioner::ParseGeneralCommissioningInfo(ReadCommissioningInfo & info)
    2477              : {
    2478              :     using namespace GeneralCommissioning::Attributes;
    2479            0 :     CHIP_ERROR return_err = CHIP_NO_ERROR;
    2480              :     CHIP_ERROR err;
    2481              : 
    2482            0 :     BasicCommissioningInfo::TypeInfo::DecodableType basicInfo;
    2483            0 :     err = mAttributeCache->Get<BasicCommissioningInfo::TypeInfo>(kRootEndpointId, basicInfo);
    2484            0 :     if (err == CHIP_NO_ERROR)
    2485              :     {
    2486            0 :         info.general.recommendedFailsafe = basicInfo.failSafeExpiryLengthSeconds;
    2487              :     }
    2488              :     else
    2489              :     {
    2490            0 :         ChipLogError(Controller, "Failed to read BasicCommissioningInfo: %" CHIP_ERROR_FORMAT, err.Format());
    2491            0 :         return_err = err;
    2492              :     }
    2493              : 
    2494            0 :     err = mAttributeCache->Get<RegulatoryConfig::TypeInfo>(kRootEndpointId, info.general.currentRegulatoryLocation);
    2495            0 :     if (err != CHIP_NO_ERROR)
    2496              :     {
    2497            0 :         ChipLogError(Controller, "Failed to read RegulatoryConfig: %" CHIP_ERROR_FORMAT, err.Format());
    2498            0 :         return_err = err;
    2499              :     }
    2500              : 
    2501            0 :     err = mAttributeCache->Get<LocationCapability::TypeInfo>(kRootEndpointId, info.general.locationCapability);
    2502            0 :     if (err != CHIP_NO_ERROR)
    2503              :     {
    2504            0 :         ChipLogError(Controller, "Failed to read LocationCapability: %" CHIP_ERROR_FORMAT, err.Format());
    2505            0 :         return_err = err;
    2506              :     }
    2507              : 
    2508            0 :     err = mAttributeCache->Get<Breadcrumb::TypeInfo>(kRootEndpointId, info.general.breadcrumb);
    2509            0 :     if (err != CHIP_NO_ERROR)
    2510              :     {
    2511            0 :         ChipLogError(Controller, "Failed to read Breadcrumb: %" CHIP_ERROR_FORMAT, err.Format());
    2512            0 :         return_err = err;
    2513              :     }
    2514              : 
    2515            0 :     err = mAttributeCache->Get<SupportsConcurrentConnection::TypeInfo>(kRootEndpointId, info.supportsConcurrentConnection);
    2516            0 :     if (err != CHIP_NO_ERROR)
    2517              :     {
    2518            0 :         ChipLogError(Controller, "Ignoring failure to read SupportsConcurrentConnection: %" CHIP_ERROR_FORMAT, err.Format());
    2519            0 :         info.supportsConcurrentConnection = true; // default to true (concurrent), not a fatal error
    2520              :     }
    2521              : 
    2522            0 :     err = mAttributeCache->Get<IsCommissioningWithoutPower::TypeInfo>(kRootEndpointId, info.general.isCommissioningWithoutPower);
    2523            0 :     if (err != CHIP_NO_ERROR)
    2524              :     {
    2525            0 :         ChipLogError(Controller, "Ignoring failure to read IsCommissioningWithoutPower: %" CHIP_ERROR_FORMAT, err.Format());
    2526            0 :         info.general.isCommissioningWithoutPower = false; // default to false, not a fatal error
    2527              :     }
    2528              : 
    2529            0 :     return return_err;
    2530              : }
    2531              : 
    2532            0 : CHIP_ERROR DeviceCommissioner::ParseBasicInformation(ReadCommissioningInfo & info)
    2533              : {
    2534              :     using namespace BasicInformation::Attributes;
    2535            0 :     CHIP_ERROR return_err = CHIP_NO_ERROR;
    2536              :     CHIP_ERROR err;
    2537              : 
    2538            0 :     err = mAttributeCache->Get<VendorID::TypeInfo>(kRootEndpointId, info.basic.vendorId);
    2539            0 :     if (err != CHIP_NO_ERROR)
    2540              :     {
    2541            0 :         ChipLogError(Controller, "Failed to read VendorID: %" CHIP_ERROR_FORMAT, err.Format());
    2542            0 :         return_err = err;
    2543              :     }
    2544              : 
    2545            0 :     err = mAttributeCache->Get<ProductID::TypeInfo>(kRootEndpointId, info.basic.productId);
    2546            0 :     if (err != CHIP_NO_ERROR)
    2547              :     {
    2548            0 :         ChipLogError(Controller, "Failed to read ProductID: %" CHIP_ERROR_FORMAT, err.Format());
    2549            0 :         return_err = err;
    2550              :     }
    2551              : 
    2552            0 :     return return_err;
    2553              : }
    2554              : 
    2555            0 : CHIP_ERROR DeviceCommissioner::ParseNetworkCommissioningInfo(ReadCommissioningInfo & info)
    2556              : {
    2557              :     using namespace NetworkCommissioning::Attributes;
    2558            0 :     CHIP_ERROR return_err = CHIP_NO_ERROR;
    2559              :     CHIP_ERROR err;
    2560              : 
    2561              :     // Set the network cluster endpoints first so we can match up the connection
    2562              :     // times. Note that here we don't know what endpoints the network
    2563              :     // commissioning clusters might be on.
    2564            0 :     err = mAttributeCache->ForEachAttribute(NetworkCommissioning::Id, [this, &info](const ConcreteAttributePath & path) {
    2565            0 :         VerifyOrReturnError(path.mAttributeId == FeatureMap::Id, CHIP_NO_ERROR);
    2566            0 :         BitFlags<NetworkCommissioning::Feature> features;
    2567            0 :         if (mAttributeCache->Get<FeatureMap::TypeInfo>(path, *features.RawStorage()) == CHIP_NO_ERROR)
    2568              :         {
    2569            0 :             if (features.Has(NetworkCommissioning::Feature::kWiFiNetworkInterface))
    2570              :             {
    2571            0 :                 ChipLogProgress(Controller, "NetworkCommissioning Features: has WiFi. endpointid = %u", path.mEndpointId);
    2572            0 :                 info.network.wifi.endpoint = path.mEndpointId;
    2573              :             }
    2574            0 :             else if (features.Has(NetworkCommissioning::Feature::kThreadNetworkInterface))
    2575              :             {
    2576            0 :                 ChipLogProgress(Controller, "NetworkCommissioning Features: has Thread. endpointid = %u", path.mEndpointId);
    2577            0 :                 info.network.thread.endpoint = path.mEndpointId;
    2578              :             }
    2579            0 :             else if (features.Has(NetworkCommissioning::Feature::kEthernetNetworkInterface))
    2580              :             {
    2581            0 :                 ChipLogProgress(Controller, "NetworkCommissioning Features: has Ethernet. endpointid = %u", path.mEndpointId);
    2582            0 :                 info.network.eth.endpoint = path.mEndpointId;
    2583              :             }
    2584              :         }
    2585            0 :         return CHIP_NO_ERROR;
    2586              :     });
    2587            0 :     AccumulateErrors(return_err, err);
    2588              : 
    2589            0 :     if (info.network.thread.endpoint != kInvalidEndpointId)
    2590              :     {
    2591            0 :         err = ParseNetworkCommissioningTimeouts(info.network.thread, "Thread");
    2592            0 :         AccumulateErrors(return_err, err);
    2593              :     }
    2594              : 
    2595            0 :     if (info.network.wifi.endpoint != kInvalidEndpointId)
    2596              :     {
    2597            0 :         err = ParseNetworkCommissioningTimeouts(info.network.wifi, "Wi-Fi");
    2598            0 :         AccumulateErrors(return_err, err);
    2599              :     }
    2600              : 
    2601            0 :     if (return_err != CHIP_NO_ERROR)
    2602              :     {
    2603            0 :         ChipLogError(Controller, "Failed to parse Network Commissioning information: %" CHIP_ERROR_FORMAT, return_err.Format());
    2604              :     }
    2605            0 :     return return_err;
    2606              : }
    2607              : 
    2608            0 : CHIP_ERROR DeviceCommissioner::ParseNetworkCommissioningTimeouts(NetworkClusterInfo & networkInfo, const char * networkType)
    2609              : {
    2610              :     using namespace NetworkCommissioning::Attributes;
    2611              : 
    2612            0 :     CHIP_ERROR err = mAttributeCache->Get<ConnectMaxTimeSeconds::TypeInfo>(networkInfo.endpoint, networkInfo.minConnectionTime);
    2613            0 :     if (err != CHIP_NO_ERROR)
    2614              :     {
    2615            0 :         ChipLogError(Controller, "Failed to read %s ConnectMaxTimeSeconds (endpoint %u): %" CHIP_ERROR_FORMAT, networkType,
    2616              :                      networkInfo.endpoint, err.Format());
    2617            0 :         return err;
    2618              :     }
    2619              : 
    2620            0 :     err = mAttributeCache->Get<ScanMaxTimeSeconds::TypeInfo>(networkInfo.endpoint, networkInfo.maxScanTime);
    2621            0 :     if (err != CHIP_NO_ERROR)
    2622              :     {
    2623              :         // We don't always read this attribute, and we read it as a wildcard, so
    2624              :         // don't treat it as an error simply because it's missing.
    2625            0 :         if (err != CHIP_ERROR_KEY_NOT_FOUND)
    2626              :         {
    2627            0 :             ChipLogError(Controller, "Failed to read %s ScanMaxTimeSeconds (endpoint: %u): %" CHIP_ERROR_FORMAT, networkType,
    2628              :                          networkInfo.endpoint, err.Format());
    2629            0 :             return err;
    2630              :         }
    2631              : 
    2632              :         // Just flag as "we don't know".
    2633            0 :         networkInfo.maxScanTime = 0;
    2634              :     }
    2635              : 
    2636            0 :     return CHIP_NO_ERROR;
    2637              : }
    2638              : 
    2639            0 : CHIP_ERROR DeviceCommissioner::ParseTimeSyncInfo(ReadCommissioningInfo & info)
    2640              : {
    2641              :     using namespace TimeSynchronization::Attributes;
    2642              :     CHIP_ERROR err;
    2643              : 
    2644              :     // If we fail to get the feature map, there's no viable time cluster, don't set anything.
    2645            0 :     BitFlags<TimeSynchronization::Feature> featureMap;
    2646            0 :     err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
    2647            0 :     if (err != CHIP_NO_ERROR)
    2648              :     {
    2649            0 :         info.requiresUTC               = false;
    2650            0 :         info.requiresTimeZone          = false;
    2651            0 :         info.requiresDefaultNTP        = false;
    2652            0 :         info.requiresTrustedTimeSource = false;
    2653            0 :         return CHIP_NO_ERROR;
    2654              :     }
    2655            0 :     info.requiresUTC               = true;
    2656            0 :     info.requiresTimeZone          = featureMap.Has(TimeSynchronization::Feature::kTimeZone);
    2657            0 :     info.requiresDefaultNTP        = featureMap.Has(TimeSynchronization::Feature::kNTPClient);
    2658            0 :     info.requiresTrustedTimeSource = featureMap.Has(TimeSynchronization::Feature::kTimeSyncClient);
    2659              : 
    2660            0 :     if (info.requiresTimeZone)
    2661              :     {
    2662            0 :         err = mAttributeCache->Get<TimeZoneListMaxSize::TypeInfo>(kRootEndpointId, info.maxTimeZoneSize);
    2663            0 :         if (err != CHIP_NO_ERROR)
    2664              :         {
    2665              :             // This information should be available, let's do our best with what we have, but we can't set
    2666              :             // the time zone without this information
    2667            0 :             info.requiresTimeZone = false;
    2668              :         }
    2669            0 :         err = mAttributeCache->Get<DSTOffsetListMaxSize::TypeInfo>(kRootEndpointId, info.maxDSTSize);
    2670            0 :         if (err != CHIP_NO_ERROR)
    2671              :         {
    2672            0 :             info.requiresTimeZone = false;
    2673              :         }
    2674              :     }
    2675            0 :     if (info.requiresDefaultNTP)
    2676              :     {
    2677            0 :         DefaultNTP::TypeInfo::DecodableType defaultNTP;
    2678            0 :         err = mAttributeCache->Get<DefaultNTP::TypeInfo>(kRootEndpointId, defaultNTP);
    2679            0 :         if (err == CHIP_NO_ERROR && (!defaultNTP.IsNull()) && (defaultNTP.Value().size() != 0))
    2680              :         {
    2681            0 :             info.requiresDefaultNTP = false;
    2682              :         }
    2683              :     }
    2684            0 :     if (info.requiresTrustedTimeSource)
    2685              :     {
    2686            0 :         TrustedTimeSource::TypeInfo::DecodableType trustedTimeSource;
    2687            0 :         err = mAttributeCache->Get<TrustedTimeSource::TypeInfo>(kRootEndpointId, trustedTimeSource);
    2688            0 :         if (err == CHIP_NO_ERROR && !trustedTimeSource.IsNull())
    2689              :         {
    2690            0 :             info.requiresTrustedTimeSource = false;
    2691              :         }
    2692              :     }
    2693              : 
    2694            0 :     return CHIP_NO_ERROR;
    2695              : }
    2696              : 
    2697            0 : CHIP_ERROR DeviceCommissioner::ParseFabrics(ReadCommissioningInfo & info)
    2698              : {
    2699              :     using namespace OperationalCredentials::Attributes;
    2700              :     CHIP_ERROR err;
    2701            0 :     CHIP_ERROR return_err = CHIP_NO_ERROR;
    2702              : 
    2703              :     // We might not have requested a Fabrics attribute at all, so not having a
    2704              :     // value for it is not an error.
    2705            0 :     err = mAttributeCache->ForEachAttribute(OperationalCredentials::Id, [this, &info](const ConcreteAttributePath & path) {
    2706              :         using namespace chip::app::Clusters::OperationalCredentials::Attributes;
    2707              :         // this code is checking if the device is already on the commissioner's fabric.
    2708              :         // if a matching fabric is found, then remember the nodeId so that the commissioner
    2709              :         // can, if it decides to, cancel commissioning (before it fails in AddNoc) and know
    2710              :         // the device's nodeId on its fabric.
    2711            0 :         switch (path.mAttributeId)
    2712              :         {
    2713            0 :         case Fabrics::Id: {
    2714            0 :             Fabrics::TypeInfo::DecodableType fabrics;
    2715            0 :             ReturnErrorOnFailure(this->mAttributeCache->Get<Fabrics::TypeInfo>(path, fabrics));
    2716              :             // this is a best effort attempt to find a matching fabric, so no error checking on iter
    2717            0 :             auto iter = fabrics.begin();
    2718            0 :             while (iter.Next())
    2719              :             {
    2720            0 :                 auto & fabricDescriptor = iter.GetValue();
    2721            0 :                 ChipLogProgress(Controller,
    2722              :                                 "DeviceCommissioner::OnDone - fabric.vendorId=0x%04X fabric.fabricId=0x" ChipLogFormatX64
    2723              :                                 " fabric.nodeId=0x" ChipLogFormatX64,
    2724              :                                 fabricDescriptor.vendorID, ChipLogValueX64(fabricDescriptor.fabricID),
    2725              :                                 ChipLogValueX64(fabricDescriptor.nodeID));
    2726            0 :                 if (GetFabricId() == fabricDescriptor.fabricID)
    2727              :                 {
    2728            0 :                     ChipLogProgress(Controller, "DeviceCommissioner::OnDone - found a matching fabric id");
    2729            0 :                     chip::ByteSpan rootKeySpan = fabricDescriptor.rootPublicKey;
    2730            0 :                     if (rootKeySpan.size() != Crypto::kP256_PublicKey_Length)
    2731              :                     {
    2732            0 :                         ChipLogError(Controller, "DeviceCommissioner::OnDone - fabric root key size mismatch %u != %u",
    2733              :                                      static_cast<unsigned>(rootKeySpan.size()),
    2734              :                                      static_cast<unsigned>(Crypto::kP256_PublicKey_Length));
    2735            0 :                         continue;
    2736              :                     }
    2737            0 :                     P256PublicKeySpan rootPubKeySpan(rootKeySpan.data());
    2738            0 :                     Crypto::P256PublicKey deviceRootPublicKey(rootPubKeySpan);
    2739              : 
    2740            0 :                     Crypto::P256PublicKey commissionerRootPublicKey;
    2741            0 :                     if (CHIP_NO_ERROR != GetRootPublicKey(commissionerRootPublicKey))
    2742              :                     {
    2743            0 :                         ChipLogError(Controller, "DeviceCommissioner::OnDone - error reading commissioner root public key");
    2744              :                     }
    2745            0 :                     else if (commissionerRootPublicKey.Matches(deviceRootPublicKey))
    2746              :                     {
    2747            0 :                         ChipLogProgress(Controller, "DeviceCommissioner::OnDone - fabric root keys match");
    2748            0 :                         info.remoteNodeId = fabricDescriptor.nodeID;
    2749              :                     }
    2750            0 :                 }
    2751              :             }
    2752              : 
    2753            0 :             return CHIP_NO_ERROR;
    2754              :         }
    2755            0 :         default:
    2756            0 :             return CHIP_NO_ERROR;
    2757              :         }
    2758              :     });
    2759              : 
    2760            0 :     if (mPairingDelegate != nullptr)
    2761              :     {
    2762            0 :         mPairingDelegate->OnFabricCheck(info.remoteNodeId);
    2763              :     }
    2764              : 
    2765            0 :     return return_err;
    2766              : }
    2767              : 
    2768            0 : CHIP_ERROR DeviceCommissioner::ParseICDInfo(ReadCommissioningInfo & info)
    2769              : {
    2770              :     using namespace IcdManagement::Attributes;
    2771              :     CHIP_ERROR err;
    2772              : 
    2773            0 :     bool hasUserActiveModeTrigger = false;
    2774            0 :     bool isICD                    = false;
    2775              : 
    2776            0 :     BitFlags<IcdManagement::Feature> featureMap;
    2777            0 :     err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
    2778            0 :     if (err == CHIP_NO_ERROR)
    2779              :     {
    2780            0 :         info.icd.isLIT                  = featureMap.Has(IcdManagement::Feature::kLongIdleTimeSupport);
    2781            0 :         info.icd.checkInProtocolSupport = featureMap.Has(IcdManagement::Feature::kCheckInProtocolSupport);
    2782            0 :         hasUserActiveModeTrigger        = featureMap.Has(IcdManagement::Feature::kUserActiveModeTrigger);
    2783            0 :         isICD                           = true;
    2784              :     }
    2785            0 :     else if (err == CHIP_ERROR_KEY_NOT_FOUND)
    2786              :     {
    2787              :         // This key is optional so not an error
    2788            0 :         info.icd.isLIT = false;
    2789            0 :         err            = CHIP_NO_ERROR;
    2790              :     }
    2791            0 :     else if (err == CHIP_ERROR_IM_STATUS_CODE_RECEIVED)
    2792              :     {
    2793            0 :         app::StatusIB statusIB;
    2794            0 :         err = mAttributeCache->GetStatus(app::ConcreteAttributePath(kRootEndpointId, IcdManagement::Id, FeatureMap::Id), statusIB);
    2795            0 :         if (err == CHIP_NO_ERROR)
    2796              :         {
    2797            0 :             if (statusIB.mStatus == Protocols::InteractionModel::Status::UnsupportedCluster)
    2798              :             {
    2799            0 :                 info.icd.isLIT = false;
    2800              :             }
    2801              :             else
    2802              :             {
    2803            0 :                 err = statusIB.ToChipError();
    2804              :             }
    2805              :         }
    2806              :     }
    2807              : 
    2808            0 :     ReturnErrorOnFailure(err);
    2809              : 
    2810            0 :     info.icd.userActiveModeTriggerHint.ClearAll();
    2811            0 :     info.icd.userActiveModeTriggerInstruction = CharSpan();
    2812              : 
    2813            0 :     if (hasUserActiveModeTrigger)
    2814              :     {
    2815              :         // Intentionally ignore errors since they are not mandatory.
    2816            0 :         bool activeModeTriggerInstructionRequired = false;
    2817              : 
    2818            0 :         err = mAttributeCache->Get<UserActiveModeTriggerHint::TypeInfo>(kRootEndpointId, info.icd.userActiveModeTriggerHint);
    2819            0 :         if (err != CHIP_NO_ERROR)
    2820              :         {
    2821            0 :             ChipLogError(Controller, "IcdManagement.UserActiveModeTriggerHint expected, but failed to read.");
    2822            0 :             return err;
    2823              :         }
    2824              : 
    2825              :         using IcdManagement::UserActiveModeTriggerBitmap;
    2826            0 :         activeModeTriggerInstructionRequired = info.icd.userActiveModeTriggerHint.HasAny(
    2827            0 :             UserActiveModeTriggerBitmap::kCustomInstruction, UserActiveModeTriggerBitmap::kActuateSensorSeconds,
    2828            0 :             UserActiveModeTriggerBitmap::kActuateSensorTimes, UserActiveModeTriggerBitmap::kActuateSensorLightsBlink,
    2829            0 :             UserActiveModeTriggerBitmap::kResetButtonLightsBlink, UserActiveModeTriggerBitmap::kResetButtonSeconds,
    2830            0 :             UserActiveModeTriggerBitmap::kResetButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonSeconds,
    2831            0 :             UserActiveModeTriggerBitmap::kSetupButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonTimes,
    2832            0 :             UserActiveModeTriggerBitmap::kAppDefinedButton);
    2833              : 
    2834            0 :         if (activeModeTriggerInstructionRequired)
    2835              :         {
    2836            0 :             err = mAttributeCache->Get<UserActiveModeTriggerInstruction::TypeInfo>(kRootEndpointId,
    2837            0 :                                                                                    info.icd.userActiveModeTriggerInstruction);
    2838            0 :             if (err != CHIP_NO_ERROR)
    2839              :             {
    2840            0 :                 ChipLogError(Controller,
    2841              :                              "IcdManagement.UserActiveModeTriggerInstruction expected for given active mode trigger hint, but "
    2842              :                              "failed to read.");
    2843            0 :                 return err;
    2844              :             }
    2845              :         }
    2846              :     }
    2847              : 
    2848            0 :     if (!isICD)
    2849              :     {
    2850            0 :         info.icd.idleModeDuration    = 0;
    2851            0 :         info.icd.activeModeDuration  = 0;
    2852            0 :         info.icd.activeModeThreshold = 0;
    2853            0 :         return CHIP_NO_ERROR;
    2854              :     }
    2855              : 
    2856            0 :     err = mAttributeCache->Get<IdleModeDuration::TypeInfo>(kRootEndpointId, info.icd.idleModeDuration);
    2857            0 :     if (err != CHIP_NO_ERROR)
    2858              :     {
    2859            0 :         ChipLogError(Controller, "IcdManagement.IdleModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT, err.Format());
    2860            0 :         return err;
    2861              :     }
    2862              : 
    2863            0 :     err = mAttributeCache->Get<ActiveModeDuration::TypeInfo>(kRootEndpointId, info.icd.activeModeDuration);
    2864            0 :     if (err != CHIP_NO_ERROR)
    2865              :     {
    2866            0 :         ChipLogError(Controller, "IcdManagement.ActiveModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT,
    2867              :                      err.Format());
    2868            0 :         return err;
    2869              :     }
    2870              : 
    2871            0 :     err = mAttributeCache->Get<ActiveModeThreshold::TypeInfo>(kRootEndpointId, info.icd.activeModeThreshold);
    2872            0 :     if (err != CHIP_NO_ERROR)
    2873              :     {
    2874            0 :         ChipLogError(Controller, "IcdManagement.ActiveModeThreshold expected, but failed to read: %" CHIP_ERROR_FORMAT,
    2875              :                      err.Format());
    2876              :     }
    2877              : 
    2878            0 :     return err;
    2879              : }
    2880              : 
    2881            0 : void DeviceCommissioner::OnArmFailSafe(void * context,
    2882              :                                        const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
    2883              : {
    2884            0 :     CommissioningDelegate::CommissioningReport report;
    2885            0 :     CHIP_ERROR err = CHIP_NO_ERROR;
    2886              : 
    2887            0 :     ChipLogProgress(Controller, "Received ArmFailSafe response errorCode=%u", to_underlying(data.errorCode));
    2888            0 :     if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
    2889              :     {
    2890            0 :         err = CHIP_ERROR_INTERNAL;
    2891            0 :         report.Set<CommissioningErrorInfo>(data.errorCode);
    2892              :     }
    2893              : 
    2894            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2895            0 :     commissioner->CommissioningStageComplete(err, report);
    2896            0 : }
    2897              : 
    2898            0 : void DeviceCommissioner::OnSetRegulatoryConfigResponse(
    2899              :     void * context, const GeneralCommissioning::Commands::SetRegulatoryConfigResponse::DecodableType & data)
    2900              : {
    2901            0 :     CommissioningDelegate::CommissioningReport report;
    2902            0 :     CHIP_ERROR err = CHIP_NO_ERROR;
    2903              : 
    2904            0 :     ChipLogProgress(Controller, "Received SetRegulatoryConfig response errorCode=%u", to_underlying(data.errorCode));
    2905            0 :     if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
    2906              :     {
    2907            0 :         err = CHIP_ERROR_INTERNAL;
    2908            0 :         report.Set<CommissioningErrorInfo>(data.errorCode);
    2909              :     }
    2910            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2911            0 :     commissioner->CommissioningStageComplete(err, report);
    2912            0 : }
    2913              : 
    2914            0 : void DeviceCommissioner::OnSetTCAcknowledgementsResponse(
    2915              :     void * context, const GeneralCommissioning::Commands::SetTCAcknowledgementsResponse::DecodableType & data)
    2916              : {
    2917            0 :     CommissioningDelegate::CommissioningReport report;
    2918            0 :     CHIP_ERROR err = CHIP_NO_ERROR;
    2919              : 
    2920            0 :     ChipLogProgress(Controller, "Received SetTCAcknowledgements response errorCode=%u", to_underlying(data.errorCode));
    2921            0 :     if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
    2922              :     {
    2923            0 :         err = CHIP_ERROR_INTERNAL;
    2924            0 :         report.Set<CommissioningErrorInfo>(data.errorCode);
    2925              :     }
    2926            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2927            0 :     commissioner->CommissioningStageComplete(err, report);
    2928            0 : }
    2929              : 
    2930            0 : void DeviceCommissioner::OnSetTimeZoneResponse(void * context,
    2931              :                                                const TimeSynchronization::Commands::SetTimeZoneResponse::DecodableType & data)
    2932              : {
    2933            0 :     CommissioningDelegate::CommissioningReport report;
    2934            0 :     CHIP_ERROR err                    = CHIP_NO_ERROR;
    2935            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2936              :     TimeZoneResponseInfo info;
    2937            0 :     info.requiresDSTOffsets = data.DSTOffsetRequired;
    2938            0 :     report.Set<TimeZoneResponseInfo>(info);
    2939            0 :     commissioner->CommissioningStageComplete(err, report);
    2940            0 : }
    2941              : 
    2942            0 : void DeviceCommissioner::OnSetUTCError(void * context, CHIP_ERROR error)
    2943              : {
    2944              :     // For SetUTCTime, we don't actually care if the commissionee didn't want out time, that's its choice
    2945            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2946            0 :     commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
    2947            0 : }
    2948              : 
    2949            0 : void DeviceCommissioner::OnScanNetworksFailure(void * context, CHIP_ERROR error)
    2950              : {
    2951            0 :     ChipLogProgress(Controller, "Received ScanNetworks failure response %" CHIP_ERROR_FORMAT, error.Format());
    2952              : 
    2953            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2954              : 
    2955              :     // advance to the kNeedsNetworkCreds waiting step
    2956              :     // clear error so that we don't abort the commissioning when ScanNetworks fails
    2957            0 :     commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
    2958              : 
    2959            0 :     if (commissioner->GetPairingDelegate() != nullptr)
    2960              :     {
    2961            0 :         commissioner->GetPairingDelegate()->OnScanNetworksFailure(error);
    2962              :     }
    2963            0 : }
    2964              : 
    2965            0 : void DeviceCommissioner::OnScanNetworksResponse(void * context,
    2966              :                                                 const NetworkCommissioning::Commands::ScanNetworksResponse::DecodableType & data)
    2967              : {
    2968            0 :     CommissioningDelegate::CommissioningReport report;
    2969              : 
    2970            0 :     ChipLogProgress(Controller, "Received ScanNetwork response, networkingStatus=%u debugText=%s",
    2971              :                     to_underlying(data.networkingStatus),
    2972              :                     (data.debugText.HasValue() ? std::string(data.debugText.Value().data(), data.debugText.Value().size()).c_str()
    2973              :                                                : "none provided"));
    2974            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    2975              : 
    2976              :     // advance to the kNeedsNetworkCreds waiting step
    2977            0 :     commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
    2978              : 
    2979            0 :     if (commissioner->GetPairingDelegate() != nullptr)
    2980              :     {
    2981            0 :         commissioner->GetPairingDelegate()->OnScanNetworksSuccess(data);
    2982              :     }
    2983            0 : }
    2984              : 
    2985            0 : CHIP_ERROR DeviceCommissioner::NetworkCredentialsReady()
    2986              : {
    2987            0 :     VerifyOrReturnError(mCommissioningStage == CommissioningStage::kNeedsNetworkCreds, CHIP_ERROR_INCORRECT_STATE);
    2988              : 
    2989              :     // need to advance to next step
    2990            0 :     CommissioningStageComplete(CHIP_NO_ERROR);
    2991              : 
    2992            0 :     return CHIP_NO_ERROR;
    2993              : }
    2994              : 
    2995            0 : CHIP_ERROR DeviceCommissioner::ICDRegistrationInfoReady()
    2996              : {
    2997            0 :     VerifyOrReturnError(mCommissioningStage == CommissioningStage::kICDGetRegistrationInfo, CHIP_ERROR_INCORRECT_STATE);
    2998              : 
    2999              :     // need to advance to next step
    3000            0 :     CommissioningStageComplete(CHIP_NO_ERROR);
    3001              : 
    3002            0 :     return CHIP_NO_ERROR;
    3003              : }
    3004              : 
    3005            0 : void DeviceCommissioner::OnNetworkConfigResponse(void * context,
    3006              :                                                  const NetworkCommissioning::Commands::NetworkConfigResponse::DecodableType & data)
    3007              : {
    3008            0 :     CommissioningDelegate::CommissioningReport report;
    3009            0 :     CHIP_ERROR err = CHIP_NO_ERROR;
    3010              : 
    3011            0 :     ChipLogProgress(Controller, "Received NetworkConfig response, networkingStatus=%u", to_underlying(data.networkingStatus));
    3012            0 :     if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
    3013              :     {
    3014            0 :         err = CHIP_ERROR_INTERNAL;
    3015            0 :         report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
    3016              :     }
    3017            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    3018            0 :     commissioner->CommissioningStageComplete(err, report);
    3019            0 : }
    3020              : 
    3021            0 : void DeviceCommissioner::OnConnectNetworkResponse(
    3022              :     void * context, const NetworkCommissioning::Commands::ConnectNetworkResponse::DecodableType & data)
    3023              : {
    3024            0 :     CommissioningDelegate::CommissioningReport report;
    3025            0 :     CHIP_ERROR err = CHIP_NO_ERROR;
    3026              : 
    3027            0 :     ChipLogProgress(Controller, "Received ConnectNetwork response, networkingStatus=%u", to_underlying(data.networkingStatus));
    3028            0 :     if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
    3029              :     {
    3030            0 :         err = CHIP_ERROR_INTERNAL;
    3031            0 :         report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
    3032              :     }
    3033            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    3034            0 :     commissioner->CommissioningStageComplete(err, report);
    3035            0 : }
    3036              : 
    3037            0 : void DeviceCommissioner::OnCommissioningCompleteResponse(
    3038              :     void * context, const GeneralCommissioning::Commands::CommissioningCompleteResponse::DecodableType & data)
    3039              : {
    3040            0 :     CommissioningDelegate::CommissioningReport report;
    3041            0 :     CHIP_ERROR err = CHIP_NO_ERROR;
    3042              : 
    3043            0 :     ChipLogProgress(Controller, "Received CommissioningComplete response, errorCode=%u", to_underlying(data.errorCode));
    3044            0 :     if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
    3045              :     {
    3046            0 :         err = CHIP_ERROR_INTERNAL;
    3047            0 :         report.Set<CommissioningErrorInfo>(data.errorCode);
    3048              :     }
    3049            0 :     DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
    3050            0 :     commissioner->CommissioningStageComplete(err, report);
    3051            0 : }
    3052              : 
    3053              : template <typename RequestObjectT>
    3054              : CHIP_ERROR
    3055            0 : DeviceCommissioner::SendCommissioningCommand(DeviceProxy * device, const RequestObjectT & request,
    3056              :                                              CommandResponseSuccessCallback<typename RequestObjectT::ResponseType> successCb,
    3057              :                                              CommandResponseFailureCallback failureCb, EndpointId endpoint,
    3058              :                                              Optional<System::Clock::Timeout> timeout, bool fireAndForget)
    3059              : 
    3060              : {
    3061              :     // Default behavior is to make sequential, cancellable calls tracked via mInvokeCancelFn.
    3062              :     // Fire-and-forget calls are not cancellable and don't receive `this` as context in callbacks.
    3063            0 :     VerifyOrDie(fireAndForget || !mInvokeCancelFn); // we don't make parallel (cancellable) calls
    3064              : 
    3065            0 :     void * context   = (!fireAndForget) ? this : nullptr;
    3066            0 :     auto onSuccessCb = [context, successCb](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
    3067              :                                             const typename RequestObjectT::ResponseType & responseData) {
    3068            0 :         successCb(context, responseData);
    3069              :     };
    3070            0 :     auto onFailureCb = [context, failureCb](CHIP_ERROR aError) { failureCb(context, aError); };
    3071              : 
    3072            0 :     return InvokeCommandRequest(device->GetExchangeManager(), device->GetSecureSession().Value(), endpoint, request, onSuccessCb,
    3073            0 :                                 onFailureCb, NullOptional, timeout, (!fireAndForget) ? &mInvokeCancelFn : nullptr);
    3074              : }
    3075              : 
    3076              : template <typename AttrType>
    3077              : CHIP_ERROR DeviceCommissioner::SendCommissioningWriteRequest(DeviceProxy * device, EndpointId endpoint, ClusterId cluster,
    3078              :                                                              AttributeId attribute, const AttrType & requestData,
    3079              :                                                              WriteResponseSuccessCallback successCb,
    3080              :                                                              WriteResponseFailureCallback failureCb)
    3081              : {
    3082              :     VerifyOrDie(!mWriteCancelFn); // we don't make parallel (cancellable) calls
    3083              :     auto onSuccessCb = [this, successCb](const app::ConcreteAttributePath & aPath) { successCb(this); };
    3084              :     auto onFailureCb = [this, failureCb](const app::ConcreteAttributePath * aPath, CHIP_ERROR aError) { failureCb(this, aError); };
    3085              :     return WriteAttribute(device->GetSecureSession().Value(), endpoint, cluster, attribute, requestData, onSuccessCb, onFailureCb,
    3086              :                           /* aTimedWriteTimeoutMs = */ NullOptional, /* onDoneCb = */ nullptr, /* aDataVersion = */ NullOptional,
    3087              :                           /* outCancelFn = */ &mWriteCancelFn);
    3088              : }
    3089              : 
    3090            0 : void DeviceCommissioner::SendCommissioningReadRequest(DeviceProxy * proxy, Optional<System::Clock::Timeout> timeout,
    3091              :                                                       app::AttributePathParams * readPaths, size_t readPathsSize)
    3092              : {
    3093            0 :     VerifyOrDie(!mReadClient); // we don't perform parallel reads
    3094              : 
    3095            0 :     app::InteractionModelEngine * engine = app::InteractionModelEngine::GetInstance();
    3096            0 :     app::ReadPrepareParams readParams(proxy->GetSecureSession().Value());
    3097            0 :     readParams.mIsFabricFiltered = false;
    3098            0 :     if (timeout.HasValue())
    3099              :     {
    3100            0 :         readParams.mTimeout = timeout.Value();
    3101              :     }
    3102            0 :     readParams.mpAttributePathParamsList    = readPaths;
    3103            0 :     readParams.mAttributePathParamsListSize = readPathsSize;
    3104              : 
    3105              :     // Take ownership of the attribute cache, so it can be released if SendRequest fails.
    3106            0 :     auto attributeCache = std::move(mAttributeCache);
    3107              :     auto readClient     = chip::Platform::MakeUnique<app::ReadClient>(
    3108            0 :         engine, proxy->GetExchangeManager(), attributeCache->GetBufferedCallback(), app::ReadClient::InteractionType::Read);
    3109            0 :     CHIP_ERROR err = readClient->SendRequest(readParams);
    3110            0 :     if (err != CHIP_NO_ERROR)
    3111              :     {
    3112            0 :         ChipLogError(Controller, "Failed to send read request: %" CHIP_ERROR_FORMAT, err.Format());
    3113            0 :         CommissioningStageComplete(err);
    3114            0 :         return;
    3115              :     }
    3116            0 :     mAttributeCache = std::move(attributeCache);
    3117            0 :     mReadClient     = std::move(readClient);
    3118            0 : }
    3119              : 
    3120            0 : void DeviceCommissioner::PerformCommissioningStep(DeviceProxy * proxy, CommissioningStage step, CommissioningParameters & params,
    3121              :                                                   CommissioningDelegate * delegate, EndpointId endpoint,
    3122              :                                                   Optional<System::Clock::Timeout> timeout)
    3123              : 
    3124              : {
    3125              :     MATTER_LOG_METRIC(kMetricDeviceCommissionerCommissionStage, step);
    3126              :     MATTER_LOG_METRIC_BEGIN(MetricKeyForCommissioningStage(step));
    3127              : 
    3128            0 :     if (params.GetCompletionStatus().err == CHIP_NO_ERROR)
    3129              :     {
    3130            0 :         ChipLogProgress(Controller, "Performing next commissioning step '%s'", StageToString(step));
    3131              :     }
    3132              :     else
    3133              :     {
    3134            0 :         ChipLogProgress(Controller, "Performing next commissioning step '%s' with completion status = '%s'", StageToString(step),
    3135              :                         params.GetCompletionStatus().err.AsString());
    3136              :     }
    3137              : 
    3138            0 :     if (mPairingDelegate)
    3139              :     {
    3140            0 :         mPairingDelegate->OnCommissioningStageStart(PeerId(GetCompressedFabricId(), proxy->GetDeviceId()), step);
    3141              :     }
    3142              : 
    3143            0 :     mCommissioningStepTimeout = timeout;
    3144            0 :     mCommissioningStage       = step;
    3145            0 :     mCommissioningDelegate    = delegate;
    3146            0 :     mDeviceBeingCommissioned  = proxy;
    3147              : 
    3148              :     // TODO: Extend timeouts to the DAC and Opcert requests.
    3149              :     // TODO(cecille): We probably want something better than this for breadcrumbs.
    3150            0 :     uint64_t breadcrumb = static_cast<uint64_t>(step);
    3151              : 
    3152            0 :     switch (step)
    3153              :     {
    3154            0 :     case CommissioningStage::kArmFailsafe: {
    3155            0 :         VerifyOrDie(endpoint == kRootEndpointId);
    3156              :         // Make sure the fail-safe value we set here actually ends up being used
    3157              :         // no matter what.
    3158            0 :         proxy->SetFailSafeExpirationTimestamp(System::Clock::kZero);
    3159            0 :         VerifyOrDie(ExtendArmFailSafeInternal(proxy, step, params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout),
    3160              :                                               timeout, OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false));
    3161              :     }
    3162            0 :     break;
    3163            0 :     case CommissioningStage::kReadCommissioningInfo: {
    3164            0 :         VerifyOrDie(endpoint == kRootEndpointId);
    3165            0 :         ChipLogProgress(Controller, "Sending read requests for commissioning information");
    3166              : 
    3167              :         // Allocate a ClusterStateCache to collect the data from our read requests.
    3168              :         // The cache will be released in:
    3169              :         // - SendCommissioningReadRequest when failing to send a read request.
    3170              :         // - FinishReadingCommissioningInfo when the ReadCommissioningInfo stage is completed.
    3171              :         // - CancelCommissioningInteractions
    3172            0 :         mAttributeCache = Platform::MakeUnique<app::ClusterStateCache>(*this);
    3173              : 
    3174              :         // Generally we need to make more than one read request, because as per spec a server only
    3175              :         // supports a limited number of paths per Read Interaction. Because the actual number of
    3176              :         // interactions we end up performing is dynamic, we track all of them within a single
    3177              :         // commissioning stage.
    3178            0 :         mReadCommissioningInfoProgress = 0;
    3179            0 :         ContinueReadingCommissioningInfo(params); // Note: assume params == delegate.GetCommissioningParameters()
    3180            0 :         break;
    3181              :     }
    3182            0 :     case CommissioningStage::kConfigureUTCTime: {
    3183            0 :         TimeSynchronization::Commands::SetUTCTime::Type request;
    3184            0 :         uint64_t kChipEpochUsSinceUnixEpoch = static_cast<uint64_t>(kChipEpochSecondsSinceUnixEpoch) * chip::kMicrosecondsPerSecond;
    3185              :         System::Clock::Microseconds64 utcTime;
    3186            0 :         if (System::SystemClock().GetClock_RealTime(utcTime) != CHIP_NO_ERROR || utcTime.count() <= kChipEpochUsSinceUnixEpoch)
    3187              :         {
    3188              :             // We have no time to give, but that's OK, just complete this stage
    3189            0 :             CommissioningStageComplete(CHIP_NO_ERROR);
    3190            0 :             return;
    3191              :         }
    3192              : 
    3193            0 :         request.UTCTime = utcTime.count() - kChipEpochUsSinceUnixEpoch;
    3194              :         // For now, we assume a seconds granularity
    3195            0 :         request.granularity = TimeSynchronization::GranularityEnum::kSecondsGranularity;
    3196            0 :         CHIP_ERROR err      = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnSetUTCError, endpoint, timeout);
    3197            0 :         if (err != CHIP_NO_ERROR)
    3198              :         {
    3199              :             // We won't get any async callbacks here, so just complete our stage.
    3200            0 :             ChipLogError(Controller, "Failed to send SetUTCTime command: %" CHIP_ERROR_FORMAT, err.Format());
    3201            0 :             CommissioningStageComplete(err);
    3202            0 :             return;
    3203              :         }
    3204            0 :         break;
    3205              :     }
    3206            0 :     case CommissioningStage::kConfigureTimeZone: {
    3207            0 :         if (!params.GetTimeZone().HasValue())
    3208              :         {
    3209            0 :             ChipLogError(Controller, "ConfigureTimeZone stage called with no time zone data");
    3210            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3211            0 :             return;
    3212              :         }
    3213            0 :         TimeSynchronization::Commands::SetTimeZone::Type request;
    3214            0 :         request.timeZone = params.GetTimeZone().Value();
    3215            0 :         CHIP_ERROR err   = SendCommissioningCommand(proxy, request, OnSetTimeZoneResponse, OnBasicFailure, endpoint, timeout);
    3216            0 :         if (err != CHIP_NO_ERROR)
    3217              :         {
    3218              :             // We won't get any async callbacks here, so just complete our stage.
    3219            0 :             ChipLogError(Controller, "Failed to send SetTimeZone command: %" CHIP_ERROR_FORMAT, err.Format());
    3220            0 :             CommissioningStageComplete(err);
    3221            0 :             return;
    3222              :         }
    3223            0 :         break;
    3224              :     }
    3225            0 :     case CommissioningStage::kConfigureDSTOffset: {
    3226            0 :         if (!params.GetDSTOffsets().HasValue())
    3227              :         {
    3228            0 :             ChipLogError(Controller, "ConfigureDSTOffset stage called with no DST data");
    3229            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3230            0 :             return;
    3231              :         }
    3232            0 :         TimeSynchronization::Commands::SetDSTOffset::Type request;
    3233            0 :         request.DSTOffset = params.GetDSTOffsets().Value();
    3234            0 :         CHIP_ERROR err    = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
    3235            0 :         if (err != CHIP_NO_ERROR)
    3236              :         {
    3237              :             // We won't get any async callbacks here, so just complete our stage.
    3238            0 :             ChipLogError(Controller, "Failed to send SetDSTOffset command: %" CHIP_ERROR_FORMAT, err.Format());
    3239            0 :             CommissioningStageComplete(err);
    3240            0 :             return;
    3241              :         }
    3242            0 :         break;
    3243              :     }
    3244            0 :     case CommissioningStage::kConfigureDefaultNTP: {
    3245            0 :         if (!params.GetDefaultNTP().HasValue())
    3246              :         {
    3247            0 :             ChipLogError(Controller, "ConfigureDefaultNTP stage called with no default NTP data");
    3248            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3249            0 :             return;
    3250              :         }
    3251            0 :         TimeSynchronization::Commands::SetDefaultNTP::Type request;
    3252            0 :         request.defaultNTP = params.GetDefaultNTP().Value();
    3253            0 :         CHIP_ERROR err     = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
    3254            0 :         if (err != CHIP_NO_ERROR)
    3255              :         {
    3256              :             // We won't get any async callbacks here, so just complete our stage.
    3257            0 :             ChipLogError(Controller, "Failed to send SetDefaultNTP command: %" CHIP_ERROR_FORMAT, err.Format());
    3258            0 :             CommissioningStageComplete(err);
    3259            0 :             return;
    3260              :         }
    3261            0 :         break;
    3262              :     }
    3263            0 :     case CommissioningStage::kScanNetworks: {
    3264            0 :         NetworkCommissioning::Commands::ScanNetworks::Type request;
    3265            0 :         if (params.GetWiFiCredentials().HasValue())
    3266              :         {
    3267            0 :             request.ssid.Emplace(params.GetWiFiCredentials().Value().ssid);
    3268              :         }
    3269            0 :         request.breadcrumb.Emplace(breadcrumb);
    3270            0 :         CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnScanNetworksResponse, OnScanNetworksFailure, endpoint, timeout);
    3271            0 :         if (err != CHIP_NO_ERROR)
    3272              :         {
    3273              :             // We won't get any async callbacks here, so just complete our stage.
    3274            0 :             ChipLogError(Controller, "Failed to send ScanNetworks command: %" CHIP_ERROR_FORMAT, err.Format());
    3275            0 :             CommissioningStageComplete(err);
    3276            0 :             return;
    3277              :         }
    3278            0 :         break;
    3279              :     }
    3280            0 :     case CommissioningStage::kNeedsNetworkCreds: {
    3281              :         // Nothing to do.
    3282              :         //
    3283              :         // Either we did a scan and the OnScanNetworksSuccess and OnScanNetworksFailure
    3284              :         // callbacks will tell the DevicePairingDelegate that network credentials are
    3285              :         // needed, or we asked the DevicePairingDelegate for network credentials
    3286              :         // explicitly, and are waiting for it to get back to us.
    3287            0 :         break;
    3288              :     }
    3289            0 :     case CommissioningStage::kConfigRegulatory: {
    3290              :         // TODO(cecille): Worthwhile to keep this around as part of the class?
    3291              :         // TODO(cecille): Where is the country config actually set?
    3292            0 :         ChipLogProgress(Controller, "Setting Regulatory Config");
    3293              :         auto capability =
    3294            0 :             params.GetLocationCapability().ValueOr(app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor);
    3295              :         app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum regulatoryConfig;
    3296              :         // Value is only switchable on the devices with indoor/outdoor capability
    3297            0 :         if (capability == app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kIndoorOutdoor)
    3298              :         {
    3299              :             // If the device supports indoor and outdoor configs, use the setting from the commissioner, otherwise fall back to
    3300              :             // the current device setting then to outdoor (most restrictive)
    3301            0 :             if (params.GetDeviceRegulatoryLocation().HasValue())
    3302              :             {
    3303            0 :                 regulatoryConfig = params.GetDeviceRegulatoryLocation().Value();
    3304            0 :                 ChipLogProgress(Controller, "Setting regulatory config to %u from commissioner override",
    3305              :                                 static_cast<uint8_t>(regulatoryConfig));
    3306              :             }
    3307            0 :             else if (params.GetDefaultRegulatoryLocation().HasValue())
    3308              :             {
    3309            0 :                 regulatoryConfig = params.GetDefaultRegulatoryLocation().Value();
    3310            0 :                 ChipLogProgress(Controller, "No regulatory config supplied by controller, leaving as device default (%u)",
    3311              :                                 static_cast<uint8_t>(regulatoryConfig));
    3312              :             }
    3313              :             else
    3314              :             {
    3315            0 :                 regulatoryConfig = app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor;
    3316            0 :                 ChipLogProgress(Controller, "No overrride or device regulatory config supplied, setting to outdoor");
    3317              :             }
    3318              :         }
    3319              :         else
    3320              :         {
    3321            0 :             ChipLogProgress(Controller, "Device does not support configurable regulatory location");
    3322            0 :             regulatoryConfig = capability;
    3323              :         }
    3324              : 
    3325            0 :         CharSpan countryCode;
    3326            0 :         const auto & providedCountryCode = params.GetCountryCode();
    3327            0 :         if (providedCountryCode.HasValue())
    3328              :         {
    3329            0 :             countryCode = providedCountryCode.Value();
    3330              :         }
    3331              :         else
    3332              :         {
    3333              :             // Default to "XX", for lack of anything better.
    3334            0 :             countryCode = "XX"_span;
    3335              :         }
    3336              : 
    3337            0 :         GeneralCommissioning::Commands::SetRegulatoryConfig::Type request;
    3338            0 :         request.newRegulatoryConfig = regulatoryConfig;
    3339            0 :         request.countryCode         = countryCode;
    3340            0 :         request.breadcrumb          = breadcrumb;
    3341            0 :         CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetRegulatoryConfigResponse, OnBasicFailure, endpoint, timeout);
    3342            0 :         if (err != CHIP_NO_ERROR)
    3343              :         {
    3344              :             // We won't get any async callbacks here, so just complete our stage.
    3345            0 :             ChipLogError(Controller, "Failed to send SetRegulatoryConfig command: %" CHIP_ERROR_FORMAT, err.Format());
    3346            0 :             CommissioningStageComplete(err);
    3347            0 :             return;
    3348              :         }
    3349              :     }
    3350            0 :     break;
    3351            0 :     case CommissioningStage::kConfigureTCAcknowledgments: {
    3352            0 :         ChipLogProgress(Controller, "Setting Terms and Conditions");
    3353              : 
    3354            0 :         if (!params.GetTermsAndConditionsAcknowledgement().HasValue())
    3355              :         {
    3356            0 :             ChipLogProgress(Controller, "Setting Terms and Conditions: Skipped");
    3357            0 :             CommissioningStageComplete(CHIP_NO_ERROR);
    3358            0 :             return;
    3359              :         }
    3360              : 
    3361            0 :         GeneralCommissioning::Commands::SetTCAcknowledgements::Type request;
    3362            0 :         TermsAndConditionsAcknowledgement termsAndConditionsAcknowledgement = params.GetTermsAndConditionsAcknowledgement().Value();
    3363            0 :         request.TCUserResponse = termsAndConditionsAcknowledgement.acceptedTermsAndConditions;
    3364            0 :         request.TCVersion      = termsAndConditionsAcknowledgement.acceptedTermsAndConditionsVersion;
    3365              : 
    3366            0 :         ChipLogProgress(Controller, "Setting Terms and Conditions: %hu, %hu", request.TCUserResponse, request.TCVersion);
    3367              :         CHIP_ERROR err =
    3368            0 :             SendCommissioningCommand(proxy, request, OnSetTCAcknowledgementsResponse, OnBasicFailure, endpoint, timeout);
    3369            0 :         if (err != CHIP_NO_ERROR)
    3370              :         {
    3371            0 :             ChipLogError(Controller, "Failed to send SetTCAcknowledgements command: %" CHIP_ERROR_FORMAT, err.Format());
    3372            0 :             CommissioningStageComplete(err);
    3373            0 :             return;
    3374              :         }
    3375            0 :         break;
    3376              :     }
    3377            0 :     case CommissioningStage::kSendPAICertificateRequest: {
    3378            0 :         ChipLogProgress(Controller, "Sending request for PAI certificate");
    3379            0 :         CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kPAI, timeout);
    3380            0 :         if (err != CHIP_NO_ERROR)
    3381              :         {
    3382              :             // We won't get any async callbacks here, so just complete our stage.
    3383            0 :             ChipLogError(Controller, "Failed to send CertificateChainRequest command to get PAI: %" CHIP_ERROR_FORMAT,
    3384              :                          err.Format());
    3385            0 :             CommissioningStageComplete(err);
    3386            0 :             return;
    3387              :         }
    3388            0 :         break;
    3389              :     }
    3390            0 :     case CommissioningStage::kSendDACCertificateRequest: {
    3391            0 :         ChipLogProgress(Controller, "Sending request for DAC certificate");
    3392            0 :         CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kDAC, timeout);
    3393            0 :         if (err != CHIP_NO_ERROR)
    3394              :         {
    3395              :             // We won't get any async callbacks here, so just complete our stage.
    3396            0 :             ChipLogError(Controller, "Failed to send CertificateChainRequest command to get DAC: %" CHIP_ERROR_FORMAT,
    3397              :                          err.Format());
    3398            0 :             CommissioningStageComplete(err);
    3399            0 :             return;
    3400              :         }
    3401            0 :         break;
    3402              :     }
    3403            0 :     case CommissioningStage::kSendAttestationRequest: {
    3404            0 :         ChipLogProgress(Controller, "Sending Attestation Request to the device.");
    3405            0 :         if (!params.GetAttestationNonce().HasValue())
    3406              :         {
    3407            0 :             ChipLogError(Controller, "No attestation nonce found");
    3408            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3409            0 :             return;
    3410              :         }
    3411            0 :         CHIP_ERROR err = SendAttestationRequestCommand(proxy, params.GetAttestationNonce().Value(), timeout);
    3412            0 :         if (err != CHIP_NO_ERROR)
    3413              :         {
    3414              :             // We won't get any async callbacks here, so just complete our stage.
    3415            0 :             ChipLogError(Controller, "Failed to send AttestationRequest command: %" CHIP_ERROR_FORMAT, err.Format());
    3416            0 :             CommissioningStageComplete(err);
    3417            0 :             return;
    3418              :         }
    3419            0 :         break;
    3420              :     }
    3421            0 :     case CommissioningStage::kAttestationVerification: {
    3422            0 :         ChipLogProgress(Controller, "Verifying Device Attestation information received from the device");
    3423            0 :         if (IsAttestationInformationMissing(params))
    3424              :         {
    3425            0 :             ChipLogError(Controller, "Missing attestation information");
    3426            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3427            0 :             return;
    3428              :         }
    3429              : 
    3430              :         DeviceAttestationVerifier::AttestationInfo info(
    3431            0 :             params.GetAttestationElements().Value(),
    3432            0 :             proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
    3433            0 :             params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
    3434            0 :             params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
    3435              : 
    3436            0 :         CHIP_ERROR err = ValidateAttestationInfo(info);
    3437            0 :         if (err != CHIP_NO_ERROR)
    3438              :         {
    3439            0 :             ChipLogError(Controller, "Error validating attestation information: %" CHIP_ERROR_FORMAT, err.Format());
    3440            0 :             CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
    3441            0 :             return;
    3442              :         }
    3443              :     }
    3444            0 :     break;
    3445            0 :     case CommissioningStage::kAttestationRevocationCheck: {
    3446            0 :         ChipLogProgress(Controller, "Verifying the device's DAC chain revocation status");
    3447            0 :         if (IsAttestationInformationMissing(params))
    3448              :         {
    3449            0 :             ChipLogError(Controller, "Missing attestation information");
    3450            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3451            0 :             return;
    3452              :         }
    3453              : 
    3454              :         DeviceAttestationVerifier::AttestationInfo info(
    3455            0 :             params.GetAttestationElements().Value(),
    3456            0 :             proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
    3457            0 :             params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
    3458            0 :             params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
    3459              : 
    3460            0 :         CHIP_ERROR err = CheckForRevokedDACChain(info);
    3461              : 
    3462            0 :         if (err != CHIP_NO_ERROR)
    3463              :         {
    3464            0 :             ChipLogError(Controller, "Error validating device's DAC chain revocation status: %" CHIP_ERROR_FORMAT, err.Format());
    3465            0 :             CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
    3466            0 :             return;
    3467              :         }
    3468              :     }
    3469            0 :     break;
    3470            0 :     case CommissioningStage::kJCMTrustVerification: {
    3471            0 :         CHIP_ERROR err = StartJCMTrustVerification(proxy);
    3472            0 :         if (err != CHIP_NO_ERROR)
    3473              :         {
    3474            0 :             ChipLogError(Controller, "Failed to start JCM Trust Verification: %" CHIP_ERROR_FORMAT, err.Format());
    3475            0 :             CommissioningStageComplete(err);
    3476            0 :             return;
    3477              :         }
    3478            0 :         break;
    3479              :     }
    3480              : 
    3481            0 :     case CommissioningStage::kSendOpCertSigningRequest: {
    3482            0 :         if (!params.GetCSRNonce().HasValue())
    3483              :         {
    3484            0 :             ChipLogError(Controller, "No CSR nonce found");
    3485            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3486            0 :             return;
    3487              :         }
    3488            0 :         CHIP_ERROR err = SendOperationalCertificateSigningRequestCommand(proxy, params.GetCSRNonce().Value(), timeout);
    3489            0 :         if (err != CHIP_NO_ERROR)
    3490              :         {
    3491              :             // We won't get any async callbacks here, so just complete our stage.
    3492            0 :             ChipLogError(Controller, "Failed to send CSR request: %" CHIP_ERROR_FORMAT, err.Format());
    3493            0 :             CommissioningStageComplete(err);
    3494            0 :             return;
    3495              :         }
    3496            0 :         break;
    3497              :     }
    3498            0 :     case CommissioningStage::kValidateCSR: {
    3499            0 :         if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetCSRNonce().HasValue())
    3500              :         {
    3501            0 :             ChipLogError(Controller, "Unable to validate CSR");
    3502            0 :             return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3503              :         }
    3504              :         // This is non-blocking, so send the callback immediately.
    3505            0 :         CHIP_ERROR err = ValidateCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
    3506            0 :                                      params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
    3507            0 :                                      params.GetCSRNonce().Value());
    3508            0 :         if (err != CHIP_NO_ERROR)
    3509              :         {
    3510            0 :             ChipLogError(Controller, "Failed to validate CSR: %" CHIP_ERROR_FORMAT, err.Format());
    3511              :         }
    3512            0 :         CommissioningStageComplete(err);
    3513            0 :         return;
    3514              :     }
    3515              :     break;
    3516            0 :     case CommissioningStage::kGenerateNOCChain: {
    3517            0 :         if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
    3518            0 :             !params.GetCSRNonce().HasValue())
    3519              :         {
    3520            0 :             ChipLogError(Controller, "Unable to generate NOC chain parameters");
    3521            0 :             return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3522              :         }
    3523            0 :         CHIP_ERROR err = ProcessCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
    3524            0 :                                     params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
    3525            0 :                                     params.GetPAI().Value(), params.GetCSRNonce().Value());
    3526            0 :         if (err != CHIP_NO_ERROR)
    3527              :         {
    3528            0 :             ChipLogError(Controller, "Failed to process Operational Certificate Signing Request (CSR): %" CHIP_ERROR_FORMAT,
    3529              :                          err.Format());
    3530            0 :             CommissioningStageComplete(err);
    3531            0 :             return;
    3532              :         }
    3533              :     }
    3534            0 :     break;
    3535            0 :     case CommissioningStage::kSendTrustedRootCert: {
    3536            0 :         if (!params.GetRootCert().HasValue() || !params.GetNoc().HasValue())
    3537              :         {
    3538            0 :             ChipLogError(Controller, "No trusted root cert or NOC specified");
    3539            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3540            0 :             return;
    3541              :         }
    3542            0 :         CHIP_ERROR err = SendTrustedRootCertificate(proxy, params.GetRootCert().Value(), timeout);
    3543            0 :         if (err != CHIP_NO_ERROR)
    3544              :         {
    3545            0 :             ChipLogError(Controller, "Error sending trusted root certificate: %" CHIP_ERROR_FORMAT, err.Format());
    3546            0 :             CommissioningStageComplete(err);
    3547            0 :             return;
    3548              :         }
    3549              : 
    3550            0 :         err = proxy->SetPeerId(params.GetRootCert().Value(), params.GetNoc().Value());
    3551            0 :         if (err != CHIP_NO_ERROR)
    3552              :         {
    3553            0 :             ChipLogError(Controller, "Error setting peer id: %" CHIP_ERROR_FORMAT, err.Format());
    3554            0 :             CommissioningStageComplete(err);
    3555            0 :             return;
    3556              :         }
    3557            0 :         if (!IsOperationalNodeId(proxy->GetDeviceId()))
    3558              :         {
    3559            0 :             ChipLogError(Controller, "Given node ID is not an operational node ID");
    3560            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3561            0 :             return;
    3562              :         }
    3563              :     }
    3564            0 :     break;
    3565            0 :     case CommissioningStage::kSendNOC: {
    3566            0 :         if (!params.GetNoc().HasValue() || !params.GetIpk().HasValue() || !params.GetAdminSubject().HasValue())
    3567              :         {
    3568            0 :             ChipLogError(Controller, "AddNOC contents not specified");
    3569            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3570            0 :             return;
    3571              :         }
    3572            0 :         CHIP_ERROR err = SendOperationalCertificate(proxy, params.GetNoc().Value(), params.GetIcac(), params.GetIpk().Value(),
    3573            0 :                                                     params.GetAdminSubject().Value(), timeout);
    3574            0 :         if (err != CHIP_NO_ERROR)
    3575              :         {
    3576              :             // We won't get any async callbacks here, so just complete our stage.
    3577            0 :             ChipLogError(Controller, "Error installing operational certificate with AddNOC: %" CHIP_ERROR_FORMAT, err.Format());
    3578            0 :             CommissioningStageComplete(err);
    3579            0 :             return;
    3580              :         }
    3581            0 :         break;
    3582              :     }
    3583            0 :     case CommissioningStage::kConfigureTrustedTimeSource: {
    3584            0 :         if (!params.GetTrustedTimeSource().HasValue())
    3585              :         {
    3586            0 :             ChipLogError(Controller, "ConfigureTrustedTimeSource stage called with no trusted time source data!");
    3587            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3588            0 :             return;
    3589              :         }
    3590            0 :         TimeSynchronization::Commands::SetTrustedTimeSource::Type request;
    3591            0 :         request.trustedTimeSource = params.GetTrustedTimeSource().Value();
    3592            0 :         CHIP_ERROR err            = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
    3593            0 :         if (err != CHIP_NO_ERROR)
    3594              :         {
    3595              :             // We won't get any async callbacks here, so just complete our stage.
    3596            0 :             ChipLogError(Controller, "Failed to send SendTrustedTimeSource command: %" CHIP_ERROR_FORMAT, err.Format());
    3597            0 :             CommissioningStageComplete(err);
    3598            0 :             return;
    3599              :         }
    3600            0 :         break;
    3601              :     }
    3602            0 :     case CommissioningStage::kRequestWiFiCredentials: {
    3603            0 :         if (!mPairingDelegate)
    3604              :         {
    3605            0 :             ChipLogError(Controller, "Unable to request Wi-Fi credentials: no delegate available");
    3606            0 :             CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE);
    3607            0 :             return;
    3608              :         }
    3609              : 
    3610            0 :         CHIP_ERROR err = mPairingDelegate->WiFiCredentialsNeeded(endpoint);
    3611            0 :         CommissioningStageComplete(err);
    3612            0 :         return;
    3613              :     }
    3614            0 :     case CommissioningStage::kRequestThreadCredentials: {
    3615            0 :         if (!mPairingDelegate)
    3616              :         {
    3617            0 :             ChipLogError(Controller, "Unable to request Thread credentials: no delegate available");
    3618            0 :             CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE);
    3619            0 :             return;
    3620              :         }
    3621              : 
    3622            0 :         CHIP_ERROR err = mPairingDelegate->ThreadCredentialsNeeded(endpoint);
    3623            0 :         CommissioningStageComplete(err);
    3624            0 :         return;
    3625              :     }
    3626            0 :     case CommissioningStage::kWiFiNetworkSetup: {
    3627            0 :         if (!params.GetWiFiCredentials().HasValue())
    3628              :         {
    3629            0 :             ChipLogError(Controller, "No wifi credentials specified");
    3630            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3631            0 :             return;
    3632              :         }
    3633              : 
    3634            0 :         NetworkCommissioning::Commands::AddOrUpdateWiFiNetwork::Type request;
    3635            0 :         request.ssid        = params.GetWiFiCredentials().Value().ssid;
    3636            0 :         request.credentials = params.GetWiFiCredentials().Value().credentials;
    3637            0 :         request.breadcrumb.Emplace(breadcrumb);
    3638            0 :         CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
    3639            0 :         if (err != CHIP_NO_ERROR)
    3640              :         {
    3641              :             // We won't get any async callbacks here, so just complete our stage.
    3642            0 :             ChipLogError(Controller, "Failed to send AddOrUpdateWiFiNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
    3643            0 :             CommissioningStageComplete(err);
    3644            0 :             return;
    3645              :         }
    3646              :     }
    3647            0 :     break;
    3648            0 :     case CommissioningStage::kThreadNetworkSetup: {
    3649            0 :         if (!params.GetThreadOperationalDataset().HasValue())
    3650              :         {
    3651            0 :             ChipLogError(Controller, "No thread credentials specified");
    3652            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3653            0 :             return;
    3654              :         }
    3655            0 :         NetworkCommissioning::Commands::AddOrUpdateThreadNetwork::Type request;
    3656            0 :         request.operationalDataset = params.GetThreadOperationalDataset().Value();
    3657            0 :         request.breadcrumb.Emplace(breadcrumb);
    3658            0 :         CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
    3659            0 :         if (err != CHIP_NO_ERROR)
    3660              :         {
    3661              :             // We won't get any async callbacks here, so just complete our stage.
    3662            0 :             ChipLogError(Controller, "Failed to send AddOrUpdateThreadNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
    3663            0 :             CommissioningStageComplete(err);
    3664            0 :             return;
    3665              :         }
    3666              :     }
    3667            0 :     break;
    3668            0 :     case CommissioningStage::kFailsafeBeforeWiFiEnable:
    3669              :         FALLTHROUGH;
    3670              :     case CommissioningStage::kFailsafeBeforeThreadEnable:
    3671              :         // Before we try to do network enablement, make sure that our fail-safe
    3672              :         // is set far enough out that we can later try to do operational
    3673              :         // discovery without it timing out.
    3674            0 :         ExtendFailsafeBeforeNetworkEnable(proxy, params, step);
    3675            0 :         break;
    3676            0 :     case CommissioningStage::kWiFiNetworkEnable: {
    3677            0 :         if (!params.GetWiFiCredentials().HasValue())
    3678              :         {
    3679            0 :             ChipLogError(Controller, "No wifi credentials specified");
    3680            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3681            0 :             return;
    3682              :         }
    3683            0 :         NetworkCommissioning::Commands::ConnectNetwork::Type request;
    3684            0 :         request.networkID = params.GetWiFiCredentials().Value().ssid;
    3685            0 :         request.breadcrumb.Emplace(breadcrumb);
    3686              : 
    3687            0 :         CHIP_ERROR err = CHIP_NO_ERROR;
    3688            0 :         ChipLogProgress(Controller, "SendCommand kWiFiNetworkEnable, supportsConcurrentConnection=%s",
    3689              :                         params.GetSupportsConcurrentConnection().HasValue()
    3690              :                             ? (params.GetSupportsConcurrentConnection().Value() ? "true" : "false")
    3691              :                             : "missing");
    3692            0 :         err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
    3693              : 
    3694            0 :         if (err != CHIP_NO_ERROR)
    3695              :         {
    3696              :             // We won't get any async callbacks here, so just complete our stage.
    3697            0 :             ChipLogError(Controller, "Failed to send WiFi ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
    3698            0 :             CommissioningStageComplete(err);
    3699            0 :             return;
    3700              :         }
    3701              :     }
    3702            0 :     break;
    3703            0 :     case CommissioningStage::kThreadNetworkEnable: {
    3704            0 :         ByteSpan extendedPanId;
    3705            0 :         chip::Thread::OperationalDataset operationalDataset;
    3706            0 :         if (!params.GetThreadOperationalDataset().HasValue() ||
    3707            0 :             operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
    3708            0 :             operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
    3709              :         {
    3710            0 :             ChipLogError(Controller, "Invalid Thread operational dataset configured at commissioner!");
    3711            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3712            0 :             return;
    3713              :         }
    3714            0 :         NetworkCommissioning::Commands::ConnectNetwork::Type request;
    3715            0 :         request.networkID = extendedPanId;
    3716            0 :         request.breadcrumb.Emplace(breadcrumb);
    3717            0 :         CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
    3718            0 :         if (err != CHIP_NO_ERROR)
    3719              :         {
    3720              :             // We won't get any async callbacks here, so just complete our stage.
    3721            0 :             ChipLogError(Controller, "Failed to send Thread ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
    3722            0 :             CommissioningStageComplete(err);
    3723            0 :             return;
    3724              :         }
    3725              :     }
    3726            0 :     break;
    3727            0 :     case CommissioningStage::kICDGetRegistrationInfo: {
    3728            0 :         GetPairingDelegate()->OnICDRegistrationInfoRequired();
    3729            0 :         return;
    3730              :     }
    3731              :     break;
    3732            0 :     case CommissioningStage::kICDRegistration: {
    3733            0 :         IcdManagement::Commands::RegisterClient::Type request;
    3734              : 
    3735            0 :         if (!(params.GetICDCheckInNodeId().HasValue() && params.GetICDMonitoredSubject().HasValue() &&
    3736            0 :               params.GetICDSymmetricKey().HasValue()))
    3737              :         {
    3738            0 :             ChipLogError(Controller, "No ICD Registration information provided!");
    3739            0 :             CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE);
    3740            0 :             return;
    3741              :         }
    3742              : 
    3743            0 :         request.checkInNodeID    = params.GetICDCheckInNodeId().Value();
    3744            0 :         request.monitoredSubject = params.GetICDMonitoredSubject().Value();
    3745            0 :         request.key              = params.GetICDSymmetricKey().Value();
    3746              : 
    3747              :         CHIP_ERROR err =
    3748            0 :             SendCommissioningCommand(proxy, request, OnICDManagementRegisterClientResponse, OnBasicFailure, endpoint, timeout);
    3749            0 :         if (err != CHIP_NO_ERROR)
    3750              :         {
    3751              :             // We won't get any async callbacks here, so just complete our stage.
    3752            0 :             ChipLogError(Controller, "Failed to send IcdManagement.RegisterClient command: %" CHIP_ERROR_FORMAT, err.Format());
    3753            0 :             CommissioningStageComplete(err);
    3754            0 :             return;
    3755              :         }
    3756              :     }
    3757            0 :     break;
    3758            0 :     case CommissioningStage::kEvictPreviousCaseSessions: {
    3759            0 :         auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
    3760              : 
    3761              :         // If we ever had a commissioned device with this node ID before, we may
    3762              :         // have stale sessions to it.  Make sure we don't re-use any of those,
    3763              :         // because clearly they are not related to this new device we are
    3764              :         // commissioning.  We only care about sessions we might reuse, so just
    3765              :         // clearing the ones associated with our fabric index is good enough and
    3766              :         // we don't need to worry about ExpireAllSessionsOnLogicalFabric.
    3767            0 :         mSystemState->SessionMgr()->ExpireAllSessions(scopedPeerId);
    3768              : #if CHIP_CONFIG_ENABLE_ADDRESS_RESOLVE_FALLBACK
    3769              :         Transport::Type type = proxy->GetSecureSession().Value()->AsSecureSession()->GetPeerAddress().GetTransportType();
    3770              :         // cache address if we are connected over TCP or UDP
    3771              :         if (type == Transport::Type::kTcp || type == Transport::Type::kUdp)
    3772              :         {
    3773              :             // Store the address we are using for PASE as a fallback for operational discovery
    3774              :             ResolveResult result;
    3775              :             result.address         = proxy->GetSecureSession().Value()->AsSecureSession()->GetPeerAddress();
    3776              :             result.mrpRemoteConfig = proxy->GetSecureSession().Value()->GetRemoteMRPConfig();
    3777              :             // Note: supportsTcpClient and supportsTcpServer are device capabilities from DNS-SD TXT records,
    3778              :             // not derivable from the transport type. They remain false (default) here.
    3779              :             // TODO: Consider passing these through RendezvousParameters if available from SetUpCodePairer.
    3780              :             mFallbackOperationalResolveResult.SetValue(result);
    3781              :         }
    3782              : #endif // CHIP_CONFIG_ENABLE_ADDRESS_RESOLVE_FALLBACK
    3783            0 :         CommissioningStageComplete(CHIP_NO_ERROR);
    3784            0 :         return;
    3785              :     }
    3786            0 :     case CommissioningStage::kFindOperationalForStayActive:
    3787              :     case CommissioningStage::kFindOperationalForCommissioningComplete: {
    3788              :         // If there is an error, CommissioningStageComplete will be called from OnDeviceConnectionFailureFn.
    3789            0 :         auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
    3790              :         MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissioningOperationalSetup);
    3791            0 :         mSystemState->CASESessionMgr()->FindOrEstablishSession(
    3792              :             scopedPeerId, &mOnDeviceConnectedCallback, &mOnDeviceConnectionFailureCallback,
    3793              : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
    3794              :             /* attemptCount = */ 3, &mOnDeviceConnectionRetryCallback,
    3795              : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
    3796            0 :             TransportPayloadCapability::kMRPPayload, mFallbackOperationalResolveResult);
    3797              :     }
    3798            0 :     break;
    3799            0 :     case CommissioningStage::kPrimaryOperationalNetworkFailed: {
    3800              :         // nothing to do. This stage indicates that the primary operational network failed and the network config should be
    3801              :         // removed later.
    3802            0 :         break;
    3803              :     }
    3804            0 :     case CommissioningStage::kRemoveWiFiNetworkConfig: {
    3805            0 :         NetworkCommissioning::Commands::RemoveNetwork::Type request;
    3806            0 :         request.networkID = params.GetWiFiCredentials().Value().ssid;
    3807            0 :         request.breadcrumb.Emplace(breadcrumb);
    3808            0 :         CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
    3809            0 :         if (err != CHIP_NO_ERROR)
    3810              :         {
    3811              :             // We won't get any async callbacks here, so just complete our stage.
    3812            0 :             ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
    3813            0 :             CommissioningStageComplete(err);
    3814            0 :             return;
    3815              :         }
    3816            0 :         break;
    3817              :     }
    3818            0 :     case CommissioningStage::kRemoveThreadNetworkConfig: {
    3819            0 :         ByteSpan extendedPanId;
    3820            0 :         chip::Thread::OperationalDataset operationalDataset;
    3821            0 :         if (!params.GetThreadOperationalDataset().HasValue() ||
    3822            0 :             operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
    3823            0 :             operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
    3824              :         {
    3825            0 :             ChipLogError(Controller, "Invalid Thread operational dataset configured at commissioner!");
    3826            0 :             CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
    3827            0 :             return;
    3828              :         }
    3829            0 :         NetworkCommissioning::Commands::RemoveNetwork::Type request;
    3830            0 :         request.networkID = extendedPanId;
    3831            0 :         request.breadcrumb.Emplace(breadcrumb);
    3832            0 :         CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
    3833            0 :         if (err != CHIP_NO_ERROR)
    3834              :         {
    3835              :             // We won't get any async callbacks here, so just complete our stage.
    3836            0 :             ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
    3837            0 :             CommissioningStageComplete(err);
    3838            0 :             return;
    3839              :         }
    3840            0 :         break;
    3841              :     }
    3842            0 :     case CommissioningStage::kICDSendStayActive: {
    3843            0 :         if (!(params.GetICDStayActiveDurationMsec().HasValue()))
    3844              :         {
    3845            0 :             ChipLogProgress(Controller, "Skipping kICDSendStayActive");
    3846            0 :             CommissioningStageComplete(CHIP_NO_ERROR);
    3847            0 :             return;
    3848              :         }
    3849              : 
    3850              :         // StayActive Command happens over CASE Connection
    3851            0 :         IcdManagement::Commands::StayActiveRequest::Type request;
    3852            0 :         request.stayActiveDuration = params.GetICDStayActiveDurationMsec().Value();
    3853            0 :         ChipLogError(Controller, "Send ICD StayActive with Duration %u", request.stayActiveDuration);
    3854              :         CHIP_ERROR err =
    3855            0 :             SendCommissioningCommand(proxy, request, OnICDManagementStayActiveResponse, OnBasicFailure, endpoint, timeout);
    3856            0 :         if (err != CHIP_NO_ERROR)
    3857              :         {
    3858              :             // We won't get any async callbacks here, so just complete our stage.
    3859            0 :             ChipLogError(Controller, "Failed to send IcdManagement.StayActive command: %" CHIP_ERROR_FORMAT, err.Format());
    3860            0 :             CommissioningStageComplete(err);
    3861            0 :             return;
    3862              :         }
    3863              :     }
    3864            0 :     break;
    3865            0 :     case CommissioningStage::kSendComplete: {
    3866              :         // CommissioningComplete command happens over the CASE connection.
    3867              :         GeneralCommissioning::Commands::CommissioningComplete::Type request;
    3868              :         CHIP_ERROR err =
    3869            0 :             SendCommissioningCommand(proxy, request, OnCommissioningCompleteResponse, OnBasicFailure, endpoint, timeout);
    3870            0 :         if (err != CHIP_NO_ERROR)
    3871              :         {
    3872              :             // We won't get any async callbacks here, so just complete our stage.
    3873            0 :             ChipLogError(Controller, "Failed to send CommissioningComplete command: %" CHIP_ERROR_FORMAT, err.Format());
    3874            0 :             CommissioningStageComplete(err);
    3875            0 :             return;
    3876              :         }
    3877              :     }
    3878            0 :     break;
    3879              : #if CHIP_DEVICE_CONFIG_ENABLE_NFC_BASED_COMMISSIONING
    3880              :     case CommissioningStage::kUnpoweredPhaseComplete:
    3881              :         ChipLogProgress(Controller, "Completed unpowered commissioning phase, marking commissioning as complete");
    3882              :         CommissioningStageComplete(CHIP_NO_ERROR);
    3883              :         break;
    3884              : #endif
    3885            0 :     case CommissioningStage::kCleanup:
    3886            0 :         CleanupCommissioning(proxy, proxy->GetDeviceId(), params.GetCompletionStatus());
    3887            0 :         break;
    3888            0 :     case CommissioningStage::kError:
    3889            0 :         mCommissioningStage = CommissioningStage::kSecurePairing;
    3890            0 :         break;
    3891            0 :     case CommissioningStage::kSecurePairing:
    3892            0 :         break;
    3893              :     }
    3894              : }
    3895              : 
    3896            0 : void DeviceCommissioner::ExtendFailsafeBeforeNetworkEnable(DeviceProxy * device, CommissioningParameters & params,
    3897              :                                                            CommissioningStage step)
    3898              : {
    3899            0 :     auto * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
    3900            0 :     if (device != commissioneeDevice)
    3901              :     {
    3902              :         // Not a commissionee device; just return.
    3903            0 :         ChipLogError(Controller, "Trying to extend fail-safe for an unknown commissionee with device id " ChipLogFormatX64,
    3904              :                      ChipLogValueX64(device->GetDeviceId()));
    3905            0 :         CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE, CommissioningDelegate::CommissioningReport());
    3906            0 :         return;
    3907              :     }
    3908              : 
    3909              :     // Try to make sure we have at least enough time for our expected
    3910              :     // commissioning bits plus the MRP retries for a Sigma1.
    3911            0 :     uint16_t failSafeTimeoutSecs = params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout);
    3912            0 :     auto sigma1Timeout           = CASESession::ComputeSigma1ResponseTimeout(commissioneeDevice->GetPairing().GetRemoteMRPConfig());
    3913            0 :     uint16_t sigma1TimeoutSecs   = std::chrono::duration_cast<System::Clock::Seconds16>(sigma1Timeout).count();
    3914            0 :     if (UINT16_MAX - failSafeTimeoutSecs < sigma1TimeoutSecs)
    3915              :     {
    3916            0 :         failSafeTimeoutSecs = UINT16_MAX;
    3917              :     }
    3918              :     else
    3919              :     {
    3920            0 :         failSafeTimeoutSecs = static_cast<uint16_t>(failSafeTimeoutSecs + sigma1TimeoutSecs);
    3921              :     }
    3922              : 
    3923            0 :     if (!ExtendArmFailSafeInternal(commissioneeDevice, step, failSafeTimeoutSecs, MakeOptional(kMinimumCommissioningStepTimeout),
    3924              :                                    OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false))
    3925              :     {
    3926              :         // A false return is fine; we don't want to make the fail-safe shorter here.
    3927            0 :         CommissioningStageComplete(CHIP_NO_ERROR, CommissioningDelegate::CommissioningReport());
    3928              :     }
    3929              : }
    3930              : 
    3931            0 : bool DeviceCommissioner::IsAttestationInformationMissing(const CommissioningParameters & params)
    3932              : {
    3933            0 :     if (!params.GetAttestationElements().HasValue() || !params.GetAttestationSignature().HasValue() ||
    3934            0 :         !params.GetAttestationNonce().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
    3935            0 :         !params.GetRemoteVendorId().HasValue() || !params.GetRemoteProductId().HasValue())
    3936              :     {
    3937            0 :         return true;
    3938              :     }
    3939              : 
    3940            0 :     return false;
    3941              : }
    3942              : 
    3943            0 : CHIP_ERROR DeviceController::GetCompressedFabricIdBytes(MutableByteSpan & outBytes) const
    3944              : {
    3945            0 :     const auto * fabricInfo = GetFabricInfo();
    3946            0 :     VerifyOrReturnError(fabricInfo != nullptr, CHIP_ERROR_INVALID_FABRIC_INDEX);
    3947            0 :     return fabricInfo->GetCompressedFabricIdBytes(outBytes);
    3948              : }
    3949              : 
    3950            0 : CHIP_ERROR DeviceController::GetRootPublicKey(Crypto::P256PublicKey & outRootPublicKey) const
    3951              : {
    3952            0 :     const auto * fabricTable = GetFabricTable();
    3953            0 :     VerifyOrReturnError(fabricTable != nullptr, CHIP_ERROR_INCORRECT_STATE);
    3954            0 :     return fabricTable->FetchRootPubkey(mFabricIndex, outRootPublicKey);
    3955              : }
    3956              : 
    3957            0 : bool DeviceCommissioner::HasValidCommissioningMode(const Dnssd::CommissionNodeData & nodeData)
    3958              : {
    3959            0 :     if (nodeData.commissioningMode == to_underlying(Dnssd::CommissioningMode::kDisabled))
    3960              :     {
    3961            0 :         ChipLogProgress(Controller, "Discovered device does not have an open commissioning window.");
    3962            0 :         return false;
    3963              :     }
    3964            0 :     return true;
    3965              : }
    3966              : 
    3967              : } // namespace Controller
    3968              : } // namespace chip
        

Generated by: LCOV version 2.0-1