Line data Source code
1 : /*
2 : *
3 : * Copyright (c) 2020-2024 Project CHIP Authors
4 : * Copyright (c) 2013-2017 Nest Labs, Inc.
5 : * All rights reserved.
6 : *
7 : * Licensed under the Apache License, Version 2.0 (the "License");
8 : * you may not use this file except in compliance with the License.
9 : * You may obtain a copy of the License at
10 : *
11 : * http://www.apache.org/licenses/LICENSE-2.0
12 : *
13 : * Unless required by applicable law or agreed to in writing, software
14 : * distributed under the License is distributed on an "AS IS" BASIS,
15 : * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 : * See the License for the specific language governing permissions and
17 : * limitations under the License.
18 : */
19 :
20 : /**
21 : * @file
22 : * Implementation of CHIP Device Controller, a common class
23 : * that implements discovery, pairing and provisioning of CHIP
24 : * devices.
25 : *
26 : */
27 :
28 : // module header, comes first
29 : #include <controller/CHIPDeviceController.h>
30 :
31 : #include <app-common/zap-generated/ids/Attributes.h>
32 : #include <app-common/zap-generated/ids/Clusters.h>
33 :
34 : #include <app/InteractionModelEngine.h>
35 : #include <app/OperationalSessionSetup.h>
36 : #include <app/server/Dnssd.h>
37 : #include <controller/CurrentFabricRemover.h>
38 : #include <controller/InvokeInteraction.h>
39 : #include <controller/WriteInteraction.h>
40 : #include <credentials/CHIPCert.h>
41 : #include <credentials/DeviceAttestationCredsProvider.h>
42 : #include <crypto/CHIPCryptoPAL.h>
43 : #include <lib/address_resolve/AddressResolve.h>
44 : #include <lib/core/CHIPCore.h>
45 : #include <lib/core/CHIPEncoding.h>
46 : #include <lib/core/CHIPSafeCasts.h>
47 : #include <lib/core/ErrorStr.h>
48 : #include <lib/core/NodeId.h>
49 : #include <lib/support/Base64.h>
50 : #include <lib/support/CHIPMem.h>
51 : #include <lib/support/CodeUtils.h>
52 : #include <lib/support/PersistentStorageMacros.h>
53 : #include <lib/support/SafeInt.h>
54 : #include <lib/support/ScopedBuffer.h>
55 : #include <lib/support/ThreadOperationalDataset.h>
56 : #include <lib/support/TimeUtils.h>
57 : #include <lib/support/logging/CHIPLogging.h>
58 : #include <messaging/ExchangeContext.h>
59 : #include <platform/LockTracker.h>
60 : #include <protocols/secure_channel/MessageCounterManager.h>
61 : #include <setup_payload/QRCodeSetupPayloadParser.h>
62 : #include <tracing/macros.h>
63 : #include <tracing/metric_event.h>
64 :
65 : #if CONFIG_NETWORK_LAYER_BLE
66 : #include <ble/Ble.h>
67 : #include <transport/raw/BLE.h>
68 : #endif
69 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
70 : #include <transport/raw/WiFiPAF.h>
71 : #endif
72 :
73 : #if CHIP_DEVICE_CONFIG_ENABLE_NFC_BASED_COMMISSIONING
74 : #include <platform/internal/NFCCommissioningManager.h>
75 : #endif
76 :
77 : #include <algorithm>
78 : #include <array>
79 : #include <errno.h>
80 : #include <inttypes.h>
81 : #include <limits>
82 : #include <memory>
83 : #include <stdint.h>
84 : #include <stdlib.h>
85 : #include <string>
86 : #include <time.h>
87 :
88 : using namespace chip::app;
89 : using namespace chip::app::Clusters;
90 : using namespace chip::Inet;
91 : using namespace chip::System;
92 : using namespace chip::Transport;
93 : using namespace chip::Credentials;
94 : using namespace chip::Crypto;
95 : using namespace chip::Tracing;
96 :
97 : namespace chip {
98 : namespace Controller {
99 :
100 : using namespace chip::Encoding;
101 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
102 : using namespace chip::Protocols::UserDirectedCommissioning;
103 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
104 :
105 : using chip::AddressResolve::Resolver;
106 : using chip::AddressResolve::ResolveResult;
107 :
108 165 : DeviceController::DeviceController()
109 : {
110 15 : mState = State::NotInitialized;
111 15 : }
112 :
113 0 : CHIP_ERROR DeviceController::Init(ControllerInitParams params)
114 : {
115 0 : assertChipStackLockedByCurrentThread();
116 :
117 0 : VerifyOrReturnError(mState == State::NotInitialized, CHIP_ERROR_INCORRECT_STATE);
118 0 : VerifyOrReturnError(params.systemState != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
119 :
120 0 : VerifyOrReturnError(params.systemState->SystemLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
121 0 : VerifyOrReturnError(params.systemState->UDPEndPointManager() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
122 :
123 : #if CONFIG_NETWORK_LAYER_BLE
124 0 : VerifyOrReturnError(params.systemState->BleLayer() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
125 : #endif
126 :
127 0 : VerifyOrReturnError(params.systemState->TransportMgr() != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
128 :
129 0 : ReturnErrorOnFailure(mDNSResolver.Init(params.systemState->UDPEndPointManager()));
130 0 : mDNSResolver.SetDiscoveryDelegate(this);
131 0 : RegisterDeviceDiscoveryDelegate(params.deviceDiscoveryDelegate);
132 :
133 0 : mVendorId = params.controllerVendorId;
134 0 : if (params.operationalKeypair != nullptr || !params.controllerNOC.empty() || !params.controllerRCAC.empty())
135 : {
136 0 : ReturnErrorOnFailure(InitControllerNOCChain(params));
137 : }
138 0 : else if (params.fabricIndex.HasValue())
139 : {
140 0 : VerifyOrReturnError(params.systemState->Fabrics()->FabricCount() > 0, CHIP_ERROR_INVALID_ARGUMENT);
141 0 : if (params.systemState->Fabrics()->FindFabricWithIndex(params.fabricIndex.Value()) != nullptr)
142 : {
143 0 : mFabricIndex = params.fabricIndex.Value();
144 : }
145 : else
146 : {
147 0 : ChipLogError(Controller, "There is no fabric corresponding to the given fabricIndex");
148 0 : return CHIP_ERROR_INVALID_ARGUMENT;
149 : }
150 : }
151 :
152 0 : mSystemState = params.systemState->Retain();
153 0 : mState = State::Initialized;
154 :
155 0 : mRemoveFromFabricTableOnShutdown = params.removeFromFabricTableOnShutdown;
156 0 : mDeleteFromFabricTableOnShutdown = params.deleteFromFabricTableOnShutdown;
157 :
158 0 : if (GetFabricIndex() != kUndefinedFabricIndex)
159 : {
160 0 : ChipLogProgress(Controller,
161 : "Joined the fabric at index %d. Fabric ID is 0x" ChipLogFormatX64
162 : " (Compressed Fabric ID: " ChipLogFormatX64 ")",
163 : GetFabricIndex(), ChipLogValueX64(GetFabricId()), ChipLogValueX64(GetCompressedFabricId()));
164 : }
165 :
166 0 : return CHIP_NO_ERROR;
167 : }
168 :
169 0 : CHIP_ERROR DeviceController::InitControllerNOCChain(const ControllerInitParams & params)
170 : {
171 0 : FabricInfo newFabric;
172 0 : constexpr uint32_t chipCertAllocatedLen = kMaxCHIPCertLength;
173 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> rcacBuf;
174 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> icacBuf;
175 0 : chip::Platform::ScopedMemoryBuffer<uint8_t> nocBuf;
176 0 : Credentials::P256PublicKeySpan rootPublicKeySpan;
177 : FabricId fabricId;
178 : NodeId nodeId;
179 0 : bool hasExternallyOwnedKeypair = false;
180 0 : Crypto::P256Keypair * externalOperationalKeypair = nullptr;
181 0 : VendorId newFabricVendorId = params.controllerVendorId;
182 :
183 : // There are three possibilities here in terms of what happens with our
184 : // operational key:
185 : // 1) We have an externally owned operational keypair.
186 : // 2) We have an operational keypair that the fabric table should clone via
187 : // serialize/deserialize.
188 : // 3) We have no keypair at all, and the fabric table has been initialized
189 : // with a key store.
190 0 : if (params.operationalKeypair != nullptr)
191 : {
192 0 : hasExternallyOwnedKeypair = params.hasExternallyOwnedOperationalKeypair;
193 0 : externalOperationalKeypair = params.operationalKeypair;
194 : }
195 :
196 0 : VerifyOrReturnError(rcacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
197 0 : VerifyOrReturnError(icacBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
198 0 : VerifyOrReturnError(nocBuf.Alloc(chipCertAllocatedLen), CHIP_ERROR_NO_MEMORY);
199 :
200 0 : MutableByteSpan rcacSpan(rcacBuf.Get(), chipCertAllocatedLen);
201 :
202 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerRCAC, rcacSpan));
203 0 : ReturnErrorOnFailure(Credentials::ExtractPublicKeyFromChipCert(rcacSpan, rootPublicKeySpan));
204 0 : Crypto::P256PublicKey rootPublicKey{ rootPublicKeySpan };
205 :
206 0 : MutableByteSpan icacSpan;
207 0 : if (params.controllerICAC.empty())
208 : {
209 0 : ChipLogProgress(Controller, "Intermediate CA is not needed");
210 : }
211 : else
212 : {
213 0 : icacSpan = MutableByteSpan(icacBuf.Get(), chipCertAllocatedLen);
214 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerICAC, icacSpan));
215 : }
216 :
217 0 : MutableByteSpan nocSpan = MutableByteSpan(nocBuf.Get(), chipCertAllocatedLen);
218 :
219 0 : ReturnErrorOnFailure(ConvertX509CertToChipCert(params.controllerNOC, nocSpan));
220 0 : ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(nocSpan, &nodeId, &fabricId));
221 :
222 0 : auto * fabricTable = params.systemState->Fabrics();
223 0 : const FabricInfo * fabricInfo = nullptr;
224 :
225 : //
226 : // When multiple controllers are permitted on the same fabric, we need to find fabrics with
227 : // nodeId as an extra discriminant since we can have multiple FabricInfo objects that all
228 : // collide on the same fabric. Not doing so may result in a match with an existing FabricInfo
229 : // instance that matches the fabric in the provided NOC but is associated with a different NodeId
230 : // that is already in use by another active controller instance. That will effectively cause it
231 : // to change its identity inadvertently, which is not acceptable.
232 : //
233 : // TODO: Figure out how to clean up unreclaimed FabricInfos restored from persistent
234 : // storage that are not in use by active DeviceController instances. Also, figure out
235 : // how to reclaim FabricInfo slots when a DeviceController instance is deleted.
236 : //
237 0 : if (params.permitMultiControllerFabrics)
238 : {
239 0 : fabricInfo = fabricTable->FindIdentity(rootPublicKey, fabricId, nodeId);
240 : }
241 : else
242 : {
243 0 : fabricInfo = fabricTable->FindFabric(rootPublicKey, fabricId);
244 : }
245 :
246 0 : bool fabricFoundInTable = (fabricInfo != nullptr);
247 :
248 0 : FabricIndex fabricIndex = fabricFoundInTable ? fabricInfo->GetFabricIndex() : kUndefinedFabricIndex;
249 :
250 0 : CHIP_ERROR err = CHIP_NO_ERROR;
251 :
252 0 : auto advertiseOperational =
253 0 : params.enableServerInteractions ? FabricTable::AdvertiseIdentity::Yes : FabricTable::AdvertiseIdentity::No;
254 :
255 : //
256 : // We permit colliding fabrics when multiple controllers are present on the same logical fabric
257 : // since each controller is associated with a unique FabricInfo 'identity' object and consequently,
258 : // a unique FabricIndex.
259 : //
260 : // This sets a flag that will be cleared automatically when the fabric is committed/reverted later
261 : // in this function.
262 : //
263 0 : if (params.permitMultiControllerFabrics)
264 : {
265 0 : fabricTable->PermitCollidingFabrics();
266 : }
267 :
268 : // We have 4 cases to handle legacy usage of direct operational key injection
269 0 : if (externalOperationalKeypair)
270 : {
271 : // Cases 1 and 2: Injected operational keys
272 :
273 : // CASE 1: Fabric update with injected key
274 0 : if (fabricFoundInTable)
275 : {
276 0 : err = fabricTable->UpdatePendingFabricWithProvidedOpKey(fabricIndex, nocSpan, icacSpan, externalOperationalKeypair,
277 : hasExternallyOwnedKeypair, advertiseOperational);
278 : }
279 : else
280 : // CASE 2: New fabric with injected key
281 : {
282 0 : err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
283 0 : if (err == CHIP_NO_ERROR)
284 : {
285 0 : err = fabricTable->AddNewPendingFabricWithProvidedOpKey(nocSpan, icacSpan, newFabricVendorId,
286 : externalOperationalKeypair, hasExternallyOwnedKeypair,
287 : &fabricIndex, advertiseOperational);
288 : }
289 : }
290 : }
291 : else
292 : {
293 : // Cases 3 and 4: OperationalKeystore has the keys
294 :
295 : // CASE 3: Fabric update with operational keystore
296 0 : if (fabricFoundInTable)
297 : {
298 0 : VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(fabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
299 :
300 0 : err = fabricTable->UpdatePendingFabricWithOperationalKeystore(fabricIndex, nocSpan, icacSpan, advertiseOperational);
301 : }
302 : else
303 : // CASE 4: New fabric with operational keystore
304 : {
305 0 : err = fabricTable->AddNewPendingTrustedRootCert(rcacSpan);
306 0 : if (err == CHIP_NO_ERROR)
307 : {
308 0 : err = fabricTable->AddNewPendingFabricWithOperationalKeystore(nocSpan, icacSpan, newFabricVendorId, &fabricIndex,
309 : advertiseOperational);
310 : }
311 :
312 0 : if (err == CHIP_NO_ERROR)
313 : {
314 : // Now that we know our planned fabric index, verify that the
315 : // keystore has a key for it.
316 0 : if (!fabricTable->HasOperationalKeyForFabric(fabricIndex))
317 : {
318 0 : err = CHIP_ERROR_KEY_NOT_FOUND;
319 : }
320 : }
321 : }
322 : }
323 :
324 : // Commit after setup, error-out on failure.
325 0 : if (err == CHIP_NO_ERROR)
326 : {
327 : // No need to revert on error: CommitPendingFabricData reverts internally on *any* error.
328 0 : err = fabricTable->CommitPendingFabricData();
329 : }
330 : else
331 : {
332 0 : fabricTable->RevertPendingFabricData();
333 : }
334 :
335 0 : ReturnErrorOnFailure(err);
336 0 : VerifyOrReturnError(fabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
337 :
338 0 : mFabricIndex = fabricIndex;
339 0 : mAdvertiseIdentity = advertiseOperational;
340 0 : return CHIP_NO_ERROR;
341 0 : }
342 :
343 0 : CHIP_ERROR DeviceController::UpdateControllerNOCChain(const ByteSpan & noc, const ByteSpan & icac,
344 : Crypto::P256Keypair * operationalKeypair,
345 : bool operationalKeypairExternalOwned)
346 : {
347 0 : VerifyOrReturnError(mFabricIndex != kUndefinedFabricIndex, CHIP_ERROR_INTERNAL);
348 0 : VerifyOrReturnError(mSystemState != nullptr, CHIP_ERROR_INTERNAL);
349 0 : FabricTable * fabricTable = mSystemState->Fabrics();
350 0 : CHIP_ERROR err = CHIP_NO_ERROR;
351 : FabricId fabricId;
352 : NodeId nodeId;
353 0 : CATValues oldCats;
354 0 : CATValues newCats;
355 0 : ReturnErrorOnFailure(ExtractNodeIdFabricIdFromOpCert(noc, &nodeId, &fabricId));
356 0 : ReturnErrorOnFailure(fabricTable->FetchCATs(mFabricIndex, oldCats));
357 0 : ReturnErrorOnFailure(ExtractCATsFromOpCert(noc, newCats));
358 :
359 0 : bool needCloseSession = true;
360 0 : if (GetFabricInfo()->GetNodeId() == nodeId && oldCats == newCats)
361 : {
362 0 : needCloseSession = false;
363 : }
364 :
365 0 : if (operationalKeypair != nullptr)
366 : {
367 0 : err = fabricTable->UpdatePendingFabricWithProvidedOpKey(mFabricIndex, noc, icac, operationalKeypair,
368 : operationalKeypairExternalOwned, mAdvertiseIdentity);
369 : }
370 : else
371 : {
372 0 : VerifyOrReturnError(fabricTable->HasOperationalKeyForFabric(mFabricIndex), CHIP_ERROR_KEY_NOT_FOUND);
373 0 : err = fabricTable->UpdatePendingFabricWithOperationalKeystore(mFabricIndex, noc, icac, mAdvertiseIdentity);
374 : }
375 :
376 0 : if (err == CHIP_NO_ERROR)
377 : {
378 0 : err = fabricTable->CommitPendingFabricData();
379 : }
380 : else
381 : {
382 0 : fabricTable->RevertPendingFabricData();
383 : }
384 :
385 0 : ReturnErrorOnFailure(err);
386 0 : if (needCloseSession)
387 : {
388 : // If the node id or CATs have changed, our existing CASE sessions are no longer valid,
389 : // because the other side will think anything coming over those sessions comes from our
390 : // old node ID, and the new CATs might not satisfy the ACL requirements of the other side.
391 0 : mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
392 : }
393 0 : ChipLogProgress(Controller, "Controller NOC chain has updated");
394 0 : return CHIP_NO_ERROR;
395 : }
396 :
397 0 : void DeviceController::Shutdown()
398 : {
399 0 : assertChipStackLockedByCurrentThread();
400 :
401 0 : VerifyOrReturn(mState != State::NotInitialized);
402 :
403 : // If our state is initialialized it means mSystemState is valid,
404 : // and we can use it below before we release our reference to it.
405 0 : ChipLogDetail(Controller, "Shutting down the controller");
406 0 : mState = State::NotInitialized;
407 :
408 0 : if (mFabricIndex != kUndefinedFabricIndex)
409 : {
410 : // Shut down any subscription clients for this fabric.
411 0 : app::InteractionModelEngine::GetInstance()->ShutdownSubscriptions(mFabricIndex);
412 :
413 : // Shut down any ongoing CASE session activity we have. We're going to
414 : // assume that all sessions for our fabric belong to us here.
415 0 : mSystemState->CASESessionMgr()->ReleaseSessionsForFabric(mFabricIndex);
416 :
417 : // Shut down any bdx transfers we're acting as the server for.
418 0 : mSystemState->BDXTransferServer()->AbortTransfersForFabric(mFabricIndex);
419 :
420 : // TODO: The CASE session manager does not shut down existing CASE
421 : // sessions. It just shuts down any ongoing CASE session establishment
422 : // we're in the middle of as initiator. Maybe it should shut down
423 : // existing sessions too?
424 0 : mSystemState->SessionMgr()->ExpireAllSessionsForFabric(mFabricIndex);
425 :
426 0 : if (mDeleteFromFabricTableOnShutdown)
427 : {
428 0 : TEMPORARY_RETURN_IGNORED mSystemState->Fabrics()->Delete(mFabricIndex);
429 : }
430 0 : else if (mRemoveFromFabricTableOnShutdown)
431 : {
432 0 : mSystemState->Fabrics()->Forget(mFabricIndex);
433 : }
434 : }
435 :
436 0 : mSystemState->Release();
437 0 : mSystemState = nullptr;
438 :
439 0 : mDNSResolver.Shutdown();
440 0 : mDeviceDiscoveryDelegate = nullptr;
441 : }
442 :
443 0 : CHIP_ERROR DeviceController::GetPeerAddressAndPort(NodeId peerId, Inet::IPAddress & addr, uint16_t & port)
444 : {
445 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
446 0 : Transport::PeerAddress peerAddr;
447 0 : ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(peerId), peerAddr));
448 0 : addr = peerAddr.GetIPAddress();
449 0 : port = peerAddr.GetPort();
450 0 : return CHIP_NO_ERROR;
451 : }
452 :
453 0 : CHIP_ERROR DeviceController::GetPeerAddress(NodeId nodeId, Transport::PeerAddress & addr)
454 : {
455 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
456 0 : ReturnErrorOnFailure(mSystemState->CASESessionMgr()->GetPeerAddress(GetPeerScopedId(nodeId), addr));
457 :
458 0 : return CHIP_NO_ERROR;
459 : }
460 :
461 0 : CHIP_ERROR DeviceController::ComputePASEVerifier(uint32_t iterations, uint32_t setupPincode, const ByteSpan & salt,
462 : Spake2pVerifier & outVerifier)
463 : {
464 0 : ReturnErrorOnFailure(PASESession::GeneratePASEVerifier(outVerifier, iterations, salt, /* useRandomPIN= */ false, setupPincode));
465 :
466 0 : return CHIP_NO_ERROR;
467 : }
468 :
469 0 : ControllerDeviceInitParams DeviceController::GetControllerDeviceInitParams()
470 : {
471 : return ControllerDeviceInitParams{
472 0 : .sessionManager = mSystemState->SessionMgr(),
473 0 : .exchangeMgr = mSystemState->ExchangeMgr(),
474 0 : };
475 : }
476 :
477 7 : DeviceCommissioner::DeviceCommissioner() :
478 7 : mOnDeviceConnectedCallback(OnDeviceConnectedFn, this), mOnDeviceConnectionFailureCallback(OnDeviceConnectionFailureFn, this),
479 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
480 7 : mOnDeviceConnectionRetryCallback(OnDeviceConnectionRetryFn, this),
481 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
482 7 : mDeviceAttestationInformationVerificationCallback(OnDeviceAttestationInformationVerification, this),
483 14 : mDeviceNOCChainCallback(OnDeviceNOCChainGeneration, this), mSetUpCodePairer(this)
484 : {
485 : #if CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
486 : (void) mPeerAdminJFAdminClusterEndpointId;
487 : #endif // CHIP_DEVICE_CONFIG_ENABLE_JOINT_FABRIC
488 7 : }
489 :
490 0 : CHIP_ERROR DeviceCommissioner::Init(CommissionerInitParams params)
491 : {
492 0 : VerifyOrReturnError(params.operationalCredentialsDelegate != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
493 0 : mOperationalCredentialsDelegate = params.operationalCredentialsDelegate;
494 0 : ReturnErrorOnFailure(DeviceController::Init(params));
495 :
496 0 : mPairingDelegate = params.pairingDelegate;
497 :
498 : // Configure device attestation validation
499 0 : mDeviceAttestationVerifier = params.deviceAttestationVerifier;
500 0 : if (mDeviceAttestationVerifier == nullptr)
501 : {
502 0 : mDeviceAttestationVerifier = Credentials::GetDeviceAttestationVerifier();
503 0 : if (mDeviceAttestationVerifier == nullptr)
504 : {
505 0 : ChipLogError(Controller,
506 : "Missing DeviceAttestationVerifier configuration at DeviceCommissioner init and none set with "
507 : "Credentials::SetDeviceAttestationVerifier()!");
508 0 : return CHIP_ERROR_INVALID_ARGUMENT;
509 : }
510 :
511 : // We fell back on a default from singleton accessor.
512 0 : ChipLogProgress(Controller,
513 : "*** Missing DeviceAttestationVerifier configuration at DeviceCommissioner init: using global default, "
514 : "consider passing one in CommissionerInitParams.");
515 : }
516 :
517 0 : if (params.defaultCommissioner != nullptr)
518 : {
519 0 : mDefaultCommissioner = params.defaultCommissioner;
520 : }
521 : // Otherwise leave it pointing to mAutoCommissioner.
522 :
523 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
524 : mUdcTransportMgr = chip::Platform::New<UdcTransportMgr>();
525 : ReturnErrorOnFailure(mUdcTransportMgr->Init(Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
526 : .SetAddressType(Inet::IPAddressType::kIPv6)
527 : .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
528 : #if INET_CONFIG_ENABLE_IPV4
529 : ,
530 : Transport::UdpListenParameters(mSystemState->UDPEndPointManager())
531 : .SetAddressType(Inet::IPAddressType::kIPv4)
532 : .SetListenPort(static_cast<uint16_t>(mUdcListenPort))
533 : #endif // INET_CONFIG_ENABLE_IPV4
534 : ));
535 :
536 : mUdcServer = chip::Platform::New<UserDirectedCommissioningServer>();
537 : mUdcTransportMgr->SetSessionManager(mUdcServer);
538 : mUdcServer->SetTransportManager(mUdcTransportMgr);
539 :
540 : mUdcServer->SetInstanceNameResolver(this);
541 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
542 :
543 0 : mSetUpCodePairer.SetSystemLayer(mSystemState->SystemLayer());
544 : #if CONFIG_NETWORK_LAYER_BLE
545 0 : mSetUpCodePairer.SetBleLayer(mSystemState->BleLayer());
546 : #endif // CONFIG_NETWORK_LAYER_BLE
547 :
548 0 : return CHIP_NO_ERROR;
549 : }
550 :
551 0 : void DeviceCommissioner::Shutdown()
552 : {
553 0 : VerifyOrReturn(mState != State::NotInitialized);
554 :
555 0 : ChipLogDetail(Controller, "Shutting down the commissioner");
556 :
557 0 : mSetUpCodePairer.StopPairing();
558 :
559 : // Check to see if pairing in progress before shutting down
560 0 : CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
561 0 : if (device != nullptr && device->IsSessionSetupInProgress())
562 : {
563 0 : ChipLogDetail(Controller, "Setup in progress, stopping setup before shutting down");
564 0 : OnSessionEstablishmentError(CHIP_ERROR_CONNECTION_ABORTED);
565 : }
566 :
567 0 : CancelCommissioningInteractions();
568 :
569 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
570 : if (mUdcTransportMgr != nullptr)
571 : {
572 : chip::Platform::Delete(mUdcTransportMgr);
573 : mUdcTransportMgr = nullptr;
574 : }
575 : if (mUdcServer != nullptr)
576 : {
577 : mUdcServer->SetInstanceNameResolver(nullptr);
578 : chip::Platform::Delete(mUdcServer);
579 : mUdcServer = nullptr;
580 : }
581 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
582 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
583 0 : WiFiPAF::WiFiPAFLayer::GetWiFiPAFLayer().Shutdown([](uint32_t id, WiFiPAF::WiFiPafRole role) {
584 0 : TEMPORARY_RETURN_IGNORED DeviceLayer::ConnectivityMgr().WiFiPAFShutdown(id, role);
585 0 : });
586 : #endif
587 :
588 : // Release everything from the commissionee device pool here.
589 : // Make sure to use ReleaseCommissioneeDevice so we don't keep dangling
590 : // pointers to the device objects.
591 0 : mCommissioneeDevicePool.ForEachActiveObject([this](auto * commissioneeDevice) {
592 0 : ReleaseCommissioneeDevice(commissioneeDevice);
593 0 : return Loop::Continue;
594 : });
595 :
596 0 : DeviceController::Shutdown();
597 : }
598 :
599 0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(NodeId id)
600 : {
601 : MATTER_TRACE_SCOPE("FindCommissioneeDevice", "DeviceCommissioner");
602 0 : CommissioneeDeviceProxy * foundDevice = nullptr;
603 0 : mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
604 0 : if (deviceProxy->GetDeviceId() == id || deviceProxy->GetTemporaryCommissioningId() == id)
605 : {
606 0 : foundDevice = deviceProxy;
607 0 : return Loop::Break;
608 : }
609 0 : return Loop::Continue;
610 : });
611 :
612 0 : return foundDevice;
613 : }
614 :
615 0 : CommissioneeDeviceProxy * DeviceCommissioner::FindCommissioneeDevice(const Transport::PeerAddress & peerAddress)
616 : {
617 0 : CommissioneeDeviceProxy * foundDevice = nullptr;
618 0 : mCommissioneeDevicePool.ForEachActiveObject([&](auto * deviceProxy) {
619 0 : if (deviceProxy->GetPeerAddress() == peerAddress)
620 : {
621 0 : foundDevice = deviceProxy;
622 0 : return Loop::Break;
623 : }
624 0 : return Loop::Continue;
625 : });
626 :
627 0 : return foundDevice;
628 : }
629 :
630 0 : void DeviceCommissioner::ReleaseCommissioneeDevice(CommissioneeDeviceProxy * device)
631 : {
632 : #if CONFIG_NETWORK_LAYER_BLE
633 0 : if (mSystemState->BleLayer() != nullptr && device->GetDeviceTransportType() == Transport::Type::kBle)
634 : {
635 : // We only support one BLE connection, so if this is BLE, close it
636 0 : ChipLogProgress(Discovery, "Closing all BLE connections");
637 0 : mSystemState->BleLayer()->CloseAllBleConnections();
638 : }
639 : #endif
640 :
641 : #if CHIP_DEVICE_CONFIG_ENABLE_NFC_BASED_COMMISSIONING
642 : Nfc::NFCReaderTransport * readerTransport = DeviceLayer::Internal::NFCCommissioningMgr().GetNFCReaderTransport();
643 : if (readerTransport)
644 : {
645 : ChipLogProgress(Controller, "Stopping discovery of all NFC tags");
646 : TEMPORARY_RETURN_IGNORED readerTransport->StopDiscoveringTags();
647 : }
648 : #endif
649 :
650 : // Make sure that there will be no dangling pointer
651 0 : if (mDeviceInPASEEstablishment == device)
652 : {
653 0 : mDeviceInPASEEstablishment = nullptr;
654 : }
655 0 : if (mDeviceBeingCommissioned == device)
656 : {
657 0 : mDeviceBeingCommissioned = nullptr;
658 : }
659 :
660 : // Release the commissionee device after we have nulled out our pointers,
661 : // because that can call back in to us with error notifications as the
662 : // session is released.
663 0 : mCommissioneeDevicePool.ReleaseObject(device);
664 0 : }
665 :
666 0 : CHIP_ERROR DeviceCommissioner::GetDeviceBeingCommissioned(NodeId deviceId, CommissioneeDeviceProxy ** out_device)
667 : {
668 0 : VerifyOrReturnError(out_device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
669 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(deviceId);
670 :
671 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
672 :
673 0 : *out_device = device;
674 :
675 0 : return CHIP_NO_ERROR;
676 : }
677 :
678 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, const CommissioningParameters & params,
679 : DiscoveryType discoveryType, Optional<Dnssd::CommonResolutionData> resolutionData)
680 : {
681 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
682 :
683 0 : ReturnErrorOnFailure(mDefaultCommissioner->SetCommissioningParameters(params));
684 :
685 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
686 0 : resolutionData);
687 : }
688 :
689 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
690 : Optional<Dnssd::CommonResolutionData> resolutionData)
691 : {
692 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
693 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kCommission, discoveryType,
694 0 : resolutionData);
695 : }
696 :
697 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & params)
698 : {
699 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
700 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, params));
701 0 : auto errorCode = Commission(remoteDeviceId);
702 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
703 0 : return errorCode;
704 : }
705 :
706 0 : CHIP_ERROR DeviceCommissioner::PairDevice(NodeId remoteDeviceId, RendezvousParameters & rendezvousParams,
707 : CommissioningParameters & commissioningParams)
708 : {
709 : MATTER_TRACE_SCOPE("PairDevice", "DeviceCommissioner");
710 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, EstablishPASEConnection(remoteDeviceId, rendezvousParams));
711 0 : auto errorCode = Commission(remoteDeviceId, commissioningParams);
712 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
713 0 : return errorCode;
714 : }
715 :
716 0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, const char * setUpCode, DiscoveryType discoveryType,
717 : Optional<Dnssd::CommonResolutionData> resolutionData)
718 : {
719 : MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
720 0 : return mSetUpCodePairer.PairDevice(remoteDeviceId, setUpCode, SetupCodePairerBehaviour::kPaseOnly, discoveryType,
721 0 : resolutionData);
722 : }
723 :
724 0 : CHIP_ERROR DeviceCommissioner::EstablishPASEConnection(NodeId remoteDeviceId, RendezvousParameters & params)
725 : {
726 : MATTER_TRACE_SCOPE("EstablishPASEConnection", "DeviceCommissioner");
727 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerPASESession);
728 :
729 0 : CHIP_ERROR err = CHIP_NO_ERROR;
730 0 : CommissioneeDeviceProxy * device = nullptr;
731 0 : CommissioneeDeviceProxy * current = nullptr;
732 0 : Transport::PeerAddress peerAddress = Transport::PeerAddress::UDP(Inet::IPAddress::Any);
733 :
734 0 : Messaging::ExchangeContext * exchangeCtxt = nullptr;
735 0 : Optional<SessionHandle> session;
736 :
737 0 : VerifyOrExit(mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
738 0 : VerifyOrExit(mDeviceInPASEEstablishment == nullptr, err = CHIP_ERROR_INCORRECT_STATE);
739 :
740 : // TODO(#13940): We need to specify the peer address for BLE transport in bindings.
741 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle ||
742 0 : params.GetPeerAddress().GetTransportType() == Transport::Type::kUndefined)
743 : {
744 : #if CONFIG_NETWORK_LAYER_BLE
745 : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
746 : ConnectBleTransportToSelf();
747 : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
748 0 : if (!params.HasBleLayer())
749 : {
750 0 : params.SetPeerAddress(Transport::PeerAddress::BLE());
751 : }
752 0 : peerAddress = Transport::PeerAddress::BLE();
753 : #endif // CONFIG_NETWORK_LAYER_BLE
754 : }
755 0 : else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kTcp ||
756 0 : params.GetPeerAddress().GetTransportType() == Transport::Type::kUdp)
757 : {
758 0 : peerAddress = Transport::PeerAddress::UDP(params.GetPeerAddress().GetIPAddress(), params.GetPeerAddress().GetPort(),
759 0 : params.GetPeerAddress().GetInterface());
760 : }
761 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
762 0 : else if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
763 : {
764 0 : peerAddress = Transport::PeerAddress::WiFiPAF(remoteDeviceId);
765 : }
766 : #endif // CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
767 :
768 0 : current = FindCommissioneeDevice(peerAddress);
769 0 : if (current != nullptr)
770 : {
771 0 : if (current->GetDeviceId() == remoteDeviceId)
772 : {
773 : // We might be able to just reuse its connection if it has one or is
774 : // working on one.
775 0 : if (current->IsSecureConnected())
776 : {
777 0 : if (mPairingDelegate)
778 : {
779 : // We already have an open secure session to this device, call the callback immediately and early return.
780 : // We don't know what the right RendezvousParameters are here.
781 0 : mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR, std::nullopt, std::nullopt);
782 : }
783 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
784 0 : return CHIP_NO_ERROR;
785 : }
786 0 : if (current->IsSessionSetupInProgress())
787 : {
788 : // We're not connected yet, but we're in the process of connecting. Pairing delegate will get a callback when
789 : // connection completes
790 0 : return CHIP_NO_ERROR;
791 : }
792 : }
793 :
794 : // Either the consumer wants to assign a different device id to this
795 : // peer address now (so we can't reuse the commissionee device we have
796 : // already) or something has gone strange. Delete the old device, try
797 : // again.
798 0 : ChipLogError(Controller, "Found unconnected device, removing");
799 0 : ReleaseCommissioneeDevice(current);
800 : }
801 :
802 0 : device = mCommissioneeDevicePool.CreateObject();
803 0 : VerifyOrExit(device != nullptr, err = CHIP_ERROR_NO_MEMORY);
804 :
805 0 : mDeviceInPASEEstablishment = device;
806 0 : device->Init(GetControllerDeviceInitParams(), remoteDeviceId, peerAddress);
807 0 : device->UpdateDeviceData(params.GetPeerAddress(), params.GetMRPConfig());
808 :
809 : #if CONFIG_NETWORK_LAYER_BLE
810 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kBle)
811 : {
812 0 : if (params.HasConnectionObject())
813 : {
814 0 : SuccessOrExit(err = mSystemState->BleLayer()->NewBleConnectionByObject(params.GetConnectionObject()));
815 : }
816 0 : else if (params.HasDiscoveredObject())
817 : {
818 : // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
819 : // for later.
820 0 : mRendezvousParametersForDeviceDiscoveredOverBle = params;
821 0 : ExitNow(err = mSystemState->BleLayer()->NewBleConnectionByObject(
822 : params.GetDiscoveredObject(), this, OnDiscoveredDeviceOverBleSuccess, OnDiscoveredDeviceOverBleError));
823 : }
824 0 : else if (params.HasDiscriminator())
825 : {
826 : // The RendezvousParameters argument needs to be recovered if the search succeed, so save them
827 : // for later.
828 0 : mRendezvousParametersForDeviceDiscoveredOverBle = params;
829 :
830 0 : ExitNow(err = mSystemState->BleLayer()->NewBleConnectionByDiscriminator(params.GetSetupDiscriminator().value(), this,
831 : OnDiscoveredDeviceOverBleSuccess,
832 : OnDiscoveredDeviceOverBleError));
833 : }
834 : else
835 : {
836 0 : ExitNow(err = CHIP_ERROR_INVALID_ARGUMENT);
837 : }
838 : }
839 : #endif
840 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
841 0 : if (params.GetPeerAddress().GetTransportType() == Transport::Type::kWiFiPAF)
842 : {
843 0 : if (DeviceLayer::ConnectivityMgr().GetWiFiPAF()->GetWiFiPAFState() != WiFiPAF::State::kConnected)
844 : {
845 0 : ChipLogProgress(Controller, "WiFi-PAF: Subscribing to the NAN-USD devices, nodeId: %" PRIu64,
846 : params.GetPeerAddress().GetRemoteId());
847 0 : mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = params;
848 0 : auto nodeId = params.GetPeerAddress().GetRemoteId();
849 0 : const SetupDiscriminator connDiscriminator(params.GetSetupDiscriminator().value());
850 0 : VerifyOrReturnValue(!connDiscriminator.IsShortDiscriminator(), CHIP_ERROR_INVALID_ARGUMENT,
851 : ChipLogError(Controller, "Error, Long discriminator is required"));
852 0 : uint16_t discriminator = connDiscriminator.GetLongValue();
853 0 : WiFiPAF::WiFiPAFSession sessionInfo = { .role = WiFiPAF::WiFiPafRole::kWiFiPafRole_Subscriber,
854 : .nodeId = nodeId,
855 0 : .discriminator = discriminator };
856 0 : ReturnErrorOnFailure(
857 : DeviceLayer::ConnectivityMgr().GetWiFiPAF()->AddPafSession(WiFiPAF::PafInfoAccess::kAccNodeInfo, sessionInfo));
858 0 : ExitNow(err = DeviceLayer::ConnectivityMgr().WiFiPAFSubscribe(discriminator, reinterpret_cast<void *>(this),
859 : OnWiFiPAFSubscribeComplete, OnWiFiPAFSubscribeError));
860 : }
861 : }
862 : #endif
863 0 : session = mSystemState->SessionMgr()->CreateUnauthenticatedSession(params.GetPeerAddress(), params.GetMRPConfig());
864 0 : VerifyOrExit(session.HasValue(), err = CHIP_ERROR_NO_MEMORY);
865 :
866 : // Allocate the exchange immediately before calling PASESession::Pair.
867 : //
868 : // PASESession::Pair takes ownership of the exchange and will free it on
869 : // error, but can only do this if it is actually called. Allocating the
870 : // exchange context right before calling Pair ensures that if allocation
871 : // succeeds, PASESession has taken ownership.
872 0 : exchangeCtxt = mSystemState->ExchangeMgr()->NewContext(session.Value(), &device->GetPairing());
873 0 : VerifyOrExit(exchangeCtxt != nullptr, err = CHIP_ERROR_INTERNAL);
874 :
875 0 : err = device->GetPairing().Pair(*mSystemState->SessionMgr(), params.GetSetupPINCode(), GetLocalMRPConfig(), exchangeCtxt, this);
876 0 : SuccessOrExit(err);
877 :
878 0 : mRendezvousParametersForPASEEstablishment = params;
879 :
880 0 : exit:
881 0 : if (err != CHIP_NO_ERROR)
882 : {
883 0 : if (device != nullptr)
884 : {
885 0 : ReleaseCommissioneeDevice(device);
886 : }
887 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
888 : }
889 :
890 0 : return err;
891 0 : }
892 :
893 : #if CONFIG_NETWORK_LAYER_BLE
894 0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleSuccess(void * appState, BLE_CONNECTION_OBJECT connObj)
895 : {
896 0 : auto self = static_cast<DeviceCommissioner *>(appState);
897 0 : auto device = self->mDeviceInPASEEstablishment;
898 :
899 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
900 : {
901 0 : auto remoteId = device->GetDeviceId();
902 :
903 0 : auto params = self->mRendezvousParametersForDeviceDiscoveredOverBle;
904 0 : params.SetConnectionObject(connObj);
905 0 : self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
906 :
907 0 : self->ReleaseCommissioneeDevice(device);
908 0 : LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
909 : }
910 0 : }
911 :
912 0 : void DeviceCommissioner::OnDiscoveredDeviceOverBleError(void * appState, CHIP_ERROR err)
913 : {
914 0 : auto self = static_cast<DeviceCommissioner *>(appState);
915 0 : auto device = self->mDeviceInPASEEstablishment;
916 :
917 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kBle)
918 : {
919 0 : self->ReleaseCommissioneeDevice(device);
920 0 : self->mRendezvousParametersForDeviceDiscoveredOverBle = RendezvousParameters();
921 :
922 : // Callback is required when BLE discovery fails, otherwise the caller will always be in a suspended state
923 : // A better way to handle it should define a new error code
924 0 : if (self->mPairingDelegate != nullptr)
925 : {
926 0 : self->mPairingDelegate->OnPairingComplete(err, std::nullopt, std::nullopt);
927 : }
928 : }
929 0 : }
930 : #endif // CONFIG_NETWORK_LAYER_BLE
931 :
932 : #if CHIP_DEVICE_CONFIG_ENABLE_WIFIPAF
933 0 : void DeviceCommissioner::OnWiFiPAFSubscribeComplete(void * appState)
934 : {
935 0 : auto self = reinterpret_cast<DeviceCommissioner *>(appState);
936 0 : auto device = self->mDeviceInPASEEstablishment;
937 :
938 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
939 : {
940 0 : ChipLogProgress(Controller, "WiFi-PAF: Subscription Completed, dev_id = %" PRIu64, device->GetDeviceId());
941 0 : auto remoteId = device->GetDeviceId();
942 0 : auto params = self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF;
943 :
944 0 : self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
945 0 : self->ReleaseCommissioneeDevice(device);
946 0 : LogErrorOnFailure(self->EstablishPASEConnection(remoteId, params));
947 : }
948 0 : }
949 :
950 0 : void DeviceCommissioner::OnWiFiPAFSubscribeError(void * appState, CHIP_ERROR err)
951 : {
952 0 : auto self = (DeviceCommissioner *) appState;
953 0 : auto device = self->mDeviceInPASEEstablishment;
954 :
955 0 : if (nullptr != device && device->GetDeviceTransportType() == Transport::Type::kWiFiPAF)
956 : {
957 0 : ChipLogError(Controller, "WiFi-PAF: Subscription Error, id = %" PRIu64 ", err = %" CHIP_ERROR_FORMAT, device->GetDeviceId(),
958 : err.Format());
959 0 : self->ReleaseCommissioneeDevice(device);
960 0 : self->mRendezvousParametersForDeviceDiscoveredOverWiFiPAF = RendezvousParameters();
961 0 : if (self->mPairingDelegate != nullptr)
962 : {
963 0 : self->mPairingDelegate->OnPairingComplete(err, std::nullopt, std::nullopt);
964 : }
965 : }
966 0 : }
967 : #endif
968 :
969 0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId, CommissioningParameters & params)
970 : {
971 0 : ReturnErrorOnFailureWithMetric(kMetricDeviceCommissionerCommission, mDefaultCommissioner->SetCommissioningParameters(params));
972 0 : auto errorCode = Commission(remoteDeviceId);
973 0 : VerifyOrDoWithMetric(kMetricDeviceCommissionerCommission, CHIP_NO_ERROR == errorCode, errorCode);
974 0 : return errorCode;
975 : }
976 :
977 0 : CHIP_ERROR DeviceCommissioner::Commission(NodeId remoteDeviceId)
978 : {
979 : MATTER_TRACE_SCOPE("Commission", "DeviceCommissioner");
980 :
981 : #if CHIP_CONFIG_ENABLE_ADDRESS_RESOLVE_FALLBACK
982 : // Reset fallback from any previous commissioning session
983 : mFallbackOperationalResolveResult.ClearValue();
984 : #endif // CHIP_CONFIG_ENABLE_ADDRESS_RESOLVE_FALLBACK
985 :
986 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
987 0 : if (device == nullptr || (!device->IsSecureConnected() && !device->IsSessionSetupInProgress()))
988 : {
989 0 : ChipLogError(Controller, "Invalid device for commissioning " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
990 0 : return CHIP_ERROR_INCORRECT_STATE;
991 : }
992 0 : if (!device->IsSecureConnected() && device != mDeviceInPASEEstablishment)
993 : {
994 : // We should not end up in this state because we won't attempt to establish more than one connection at a time.
995 0 : ChipLogError(Controller, "Device is not connected and not being paired " ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
996 0 : return CHIP_ERROR_INCORRECT_STATE;
997 : }
998 :
999 0 : if (mCommissioningStage != CommissioningStage::kSecurePairing)
1000 : {
1001 0 : ChipLogError(Controller, "Commissioning already in progress (stage '%s') - not restarting",
1002 : StageToString(mCommissioningStage));
1003 0 : return CHIP_ERROR_INCORRECT_STATE;
1004 : }
1005 :
1006 0 : ChipLogProgress(Controller, "Commission called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
1007 :
1008 0 : mDefaultCommissioner->SetOperationalCredentialsDelegate(mOperationalCredentialsDelegate);
1009 0 : if (device->IsSecureConnected())
1010 : {
1011 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
1012 0 : ReturnErrorOnFailure(mDefaultCommissioner->StartCommissioning(this, device));
1013 : }
1014 : else
1015 : {
1016 0 : mRunCommissioningAfterConnection = true;
1017 : }
1018 0 : return CHIP_NO_ERROR;
1019 : }
1020 :
1021 : CHIP_ERROR
1022 0 : DeviceCommissioner::ContinueCommissioningAfterDeviceAttestation(DeviceProxy * device,
1023 : Credentials::AttestationVerificationResult attestationResult)
1024 : {
1025 : MATTER_TRACE_SCOPE("continueCommissioningDevice", "DeviceCommissioner");
1026 :
1027 0 : if (device == nullptr || device != mDeviceBeingCommissioned)
1028 : {
1029 0 : ChipLogError(Controller, "Invalid device for commissioning %p", device);
1030 0 : return CHIP_ERROR_INCORRECT_STATE;
1031 : }
1032 0 : CommissioneeDeviceProxy * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
1033 0 : if (commissioneeDevice == nullptr)
1034 : {
1035 0 : ChipLogError(Controller, "Couldn't find commissionee device");
1036 0 : return CHIP_ERROR_INCORRECT_STATE;
1037 : }
1038 0 : if (!commissioneeDevice->IsSecureConnected() || commissioneeDevice != mDeviceBeingCommissioned)
1039 : {
1040 0 : ChipLogError(Controller, "Invalid device for commissioning after attestation failure: 0x" ChipLogFormatX64,
1041 : ChipLogValueX64(commissioneeDevice->GetDeviceId()));
1042 0 : return CHIP_ERROR_INCORRECT_STATE;
1043 : }
1044 :
1045 0 : if (mCommissioningStage != CommissioningStage::kAttestationRevocationCheck)
1046 : {
1047 0 : ChipLogError(Controller, "Commissioning is not attestation verification phase");
1048 0 : return CHIP_ERROR_INCORRECT_STATE;
1049 : }
1050 :
1051 0 : ChipLogProgress(Controller, "Continuing commissioning after attestation failure for device ID 0x" ChipLogFormatX64,
1052 : ChipLogValueX64(commissioneeDevice->GetDeviceId()));
1053 :
1054 0 : if (attestationResult != AttestationVerificationResult::kSuccess)
1055 : {
1056 0 : ChipLogError(Controller, "Client selected error: %u for failed 'Attestation Information' for device",
1057 : to_underlying(attestationResult));
1058 :
1059 0 : CommissioningDelegate::CommissioningReport report;
1060 0 : report.Set<AttestationErrorInfo>(attestationResult);
1061 0 : CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1062 0 : }
1063 : else
1064 : {
1065 0 : ChipLogProgress(Controller, "Overriding attestation failure per client and continuing commissioning");
1066 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1067 : }
1068 0 : return CHIP_NO_ERROR;
1069 : }
1070 :
1071 : #if CHIP_DEVICE_CONFIG_ENABLE_NFC_BASED_COMMISSIONING
1072 : CHIP_ERROR DeviceCommissioner::ContinueCommissioningAfterConnectNetworkRequest(NodeId remoteDeviceId)
1073 : {
1074 : MATTER_TRACE_SCOPE("continueCommissioningAfterConnectNetworkRequest", "DeviceCommissioner");
1075 :
1076 : // Move to kEvictPreviousCaseSessions stage since the next stage will be to find the device
1077 : // on the operational network
1078 : mCommissioningStage = CommissioningStage::kEvictPreviousCaseSessions;
1079 :
1080 : // Setup device being commissioned
1081 : CommissioneeDeviceProxy * device = nullptr;
1082 : if (!mDeviceBeingCommissioned)
1083 : {
1084 : device = mCommissioneeDevicePool.CreateObject();
1085 : if (!device)
1086 : return CHIP_ERROR_NO_MEMORY;
1087 :
1088 : Transport::PeerAddress peerAddress = Transport::PeerAddress::UDP(Inet::IPAddress::Any);
1089 : device->Init(GetControllerDeviceInitParams(), remoteDeviceId, peerAddress);
1090 : mDeviceBeingCommissioned = device;
1091 : }
1092 :
1093 : mDefaultCommissioner->SetOperationalCredentialsDelegate(mOperationalCredentialsDelegate);
1094 :
1095 : ChipLogProgress(Controller, "Continuing commissioning after connect to network complete for device ID 0x" ChipLogFormatX64,
1096 : ChipLogValueX64(remoteDeviceId));
1097 :
1098 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissioningOperationalSetup);
1099 : CHIP_ERROR err = mDefaultCommissioner->StartCommissioning(this, device);
1100 : if (err != CHIP_NO_ERROR)
1101 : {
1102 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, err);
1103 : }
1104 : return err;
1105 : }
1106 : #endif
1107 :
1108 0 : CHIP_ERROR DeviceCommissioner::StopPairing(NodeId remoteDeviceId)
1109 : {
1110 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1111 0 : VerifyOrReturnError(remoteDeviceId != kUndefinedNodeId, CHIP_ERROR_INVALID_ARGUMENT);
1112 :
1113 0 : ChipLogProgress(Controller, "StopPairing called for node ID 0x" ChipLogFormatX64, ChipLogValueX64(remoteDeviceId));
1114 :
1115 : // If we're still in the process of discovering the device, just stop the SetUpCodePairer
1116 0 : if (mSetUpCodePairer.StopPairing(remoteDeviceId))
1117 : {
1118 0 : mRunCommissioningAfterConnection = false;
1119 0 : OnSessionEstablishmentError(CHIP_ERROR_CANCELLED);
1120 0 : return CHIP_NO_ERROR;
1121 : }
1122 :
1123 : // Otherwise we might be pairing and / or commissioning it.
1124 0 : CommissioneeDeviceProxy * device = FindCommissioneeDevice(remoteDeviceId);
1125 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR);
1126 :
1127 0 : if (mDeviceBeingCommissioned == device)
1128 : {
1129 0 : CancelCommissioningInteractions();
1130 0 : CommissioningStageComplete(CHIP_ERROR_CANCELLED);
1131 : }
1132 : else
1133 : {
1134 0 : ReleaseCommissioneeDevice(device);
1135 : }
1136 0 : return CHIP_NO_ERROR;
1137 : }
1138 :
1139 0 : void DeviceCommissioner::CancelCommissioningInteractions()
1140 : {
1141 0 : if (mReadClient)
1142 : {
1143 0 : ChipLogDetail(Controller, "Cancelling read request for step '%s'", StageToString(mCommissioningStage));
1144 0 : mReadClient.reset(); // destructor cancels
1145 0 : mAttributeCache.reset();
1146 : }
1147 0 : if (mInvokeCancelFn)
1148 : {
1149 0 : ChipLogDetail(Controller, "Cancelling command invocation for step '%s'", StageToString(mCommissioningStage));
1150 0 : mInvokeCancelFn();
1151 0 : mInvokeCancelFn = nullptr;
1152 : }
1153 0 : if (mWriteCancelFn)
1154 : {
1155 0 : ChipLogDetail(Controller, "Cancelling write request for step '%s'", StageToString(mCommissioningStage));
1156 0 : mWriteCancelFn();
1157 0 : mWriteCancelFn = nullptr;
1158 : }
1159 0 : if (mOnDeviceConnectedCallback.IsRegistered())
1160 : {
1161 0 : ChipLogDetail(Controller, "Cancelling CASE setup for step '%s'", StageToString(mCommissioningStage));
1162 0 : CancelCASECallbacks();
1163 : }
1164 0 : }
1165 :
1166 0 : void DeviceCommissioner::CancelCASECallbacks()
1167 : {
1168 0 : mOnDeviceConnectedCallback.Cancel();
1169 0 : mOnDeviceConnectionFailureCallback.Cancel();
1170 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
1171 0 : mOnDeviceConnectionRetryCallback.Cancel();
1172 : #endif
1173 0 : }
1174 :
1175 0 : CHIP_ERROR DeviceCommissioner::UnpairDevice(NodeId remoteDeviceId)
1176 : {
1177 : MATTER_TRACE_SCOPE("UnpairDevice", "DeviceCommissioner");
1178 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1179 :
1180 0 : return AutoCurrentFabricRemover::RemoveCurrentFabric(this, remoteDeviceId);
1181 : }
1182 :
1183 0 : void DeviceCommissioner::RendezvousCleanup(CHIP_ERROR status)
1184 : {
1185 0 : if (mDeviceInPASEEstablishment != nullptr)
1186 : {
1187 : // Release the commissionee device. For BLE, this is stored,
1188 : // for IP commissioning, we have taken a reference to the
1189 : // operational node to send the completion command.
1190 0 : ReleaseCommissioneeDevice(mDeviceInPASEEstablishment);
1191 :
1192 0 : if (mPairingDelegate != nullptr)
1193 : {
1194 0 : mPairingDelegate->OnPairingComplete(status, std::nullopt, std::nullopt);
1195 : }
1196 : }
1197 0 : }
1198 :
1199 0 : void DeviceCommissioner::OnSessionEstablishmentError(CHIP_ERROR err)
1200 : {
1201 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, err);
1202 :
1203 0 : mRendezvousParametersForPASEEstablishment.reset();
1204 :
1205 0 : if (mPairingDelegate != nullptr)
1206 : {
1207 0 : mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingFailed);
1208 : }
1209 :
1210 0 : RendezvousCleanup(err);
1211 0 : }
1212 :
1213 0 : void DeviceCommissioner::OnSessionEstablished(const SessionHandle & session)
1214 : {
1215 : // PASE session established.
1216 0 : CommissioneeDeviceProxy * device = mDeviceInPASEEstablishment;
1217 :
1218 : // We are in the callback for this pairing. Reset so we can pair another device.
1219 0 : mDeviceInPASEEstablishment = nullptr;
1220 :
1221 : // Make sure to clear out mRendezvousParametersForPASEEstablishment no
1222 : // matter what.
1223 0 : std::optional<RendezvousParameters> paseParameters;
1224 0 : paseParameters.swap(mRendezvousParametersForPASEEstablishment);
1225 :
1226 0 : VerifyOrReturn(device != nullptr, OnSessionEstablishmentError(CHIP_ERROR_INVALID_DEVICE_DESCRIPTOR));
1227 :
1228 0 : CHIP_ERROR err = device->SetConnected(session);
1229 0 : if (err != CHIP_NO_ERROR)
1230 : {
1231 0 : ChipLogFailure(err, Controller, "Failed in setting up secure channel");
1232 0 : OnSessionEstablishmentError(err);
1233 0 : return;
1234 : }
1235 :
1236 0 : ChipLogDetail(Controller, "Remote device completed SPAKE2+ handshake");
1237 :
1238 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerPASESession, CHIP_NO_ERROR);
1239 0 : if (mPairingDelegate != nullptr)
1240 : {
1241 : // If we started with a string payload, then at this point mPairingDelegate is
1242 : // mSetUpCodePairer, and it will provide the right SetupPayload argument to
1243 : // OnPairingComplete as needed. If mPairingDelegate is not
1244 : // mSetUpCodePairer, then we don't have a SetupPayload to provide.
1245 0 : mPairingDelegate->OnPairingComplete(CHIP_NO_ERROR, paseParameters, std::nullopt);
1246 : }
1247 :
1248 0 : if (mRunCommissioningAfterConnection)
1249 : {
1250 0 : mRunCommissioningAfterConnection = false;
1251 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissionerCommission);
1252 0 : ReturnAndLogOnFailure(mDefaultCommissioner->StartCommissioning(this, device), Controller, "Failed to start commissioning");
1253 : }
1254 : }
1255 :
1256 0 : CHIP_ERROR DeviceCommissioner::SendCertificateChainRequestCommand(DeviceProxy * device,
1257 : Credentials::CertificateType certificateType,
1258 : Optional<System::Clock::Timeout> timeout)
1259 : {
1260 : MATTER_TRACE_SCOPE("SendCertificateChainRequestCommand", "DeviceCommissioner");
1261 0 : ChipLogDetail(Controller, "Sending Certificate Chain request to %p device", device);
1262 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1263 :
1264 0 : OperationalCredentials::Commands::CertificateChainRequest::Type request;
1265 0 : request.certificateType = static_cast<OperationalCredentials::CertificateChainTypeEnum>(certificateType);
1266 0 : return SendCommissioningCommand(device, request, OnCertificateChainResponse, OnCertificateChainFailureResponse, kRootEndpointId,
1267 0 : timeout);
1268 : }
1269 :
1270 0 : void DeviceCommissioner::OnCertificateChainFailureResponse(void * context, CHIP_ERROR error)
1271 : {
1272 : MATTER_TRACE_SCOPE("OnCertificateChainFailureResponse", "DeviceCommissioner");
1273 0 : ChipLogProgress(Controller, "Device failed to receive the Certificate Chain request Response: %" CHIP_ERROR_FORMAT,
1274 : error.Format());
1275 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1276 0 : commissioner->CommissioningStageComplete(error);
1277 0 : }
1278 :
1279 0 : void DeviceCommissioner::OnCertificateChainResponse(
1280 : void * context, const chip::app::Clusters::OperationalCredentials::Commands::CertificateChainResponse::DecodableType & response)
1281 : {
1282 : MATTER_TRACE_SCOPE("OnCertificateChainResponse", "DeviceCommissioner");
1283 0 : ChipLogProgress(Controller, "Received certificate chain from the device");
1284 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1285 :
1286 0 : CommissioningDelegate::CommissioningReport report;
1287 0 : report.Set<RequestedCertificate>(RequestedCertificate(response.certificate));
1288 :
1289 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1290 0 : }
1291 :
1292 0 : CHIP_ERROR DeviceCommissioner::SendAttestationRequestCommand(DeviceProxy * device, const ByteSpan & attestationNonce,
1293 : Optional<System::Clock::Timeout> timeout)
1294 : {
1295 : MATTER_TRACE_SCOPE("SendAttestationRequestCommand", "DeviceCommissioner");
1296 0 : ChipLogDetail(Controller, "Sending Attestation request to %p device", device);
1297 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1298 :
1299 0 : OperationalCredentials::Commands::AttestationRequest::Type request;
1300 0 : request.attestationNonce = attestationNonce;
1301 :
1302 0 : ReturnErrorOnFailure(
1303 : SendCommissioningCommand(device, request, OnAttestationResponse, OnAttestationFailureResponse, kRootEndpointId, timeout));
1304 0 : ChipLogDetail(Controller, "Sent Attestation request, waiting for the Attestation Information");
1305 0 : return CHIP_NO_ERROR;
1306 : }
1307 :
1308 0 : void DeviceCommissioner::OnAttestationFailureResponse(void * context, CHIP_ERROR error)
1309 : {
1310 : MATTER_TRACE_SCOPE("OnAttestationFailureResponse", "DeviceCommissioner");
1311 0 : ChipLogProgress(Controller, "Device failed to receive the Attestation Information Response: %" CHIP_ERROR_FORMAT,
1312 : error.Format());
1313 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1314 0 : commissioner->CommissioningStageComplete(error);
1315 0 : }
1316 :
1317 0 : void DeviceCommissioner::OnAttestationResponse(void * context,
1318 : const OperationalCredentials::Commands::AttestationResponse::DecodableType & data)
1319 : {
1320 : MATTER_TRACE_SCOPE("OnAttestationResponse", "DeviceCommissioner");
1321 0 : ChipLogProgress(Controller, "Received Attestation Information from the device");
1322 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1323 :
1324 0 : CommissioningDelegate::CommissioningReport report;
1325 0 : report.Set<AttestationResponse>(AttestationResponse(data.attestationElements, data.attestationSignature));
1326 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1327 0 : }
1328 :
1329 0 : void DeviceCommissioner::OnDeviceAttestationInformationVerification(
1330 : void * context, const Credentials::DeviceAttestationVerifier::AttestationInfo & info, AttestationVerificationResult result)
1331 : {
1332 : MATTER_TRACE_SCOPE("OnDeviceAttestationInformationVerification", "DeviceCommissioner");
1333 0 : DeviceCommissioner * commissioner = reinterpret_cast<DeviceCommissioner *>(context);
1334 :
1335 0 : if (commissioner->mCommissioningStage == CommissioningStage::kAttestationVerification)
1336 : {
1337 : // Check for revoked DAC Chain before calling delegate. Enter next stage.
1338 :
1339 0 : CommissioningDelegate::CommissioningReport report;
1340 0 : report.Set<AttestationErrorInfo>(result);
1341 :
1342 0 : return commissioner->CommissioningStageComplete(
1343 0 : result == AttestationVerificationResult::kSuccess ? CHIP_NO_ERROR : CHIP_ERROR_FAILED_DEVICE_ATTESTATION, report);
1344 0 : }
1345 :
1346 0 : if (!commissioner->mDeviceBeingCommissioned)
1347 : {
1348 0 : ChipLogError(Controller, "Device attestation verification result received when we're not commissioning a device");
1349 0 : return;
1350 : }
1351 :
1352 0 : auto & params = commissioner->mDefaultCommissioner->GetCommissioningParameters();
1353 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1354 :
1355 0 : if (params.GetCompletionStatus().attestationResult.HasValue())
1356 : {
1357 0 : auto previousResult = params.GetCompletionStatus().attestationResult.Value();
1358 0 : if (previousResult != AttestationVerificationResult::kSuccess)
1359 : {
1360 0 : result = previousResult;
1361 : }
1362 : }
1363 :
1364 0 : if (result != AttestationVerificationResult::kSuccess)
1365 : {
1366 0 : CommissioningDelegate::CommissioningReport report;
1367 0 : report.Set<AttestationErrorInfo>(result);
1368 0 : if (result == AttestationVerificationResult::kNotImplemented)
1369 : {
1370 0 : ChipLogError(Controller,
1371 : "Failed in verifying 'Attestation Information' command received from the device due to default "
1372 : "DeviceAttestationVerifier Class not being overridden by a real implementation.");
1373 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_NOT_IMPLEMENTED, report);
1374 0 : return;
1375 : }
1376 :
1377 0 : ChipLogError(Controller, "Failed in verifying 'Attestation Information' command received from the device: err %hu (%s)",
1378 : static_cast<uint16_t>(result), GetAttestationResultDescription(result));
1379 : // Go look at AttestationVerificationResult enum in src/credentials/attestation_verifier/DeviceAttestationVerifier.h to
1380 : // understand the errors.
1381 :
1382 : // If a device attestation status delegate is installed, delegate handling of failure to the client and let them
1383 : // decide on whether to proceed further or not.
1384 0 : if (deviceAttestationDelegate)
1385 : {
1386 0 : commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
1387 : }
1388 : else
1389 : {
1390 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION, report);
1391 : }
1392 0 : }
1393 : else
1394 : {
1395 0 : if (deviceAttestationDelegate && deviceAttestationDelegate->ShouldWaitAfterDeviceAttestation())
1396 : {
1397 0 : commissioner->ExtendArmFailSafeForDeviceAttestation(info, result);
1398 : }
1399 : else
1400 : {
1401 0 : ChipLogProgress(Controller, "Successfully validated 'Attestation Information' command received from the device.");
1402 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1403 : }
1404 : }
1405 : }
1406 :
1407 0 : void DeviceCommissioner::OnArmFailSafeExtendedForDeviceAttestation(
1408 : void * context, const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType &)
1409 : {
1410 0 : ChipLogProgress(Controller, "Successfully extended fail-safe timer to handle DA failure");
1411 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1412 :
1413 : // We have completed our command invoke, but we're not going to finish the
1414 : // commissioning step until our client examines the attestation
1415 : // information. Clear out mInvokeCancelFn (which points at the
1416 : // CommandSender we just finished using) now, so it's not dangling.
1417 0 : commissioner->mInvokeCancelFn = nullptr;
1418 :
1419 0 : commissioner->HandleDeviceAttestationCompleted();
1420 0 : }
1421 :
1422 0 : void DeviceCommissioner::HandleDeviceAttestationCompleted()
1423 : {
1424 0 : if (!mDeviceBeingCommissioned)
1425 : {
1426 0 : return;
1427 : }
1428 :
1429 0 : auto & params = mDefaultCommissioner->GetCommissioningParameters();
1430 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1431 0 : if (deviceAttestationDelegate)
1432 : {
1433 0 : ChipLogProgress(Controller, "Device attestation completed, delegating continuation to client");
1434 0 : deviceAttestationDelegate->OnDeviceAttestationCompleted(this, mDeviceBeingCommissioned, *mAttestationDeviceInfo,
1435 : mAttestationResult);
1436 : }
1437 : else
1438 : {
1439 0 : ChipLogError(Controller, "Need to wait for device attestation delegate, but no delegate available. Failing commissioning");
1440 0 : CommissioningDelegate::CommissioningReport report;
1441 0 : report.Set<AttestationErrorInfo>(mAttestationResult);
1442 0 : CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1443 0 : }
1444 : }
1445 :
1446 0 : void DeviceCommissioner::OnFailedToExtendedArmFailSafeDeviceAttestation(void * context, CHIP_ERROR error)
1447 : {
1448 0 : ChipLogProgress(Controller, "Failed to extend fail-safe timer to handle attestation failure: %" CHIP_ERROR_FORMAT,
1449 : error.Format());
1450 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1451 :
1452 0 : CommissioningDelegate::CommissioningReport report;
1453 0 : report.Set<AttestationErrorInfo>(commissioner->mAttestationResult);
1454 0 : commissioner->CommissioningStageComplete(CHIP_ERROR_INTERNAL, report);
1455 0 : }
1456 :
1457 0 : void DeviceCommissioner::OnICDManagementRegisterClientResponse(
1458 : void * context, const app::Clusters::IcdManagement::Commands::RegisterClientResponse::DecodableType & data)
1459 : {
1460 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1461 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1462 0 : VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
1463 0 : VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDRegistration, err = CHIP_ERROR_INCORRECT_STATE);
1464 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1465 :
1466 0 : if (commissioner->mPairingDelegate != nullptr)
1467 : {
1468 0 : commissioner->mPairingDelegate->OnICDRegistrationComplete(
1469 0 : ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()), data.ICDCounter);
1470 : }
1471 :
1472 0 : exit:
1473 0 : CommissioningDelegate::CommissioningReport report;
1474 0 : commissioner->CommissioningStageComplete(err, report);
1475 0 : }
1476 :
1477 0 : void DeviceCommissioner::OnICDManagementStayActiveResponse(
1478 : void * context, const app::Clusters::IcdManagement::Commands::StayActiveResponse::DecodableType & data)
1479 : {
1480 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1481 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1482 0 : VerifyOrExit(commissioner != nullptr, err = CHIP_ERROR_INVALID_ARGUMENT);
1483 0 : VerifyOrExit(commissioner->mCommissioningStage == CommissioningStage::kICDSendStayActive, err = CHIP_ERROR_INCORRECT_STATE);
1484 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1485 :
1486 0 : if (commissioner->mPairingDelegate != nullptr)
1487 : {
1488 0 : commissioner->mPairingDelegate->OnICDStayActiveComplete(
1489 :
1490 0 : ScopedNodeId(commissioner->mDeviceBeingCommissioned->GetDeviceId(), commissioner->GetFabricIndex()),
1491 0 : data.promisedActiveDuration);
1492 : }
1493 :
1494 0 : exit:
1495 0 : CommissioningDelegate::CommissioningReport report;
1496 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1497 0 : }
1498 :
1499 0 : bool DeviceCommissioner::ExtendArmFailSafeInternal(DeviceProxy * proxy, CommissioningStage step, uint16_t armFailSafeTimeout,
1500 : Optional<System::Clock::Timeout> commandTimeout,
1501 : OnExtendFailsafeSuccess onSuccess, OnExtendFailsafeFailure onFailure,
1502 : bool fireAndForget)
1503 : {
1504 : using namespace System;
1505 : using namespace System::Clock;
1506 0 : auto now = SystemClock().GetMonotonicTimestamp();
1507 0 : auto newFailSafeTimeout = now + Seconds16(armFailSafeTimeout);
1508 0 : if (newFailSafeTimeout < proxy->GetFailSafeExpirationTimestamp())
1509 : {
1510 0 : ChipLogProgress(
1511 : Controller, "Skipping arming failsafe: new time (%u seconds from now) before old time (%u seconds from now)",
1512 : armFailSafeTimeout, std::chrono::duration_cast<Seconds16>(proxy->GetFailSafeExpirationTimestamp() - now).count());
1513 0 : return false;
1514 : }
1515 :
1516 0 : uint64_t breadcrumb = static_cast<uint64_t>(step);
1517 0 : GeneralCommissioning::Commands::ArmFailSafe::Type request;
1518 0 : request.expiryLengthSeconds = armFailSafeTimeout;
1519 0 : request.breadcrumb = breadcrumb;
1520 0 : ChipLogProgress(Controller, "Arming failsafe (%u seconds)", request.expiryLengthSeconds);
1521 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, onSuccess, onFailure, kRootEndpointId, commandTimeout, fireAndForget);
1522 0 : if (err != CHIP_NO_ERROR)
1523 : {
1524 0 : onFailure((!fireAndForget) ? this : nullptr, err);
1525 0 : return true; // we have called onFailure already
1526 : }
1527 :
1528 : // Note: The stored timestamp may become invalid if we fail asynchronously
1529 0 : proxy->SetFailSafeExpirationTimestamp(newFailSafeTimeout);
1530 0 : return true;
1531 : }
1532 :
1533 0 : void DeviceCommissioner::ExtendArmFailSafeForDeviceAttestation(const Credentials::DeviceAttestationVerifier::AttestationInfo & info,
1534 : Credentials::AttestationVerificationResult result)
1535 : {
1536 0 : mAttestationResult = result;
1537 :
1538 0 : auto & params = mDefaultCommissioner->GetCommissioningParameters();
1539 0 : Credentials::DeviceAttestationDelegate * deviceAttestationDelegate = params.GetDeviceAttestationDelegate();
1540 :
1541 0 : mAttestationDeviceInfo = Platform::MakeUnique<Credentials::DeviceAttestationVerifier::AttestationDeviceInfo>(info);
1542 :
1543 0 : auto expiryLengthSeconds = deviceAttestationDelegate->FailSafeExpiryTimeoutSecs();
1544 0 : bool waitForFailsafeExtension = expiryLengthSeconds.HasValue();
1545 0 : if (waitForFailsafeExtension)
1546 : {
1547 0 : ChipLogProgress(Controller, "Changing fail-safe timer to %u seconds to handle DA failure", expiryLengthSeconds.Value());
1548 : // Per spec, anything we do with the fail-safe armed must not time out
1549 : // in less than kMinimumCommissioningStepTimeout.
1550 : waitForFailsafeExtension =
1551 0 : ExtendArmFailSafeInternal(mDeviceBeingCommissioned, mCommissioningStage, expiryLengthSeconds.Value(),
1552 0 : MakeOptional(kMinimumCommissioningStepTimeout), OnArmFailSafeExtendedForDeviceAttestation,
1553 : OnFailedToExtendedArmFailSafeDeviceAttestation, /* fireAndForget = */ false);
1554 : }
1555 : else
1556 : {
1557 0 : ChipLogProgress(Controller, "Proceeding without changing fail-safe timer value as delegate has not set it");
1558 : }
1559 :
1560 0 : if (!waitForFailsafeExtension)
1561 : {
1562 0 : HandleDeviceAttestationCompleted();
1563 : }
1564 0 : }
1565 :
1566 0 : CHIP_ERROR DeviceCommissioner::ValidateAttestationInfo(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
1567 : {
1568 : MATTER_TRACE_SCOPE("ValidateAttestationInfo", "DeviceCommissioner");
1569 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1570 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1571 :
1572 0 : mDeviceAttestationVerifier->VerifyAttestationInformation(info, &mDeviceAttestationInformationVerificationCallback);
1573 :
1574 : // TODO: Validate Firmware Information
1575 :
1576 0 : return CHIP_NO_ERROR;
1577 : }
1578 :
1579 : CHIP_ERROR
1580 0 : DeviceCommissioner::CheckForRevokedDACChain(const Credentials::DeviceAttestationVerifier::AttestationInfo & info)
1581 : {
1582 : MATTER_TRACE_SCOPE("CheckForRevokedDACChain", "DeviceCommissioner");
1583 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1584 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1585 :
1586 0 : mDeviceAttestationVerifier->CheckForRevokedDACChain(info, &mDeviceAttestationInformationVerificationCallback);
1587 :
1588 0 : return CHIP_NO_ERROR;
1589 : }
1590 :
1591 0 : CHIP_ERROR DeviceCommissioner::ValidateCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
1592 : const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & csrNonce)
1593 : {
1594 : MATTER_TRACE_SCOPE("ValidateCSR", "DeviceCommissioner");
1595 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1596 0 : VerifyOrReturnError(mDeviceAttestationVerifier != nullptr, CHIP_ERROR_INCORRECT_STATE);
1597 :
1598 0 : P256PublicKey dacPubkey;
1599 0 : ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
1600 :
1601 : // Retrieve attestation challenge
1602 : ByteSpan attestationChallenge =
1603 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
1604 :
1605 : // The operational CA should also verify this on its end during NOC generation, if end-to-end attestation is desired.
1606 0 : return mDeviceAttestationVerifier->VerifyNodeOperationalCSRInformation(NOCSRElements, attestationChallenge,
1607 0 : AttestationSignature, dacPubkey, csrNonce);
1608 0 : }
1609 :
1610 0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificateSigningRequestCommand(DeviceProxy * device, const ByteSpan & csrNonce,
1611 : Optional<System::Clock::Timeout> timeout)
1612 : {
1613 : MATTER_TRACE_SCOPE("SendOperationalCertificateSigningRequestCommand", "DeviceCommissioner");
1614 0 : ChipLogDetail(Controller, "Sending CSR request to %p device", device);
1615 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1616 :
1617 0 : OperationalCredentials::Commands::CSRRequest::Type request;
1618 0 : request.CSRNonce = csrNonce;
1619 :
1620 0 : ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateSigningRequest, OnCSRFailureResponse,
1621 : kRootEndpointId, timeout));
1622 0 : ChipLogDetail(Controller, "Sent CSR request, waiting for the CSR");
1623 0 : return CHIP_NO_ERROR;
1624 : }
1625 :
1626 0 : void DeviceCommissioner::OnCSRFailureResponse(void * context, CHIP_ERROR error)
1627 : {
1628 : MATTER_TRACE_SCOPE("OnCSRFailureResponse", "DeviceCommissioner");
1629 0 : ChipLogProgress(Controller, "Device failed to receive the CSR request Response: %" CHIP_ERROR_FORMAT, error.Format());
1630 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1631 0 : commissioner->CommissioningStageComplete(error);
1632 0 : }
1633 :
1634 0 : void DeviceCommissioner::OnOperationalCertificateSigningRequest(
1635 : void * context, const OperationalCredentials::Commands::CSRResponse::DecodableType & data)
1636 : {
1637 : MATTER_TRACE_SCOPE("OnOperationalCertificateSigningRequest", "DeviceCommissioner");
1638 0 : ChipLogProgress(Controller, "Received certificate signing request from the device");
1639 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1640 :
1641 0 : CommissioningDelegate::CommissioningReport report;
1642 0 : report.Set<CSRResponse>(CSRResponse(data.NOCSRElements, data.attestationSignature));
1643 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
1644 0 : }
1645 :
1646 0 : void DeviceCommissioner::OnDeviceNOCChainGeneration(void * context, CHIP_ERROR status, const ByteSpan & noc, const ByteSpan & icac,
1647 : const ByteSpan & rcac, Optional<IdentityProtectionKeySpan> ipk,
1648 : Optional<NodeId> adminSubject)
1649 : {
1650 : MATTER_TRACE_SCOPE("OnDeviceNOCChainGeneration", "DeviceCommissioner");
1651 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1652 :
1653 : // The placeholder IPK is not satisfactory, but is there to fill the NocChain struct on error. It will still fail.
1654 0 : const uint8_t placeHolderIpk[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1655 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1656 0 : if (status == CHIP_NO_ERROR && !ipk.HasValue())
1657 : {
1658 0 : ChipLogError(Controller, "Did not have an IPK from the OperationalCredentialsIssuer! Cannot commission.");
1659 0 : status = CHIP_ERROR_INVALID_ARGUMENT;
1660 : }
1661 :
1662 0 : ChipLogProgress(Controller, "Received callback from the CA for NOC Chain generation. Status: %" CHIP_ERROR_FORMAT,
1663 : status.Format());
1664 0 : if (status == CHIP_NO_ERROR && commissioner->mState != State::Initialized)
1665 : {
1666 0 : status = CHIP_ERROR_INCORRECT_STATE;
1667 : }
1668 0 : if (status != CHIP_NO_ERROR)
1669 : {
1670 0 : ChipLogError(Controller, "Failed in generating device's operational credentials. Error: %" CHIP_ERROR_FORMAT,
1671 : status.Format());
1672 : }
1673 :
1674 : // TODO - Verify that the generated root cert matches with commissioner's root cert
1675 0 : CommissioningDelegate::CommissioningReport report;
1676 0 : report.Set<NocChain>(NocChain(noc, icac, rcac, ipk.HasValue() ? ipk.Value() : IdentityProtectionKeySpan(placeHolderIpk),
1677 0 : adminSubject.HasValue() ? adminSubject.Value() : commissioner->GetNodeId()));
1678 0 : commissioner->CommissioningStageComplete(status, report);
1679 0 : }
1680 :
1681 0 : CHIP_ERROR DeviceCommissioner::IssueNOCChain(const ByteSpan & NOCSRElements, NodeId nodeId,
1682 : chip::Callback::Callback<OnNOCChainGeneration> * callback)
1683 : {
1684 : MATTER_TRACE_SCOPE("IssueNOCChain", "DeviceCommissioner");
1685 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1686 :
1687 0 : ChipLogProgress(Controller, "Getting certificate chain for the device on fabric idx %u", static_cast<unsigned>(mFabricIndex));
1688 :
1689 0 : mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(nodeId);
1690 :
1691 0 : if (mFabricIndex != kUndefinedFabricIndex)
1692 : {
1693 0 : mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
1694 : }
1695 :
1696 : // Note: we don't have attestationSignature, attestationChallenge, DAC, PAI so we are just providing an empty ByteSpan
1697 : // for those arguments.
1698 0 : return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, ByteSpan(), ByteSpan(), ByteSpan(), ByteSpan(),
1699 0 : ByteSpan(), callback);
1700 : }
1701 :
1702 0 : CHIP_ERROR DeviceCommissioner::ProcessCSR(DeviceProxy * proxy, const ByteSpan & NOCSRElements,
1703 : const ByteSpan & AttestationSignature, const ByteSpan & dac, const ByteSpan & pai,
1704 : const ByteSpan & csrNonce)
1705 : {
1706 : MATTER_TRACE_SCOPE("ProcessOpCSR", "DeviceCommissioner");
1707 0 : VerifyOrReturnError(mState == State::Initialized, CHIP_ERROR_INCORRECT_STATE);
1708 :
1709 0 : ChipLogProgress(Controller, "Getting certificate chain for the device from the issuer");
1710 :
1711 0 : P256PublicKey dacPubkey;
1712 0 : ReturnErrorOnFailure(ExtractPubkeyFromX509Cert(dac, dacPubkey));
1713 :
1714 : // Retrieve attestation challenge
1715 : ByteSpan attestationChallenge =
1716 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge();
1717 :
1718 0 : mOperationalCredentialsDelegate->SetNodeIdForNextNOCRequest(proxy->GetDeviceId());
1719 :
1720 0 : if (mFabricIndex != kUndefinedFabricIndex)
1721 : {
1722 0 : mOperationalCredentialsDelegate->SetFabricIdForNextNOCRequest(GetFabricId());
1723 : }
1724 :
1725 0 : return mOperationalCredentialsDelegate->GenerateNOCChain(NOCSRElements, csrNonce, AttestationSignature, attestationChallenge,
1726 0 : dac, pai, &mDeviceNOCChainCallback);
1727 0 : }
1728 :
1729 0 : CHIP_ERROR DeviceCommissioner::SendOperationalCertificate(DeviceProxy * device, const ByteSpan & nocCertBuf,
1730 : const Optional<ByteSpan> & icaCertBuf,
1731 : const IdentityProtectionKeySpan ipk, const NodeId adminSubject,
1732 : Optional<System::Clock::Timeout> timeout)
1733 : {
1734 : MATTER_TRACE_SCOPE("SendOperationalCertificate", "DeviceCommissioner");
1735 :
1736 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1737 :
1738 0 : OperationalCredentials::Commands::AddNOC::Type request;
1739 0 : request.NOCValue = nocCertBuf;
1740 0 : request.ICACValue = icaCertBuf;
1741 0 : request.IPKValue = ipk;
1742 0 : request.caseAdminSubject = adminSubject;
1743 0 : request.adminVendorId = mVendorId;
1744 :
1745 0 : ReturnErrorOnFailure(SendCommissioningCommand(device, request, OnOperationalCertificateAddResponse, OnAddNOCFailureResponse,
1746 : kRootEndpointId, timeout));
1747 :
1748 0 : ChipLogProgress(Controller, "Sent operational certificate to the device");
1749 :
1750 0 : return CHIP_NO_ERROR;
1751 : }
1752 :
1753 0 : CHIP_ERROR DeviceCommissioner::ConvertFromOperationalCertStatus(OperationalCredentials::NodeOperationalCertStatusEnum err)
1754 : {
1755 : using OperationalCredentials::NodeOperationalCertStatusEnum;
1756 0 : switch (err)
1757 : {
1758 0 : case NodeOperationalCertStatusEnum::kOk:
1759 0 : return CHIP_NO_ERROR;
1760 0 : case NodeOperationalCertStatusEnum::kInvalidPublicKey:
1761 0 : return CHIP_ERROR_INVALID_PUBLIC_KEY;
1762 0 : case NodeOperationalCertStatusEnum::kInvalidNodeOpId:
1763 0 : return CHIP_ERROR_WRONG_NODE_ID;
1764 0 : case NodeOperationalCertStatusEnum::kInvalidNOC:
1765 0 : return CHIP_ERROR_UNSUPPORTED_CERT_FORMAT;
1766 0 : case NodeOperationalCertStatusEnum::kMissingCsr:
1767 0 : return CHIP_ERROR_INCORRECT_STATE;
1768 0 : case NodeOperationalCertStatusEnum::kTableFull:
1769 0 : return CHIP_ERROR_NO_MEMORY;
1770 0 : case NodeOperationalCertStatusEnum::kInvalidAdminSubject:
1771 0 : return CHIP_ERROR_INVALID_ADMIN_SUBJECT;
1772 0 : case NodeOperationalCertStatusEnum::kFabricConflict:
1773 0 : return CHIP_ERROR_FABRIC_EXISTS;
1774 0 : case NodeOperationalCertStatusEnum::kLabelConflict:
1775 0 : return CHIP_ERROR_INVALID_ARGUMENT;
1776 0 : case NodeOperationalCertStatusEnum::kInvalidFabricIndex:
1777 0 : return CHIP_ERROR_INVALID_FABRIC_INDEX;
1778 0 : case NodeOperationalCertStatusEnum::kUnknownEnumValue:
1779 : // Is this a reasonable value?
1780 0 : return CHIP_ERROR_CERT_LOAD_FAILED;
1781 : }
1782 :
1783 0 : return CHIP_ERROR_CERT_LOAD_FAILED;
1784 : }
1785 :
1786 0 : void DeviceCommissioner::OnAddNOCFailureResponse(void * context, CHIP_ERROR error)
1787 : {
1788 : MATTER_TRACE_SCOPE("OnAddNOCFailureResponse", "DeviceCommissioner");
1789 0 : ChipLogProgress(Controller, "Device failed to receive the operational certificate Response: %" CHIP_ERROR_FORMAT,
1790 : error.Format());
1791 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1792 0 : commissioner->CommissioningStageComplete(error);
1793 0 : }
1794 :
1795 0 : void DeviceCommissioner::OnOperationalCertificateAddResponse(
1796 : void * context, const OperationalCredentials::Commands::NOCResponse::DecodableType & data)
1797 : {
1798 : MATTER_TRACE_SCOPE("OnOperationalCertificateAddResponse", "DeviceCommissioner");
1799 0 : ChipLogProgress(Controller, "Device returned status %d on receiving the NOC", to_underlying(data.statusCode));
1800 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1801 :
1802 0 : CHIP_ERROR err = CHIP_NO_ERROR;
1803 :
1804 0 : VerifyOrExit(commissioner->mState == State::Initialized, err = CHIP_ERROR_INCORRECT_STATE);
1805 :
1806 0 : VerifyOrExit(commissioner->mDeviceBeingCommissioned != nullptr, err = CHIP_ERROR_INCORRECT_STATE);
1807 :
1808 0 : err = ConvertFromOperationalCertStatus(data.statusCode);
1809 0 : SuccessOrExit(err);
1810 :
1811 0 : err = commissioner->OnOperationalCredentialsProvisioningCompletion(commissioner->mDeviceBeingCommissioned);
1812 :
1813 0 : exit:
1814 0 : if (err != CHIP_NO_ERROR)
1815 : {
1816 0 : ChipLogProgress(Controller, "Add NOC failed with error: %" CHIP_ERROR_FORMAT, err.Format());
1817 0 : commissioner->CommissioningStageComplete(err);
1818 : }
1819 0 : }
1820 :
1821 0 : CHIP_ERROR DeviceCommissioner::SendTrustedRootCertificate(DeviceProxy * device, const ByteSpan & rcac,
1822 : Optional<System::Clock::Timeout> timeout)
1823 : {
1824 : MATTER_TRACE_SCOPE("SendTrustedRootCertificate", "DeviceCommissioner");
1825 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1826 :
1827 0 : ChipLogProgress(Controller, "Sending root certificate to the device");
1828 :
1829 0 : OperationalCredentials::Commands::AddTrustedRootCertificate::Type request;
1830 0 : request.rootCACertificate = rcac;
1831 0 : ReturnErrorOnFailure(
1832 : SendCommissioningCommand(device, request, OnRootCertSuccessResponse, OnRootCertFailureResponse, kRootEndpointId, timeout));
1833 :
1834 0 : ChipLogProgress(Controller, "Sent root certificate to the device");
1835 :
1836 0 : return CHIP_NO_ERROR;
1837 : }
1838 :
1839 0 : void DeviceCommissioner::OnRootCertSuccessResponse(void * context, const chip::app::DataModel::NullObjectType &)
1840 : {
1841 : MATTER_TRACE_SCOPE("OnRootCertSuccessResponse", "DeviceCommissioner");
1842 0 : ChipLogProgress(Controller, "Device confirmed that it has received the root certificate");
1843 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1844 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1845 0 : }
1846 :
1847 0 : void DeviceCommissioner::OnRootCertFailureResponse(void * context, CHIP_ERROR error)
1848 : {
1849 : MATTER_TRACE_SCOPE("OnRootCertFailureResponse", "DeviceCommissioner");
1850 0 : ChipLogProgress(Controller, "Device failed to receive the root certificate Response: %" CHIP_ERROR_FORMAT, error.Format());
1851 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1852 0 : commissioner->CommissioningStageComplete(error);
1853 0 : }
1854 :
1855 0 : CHIP_ERROR DeviceCommissioner::OnOperationalCredentialsProvisioningCompletion(DeviceProxy * device)
1856 : {
1857 : MATTER_TRACE_SCOPE("OnOperationalCredentialsProvisioningCompletion", "DeviceCommissioner");
1858 0 : ChipLogProgress(Controller, "Operational credentials provisioned on device %p", device);
1859 0 : VerifyOrReturnError(device != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
1860 :
1861 0 : if (mPairingDelegate != nullptr)
1862 : {
1863 0 : mPairingDelegate->OnStatusUpdate(DevicePairingDelegate::SecurePairingSuccess);
1864 : }
1865 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1866 :
1867 0 : return CHIP_NO_ERROR;
1868 : }
1869 :
1870 : #if CONFIG_NETWORK_LAYER_BLE
1871 : #if CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
1872 : void DeviceCommissioner::ConnectBleTransportToSelf()
1873 : {
1874 : Transport::BLEBase & transport = std::get<Transport::BLE<1>>(mSystemState->TransportMgr()->GetTransport().GetTransports());
1875 : if (!transport.IsBleLayerTransportSetToSelf())
1876 : {
1877 : transport.SetBleLayerTransportToSelf();
1878 : }
1879 : }
1880 : #endif // CHIP_DEVICE_CONFIG_ENABLE_BOTH_COMMISSIONER_AND_COMMISSIONEE
1881 :
1882 0 : void DeviceCommissioner::CloseBleConnection()
1883 : {
1884 : // It is fine since we can only commission one device at the same time.
1885 : // We should be able to distinguish different BLE connections if we want
1886 : // to commission multiple devices at the same time over BLE.
1887 0 : mSystemState->BleLayer()->CloseAllBleConnections();
1888 0 : }
1889 : #endif
1890 :
1891 0 : CHIP_ERROR DeviceCommissioner::DiscoverCommissionableNodes(Dnssd::DiscoveryFilter filter)
1892 : {
1893 0 : ReturnErrorOnFailure(SetUpNodeDiscovery());
1894 0 : return mDNSResolver.DiscoverCommissionableNodes(filter);
1895 : }
1896 :
1897 0 : CHIP_ERROR DeviceCommissioner::StopCommissionableDiscovery()
1898 : {
1899 0 : return mDNSResolver.StopDiscovery();
1900 : }
1901 :
1902 0 : const Dnssd::CommissionNodeData * DeviceCommissioner::GetDiscoveredDevice(int idx)
1903 : {
1904 0 : return GetDiscoveredNode(idx);
1905 : }
1906 :
1907 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY // make this commissioner discoverable
1908 :
1909 : CHIP_ERROR DeviceCommissioner::SetUdcListenPort(uint16_t listenPort)
1910 : {
1911 : if (mState == State::Initialized)
1912 : {
1913 : return CHIP_ERROR_INCORRECT_STATE;
1914 : }
1915 :
1916 : mUdcListenPort = listenPort;
1917 : return CHIP_NO_ERROR;
1918 : }
1919 :
1920 : void DeviceCommissioner::FindCommissionableNode(char * instanceName)
1921 : {
1922 : Dnssd::DiscoveryFilter filter(Dnssd::DiscoveryFilterType::kInstanceName, instanceName);
1923 : TEMPORARY_RETURN_IGNORED DiscoverCommissionableNodes(filter);
1924 : }
1925 :
1926 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1927 :
1928 0 : void DeviceCommissioner::OnNodeDiscovered(const chip::Dnssd::DiscoveredNodeData & nodeData)
1929 : {
1930 : #if CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1931 : if (mUdcServer != nullptr)
1932 : {
1933 : mUdcServer->OnCommissionableNodeFound(nodeData);
1934 : }
1935 : #endif // CHIP_DEVICE_CONFIG_ENABLE_COMMISSIONER_DISCOVERY
1936 0 : if (nodeData.Get<Dnssd::CommissionNodeData>().threadMeshcop)
1937 : {
1938 0 : mAutoCommissioner.SetNetworkSetupNeeded(true);
1939 : }
1940 0 : AbstractDnssdDiscoveryController::OnNodeDiscovered(nodeData);
1941 0 : mSetUpCodePairer.NotifyCommissionableDeviceDiscovered(nodeData);
1942 0 : }
1943 :
1944 0 : void DeviceCommissioner::OnBasicSuccess(void * context, const chip::app::DataModel::NullObjectType &)
1945 : {
1946 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1947 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
1948 0 : }
1949 :
1950 0 : void DeviceCommissioner::OnBasicFailure(void * context, CHIP_ERROR error)
1951 : {
1952 0 : ChipLogProgress(Controller, "Received failure response: %" CHIP_ERROR_FORMAT, error.Format());
1953 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
1954 0 : commissioner->CommissioningStageComplete(error);
1955 0 : }
1956 :
1957 0 : static GeneralCommissioning::Commands::ArmFailSafe::Type DisarmFailsafeRequest()
1958 : {
1959 0 : GeneralCommissioning::Commands::ArmFailSafe::Type request;
1960 0 : request.expiryLengthSeconds = 0; // Expire immediately.
1961 0 : request.breadcrumb = 0;
1962 0 : return request;
1963 : }
1964 :
1965 0 : static void MarkForEviction(const Optional<SessionHandle> & session)
1966 : {
1967 0 : if (session.HasValue())
1968 : {
1969 0 : session.Value()->AsSecureSession()->MarkForEviction();
1970 : }
1971 0 : }
1972 :
1973 0 : void DeviceCommissioner::CleanupCommissioning(DeviceProxy * proxy, NodeId nodeId, const CompletionStatus & completionStatus)
1974 : {
1975 : // At this point, proxy == mDeviceBeingCommissioned, nodeId == mDeviceBeingCommissioned->GetDeviceId()
1976 :
1977 0 : mCommissioningCompletionStatus = completionStatus;
1978 :
1979 0 : if (completionStatus.err == CHIP_NO_ERROR)
1980 : {
1981 : // CommissioningStageComplete uses mDeviceBeingCommissioned, which can
1982 : // be commissionee if we are cleaning up before we've gone operational. Normally
1983 : // that would not happen in this non-error case, _except_ if we were told to skip sending
1984 : // CommissioningComplete: in that case we do not have an operational DeviceProxy, so
1985 : // we're using our CommissioneeDeviceProxy to do a successful cleanup.
1986 : //
1987 : // This means we have to call CommissioningStageComplete() before we destroy commissionee.
1988 : //
1989 : // This should be safe, because CommissioningStageComplete() does not call CleanupCommissioning
1990 : // when called in the cleanup stage (which is where we are), and StopPairing does not directly release
1991 : // mDeviceBeingCommissioned.
1992 0 : CommissioningStageComplete(CHIP_NO_ERROR);
1993 :
1994 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
1995 0 : if (commissionee != nullptr)
1996 : {
1997 0 : ReleaseCommissioneeDevice(commissionee);
1998 : }
1999 : // Send the callbacks, we're done.
2000 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
2001 : }
2002 0 : else if (completionStatus.err == CHIP_ERROR_CANCELLED)
2003 : {
2004 : // If we're cleaning up because cancellation has been requested via StopPairing(), expire the failsafe
2005 : // in the background and reset our state synchronously, so a new commissioning attempt can be started.
2006 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
2007 0 : SessionHolder session((commissionee == proxy) ? commissionee->DetachSecureSession().Value()
2008 0 : : proxy->GetSecureSession().Value());
2009 :
2010 0 : auto request = DisarmFailsafeRequest();
2011 0 : auto onSuccessCb = [session](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
2012 : const decltype(request)::ResponseType & responseData) {
2013 0 : ChipLogProgress(Controller, "Failsafe disarmed");
2014 0 : MarkForEviction(session.Get());
2015 0 : };
2016 0 : auto onFailureCb = [session](CHIP_ERROR aError) {
2017 0 : ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, aError.Format());
2018 0 : MarkForEviction(session.Get());
2019 0 : };
2020 :
2021 0 : ChipLogProgress(Controller, "Disarming failsafe on device %p in background", proxy);
2022 0 : CHIP_ERROR err = InvokeCommandRequest(proxy->GetExchangeManager(), session.Get().Value(), kRootEndpointId, request,
2023 : onSuccessCb, onFailureCb);
2024 0 : if (err != CHIP_NO_ERROR)
2025 : {
2026 0 : ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
2027 : }
2028 :
2029 0 : CleanupDoneAfterError();
2030 0 : }
2031 0 : else if (completionStatus.failedStage.HasValue() && completionStatus.failedStage.Value() >= kWiFiNetworkSetup)
2032 : {
2033 : // If we were already doing network setup, we need to retain the pase session and start again from network setup stage.
2034 : // We do not need to reset the failsafe here because we want to keep everything on the device up to this point, so just
2035 : // send the completion callbacks (see "Commissioning Flows Error Handling" in the spec).
2036 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2037 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
2038 : }
2039 : else
2040 : {
2041 : // If we've failed somewhere in the early stages (or we don't have a failedStage specified), we need to start from the
2042 : // beginning. However, because some of the commands can only be sent once per arm-failsafe, we also need to force a reset on
2043 : // the failsafe so we can start fresh on the next attempt.
2044 0 : ChipLogProgress(Controller, "Disarming failsafe on device %p", proxy);
2045 0 : auto request = DisarmFailsafeRequest();
2046 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnDisarmFailsafe, OnDisarmFailsafeFailure, kRootEndpointId);
2047 0 : if (err != CHIP_NO_ERROR)
2048 : {
2049 : // We won't get any async callbacks here, so just pretend like the command errored out async.
2050 0 : ChipLogError(Controller, "Failed to send command to disarm fail-safe: %" CHIP_ERROR_FORMAT, err.Format());
2051 0 : CleanupDoneAfterError();
2052 : }
2053 : }
2054 0 : }
2055 :
2056 0 : void DeviceCommissioner::OnDisarmFailsafe(void * context,
2057 : const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2058 : {
2059 0 : ChipLogProgress(Controller, "Failsafe disarmed");
2060 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2061 0 : commissioner->CleanupDoneAfterError();
2062 0 : }
2063 :
2064 0 : void DeviceCommissioner::OnDisarmFailsafeFailure(void * context, CHIP_ERROR error)
2065 : {
2066 0 : ChipLogProgress(Controller, "Ignoring failure to disarm failsafe: %" CHIP_ERROR_FORMAT, error.Format());
2067 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2068 0 : commissioner->CleanupDoneAfterError();
2069 0 : }
2070 :
2071 0 : void DeviceCommissioner::CleanupDoneAfterError()
2072 : {
2073 : // If someone nulled out our mDeviceBeingCommissioned, there's nothing else
2074 : // to do here.
2075 0 : VerifyOrReturn(mDeviceBeingCommissioned != nullptr);
2076 :
2077 0 : NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
2078 :
2079 : // Signal completion - this will reset mDeviceBeingCommissioned.
2080 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2081 :
2082 : // At this point, we also want to close off the pase session so we need to re-establish
2083 0 : CommissioneeDeviceProxy * commissionee = FindCommissioneeDevice(nodeId);
2084 :
2085 : // If we've disarmed the failsafe, it's because we're starting again, so kill the pase connection.
2086 0 : if (commissionee != nullptr)
2087 : {
2088 0 : ReleaseCommissioneeDevice(commissionee);
2089 : }
2090 :
2091 : // Invoke callbacks last, after we have cleared up all state.
2092 0 : SendCommissioningCompleteCallbacks(nodeId, mCommissioningCompletionStatus);
2093 : }
2094 :
2095 0 : void DeviceCommissioner::SendCommissioningCompleteCallbacks(NodeId nodeId, const CompletionStatus & completionStatus)
2096 : {
2097 : MATTER_LOG_METRIC_END(kMetricDeviceCommissionerCommission, completionStatus.err);
2098 :
2099 0 : ChipLogProgress(Controller, "Commissioning complete for node ID 0x" ChipLogFormatX64 ": %s", ChipLogValueX64(nodeId),
2100 : (completionStatus.err == CHIP_NO_ERROR ? "success" : completionStatus.err.AsString()));
2101 0 : mCommissioningStage = CommissioningStage::kSecurePairing;
2102 :
2103 0 : if (mPairingDelegate == nullptr)
2104 : {
2105 0 : return;
2106 : }
2107 :
2108 0 : mPairingDelegate->OnCommissioningComplete(nodeId, completionStatus.err);
2109 :
2110 0 : PeerId peerId(GetCompressedFabricId(), nodeId);
2111 0 : if (completionStatus.err == CHIP_NO_ERROR)
2112 : {
2113 0 : mPairingDelegate->OnCommissioningSuccess(peerId);
2114 : }
2115 : else
2116 : {
2117 : // TODO: We should propogate detailed error information (commissioningError, networkCommissioningStatus) from
2118 : // completionStatus.
2119 0 : mPairingDelegate->OnCommissioningFailure(peerId, completionStatus.err, completionStatus.failedStage.ValueOr(kError),
2120 0 : completionStatus.attestationResult);
2121 : }
2122 : }
2123 :
2124 0 : void DeviceCommissioner::CommissioningStageComplete(CHIP_ERROR err, CommissioningDelegate::CommissioningReport report)
2125 : {
2126 : // Once this stage is complete, reset mDeviceBeingCommissioned - this will be reset when the delegate calls the next step.
2127 : MATTER_TRACE_SCOPE("CommissioningStageComplete", "DeviceCommissioner");
2128 : MATTER_LOG_METRIC_END(MetricKeyForCommissioningStage(mCommissioningStage), err);
2129 0 : VerifyOrDie(mDeviceBeingCommissioned);
2130 :
2131 0 : NodeId nodeId = mDeviceBeingCommissioned->GetDeviceId();
2132 0 : DeviceProxy * proxy = mDeviceBeingCommissioned;
2133 0 : mDeviceBeingCommissioned = nullptr;
2134 0 : mInvokeCancelFn = nullptr;
2135 0 : mWriteCancelFn = nullptr;
2136 :
2137 0 : if (mPairingDelegate != nullptr)
2138 : {
2139 0 : mPairingDelegate->OnCommissioningStatusUpdate(PeerId(GetCompressedFabricId(), nodeId), mCommissioningStage, err);
2140 : }
2141 :
2142 0 : if (mCommissioningDelegate == nullptr)
2143 : {
2144 0 : return;
2145 : }
2146 0 : report.stageCompleted = mCommissioningStage;
2147 0 : CHIP_ERROR status = mCommissioningDelegate->CommissioningStepFinished(err, report);
2148 0 : if (status != CHIP_NO_ERROR && mCommissioningStage != CommissioningStage::kCleanup)
2149 : {
2150 : // Commissioning delegate will only return error if it failed to perform the appropriate commissioning step.
2151 : // In this case, we should complete the commissioning for it.
2152 0 : CompletionStatus completionStatus;
2153 0 : completionStatus.err = status;
2154 0 : completionStatus.failedStage = MakeOptional(report.stageCompleted);
2155 0 : mCommissioningStage = CommissioningStage::kCleanup;
2156 0 : mDeviceBeingCommissioned = proxy;
2157 0 : CleanupCommissioning(proxy, nodeId, completionStatus);
2158 : }
2159 : }
2160 :
2161 0 : void DeviceCommissioner::OnDeviceConnectedFn(void * context, Messaging::ExchangeManager & exchangeMgr,
2162 : const SessionHandle & sessionHandle)
2163 : {
2164 : // CASE session established.
2165 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, CHIP_NO_ERROR);
2166 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2167 0 : VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
2168 : commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
2169 0 : VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == sessionHandle->GetPeer().GetNodeId());
2170 0 : commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
2171 :
2172 0 : CommissioningDelegate::CommissioningReport report;
2173 0 : report.Set<OperationalNodeFoundData>(OperationalNodeFoundData(OperationalDeviceProxy(&exchangeMgr, sessionHandle)));
2174 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR, report);
2175 0 : }
2176 :
2177 0 : void DeviceCommissioner::OnDeviceConnectionFailureFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error)
2178 : {
2179 : // CASE session establishment failed.
2180 : MATTER_LOG_METRIC_END(kMetricDeviceCommissioningOperationalSetup, error);
2181 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2182 0 : VerifyOrDie(commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForStayActive ||
2183 : commissioner->mCommissioningStage == CommissioningStage::kFindOperationalForCommissioningComplete);
2184 0 : VerifyOrDie(commissioner->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
2185 0 : commissioner->CancelCASECallbacks(); // ensure all CASE callbacks are unregistered
2186 :
2187 0 : if (error != CHIP_NO_ERROR)
2188 : {
2189 0 : ChipLogProgress(Controller, "Device connection failed. Error %" CHIP_ERROR_FORMAT, error.Format());
2190 : }
2191 : else
2192 : {
2193 : // Ensure that commissioning stage advancement is done based on seeing an error.
2194 0 : ChipLogError(Controller, "Device connection failed without a valid error code.");
2195 0 : error = CHIP_ERROR_INTERNAL;
2196 : }
2197 0 : commissioner->CommissioningStageComplete(error);
2198 0 : }
2199 :
2200 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
2201 : // No specific action to take on either success or failure here; we're just
2202 : // trying to bump the fail-safe, and if that fails it's not clear there's much
2203 : // we can to with that.
2204 0 : static void OnExtendFailsafeForCASERetryFailure(void * context, CHIP_ERROR error)
2205 : {
2206 0 : ChipLogError(Controller, "Failed to extend fail-safe for CASE retry: %" CHIP_ERROR_FORMAT, error.Format());
2207 0 : }
2208 : static void
2209 0 : OnExtendFailsafeForCASERetrySuccess(void * context,
2210 : const app::Clusters::GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2211 : {
2212 0 : ChipLogProgress(Controller, "Status of extending fail-safe for CASE retry: %u", to_underlying(data.errorCode));
2213 0 : }
2214 :
2215 0 : void DeviceCommissioner::OnDeviceConnectionRetryFn(void * context, const ScopedNodeId & peerId, CHIP_ERROR error,
2216 : System::Clock::Seconds16 retryTimeout)
2217 : {
2218 0 : ChipLogError(Controller,
2219 : "Session establishment failed for " ChipLogFormatScopedNodeId ", error: %" CHIP_ERROR_FORMAT
2220 : ". Next retry expected to get a response to Sigma1 or fail within %d seconds",
2221 : ChipLogValueScopedNodeId(peerId), error.Format(), retryTimeout.count());
2222 :
2223 0 : auto self = static_cast<DeviceCommissioner *>(context);
2224 0 : VerifyOrDie(self->GetCommissioningStage() == CommissioningStage::kFindOperationalForStayActive ||
2225 : self->GetCommissioningStage() == CommissioningStage::kFindOperationalForCommissioningComplete);
2226 0 : VerifyOrDie(self->mDeviceBeingCommissioned->GetDeviceId() == peerId.GetNodeId());
2227 :
2228 : bool supportsConcurrent =
2229 0 : self->mCommissioningDelegate->GetCommissioningParameters().GetSupportsConcurrentConnection().ValueOr(true);
2230 0 : if (!supportsConcurrent)
2231 : {
2232 : // Concurrent mode not supported.
2233 : // We are in operational phase so the commissioning channel is not
2234 : // available anymore and it is not possible to re-arm the fail-safe timer.
2235 0 : return;
2236 : }
2237 :
2238 : // We need to do the fail-safe arming over the PASE session.
2239 0 : auto * commissioneeDevice = self->FindCommissioneeDevice(peerId.GetNodeId());
2240 0 : if (!commissioneeDevice)
2241 : {
2242 : // Commissioning canceled, presumably. Just ignore the notification,
2243 : // not much we can do here.
2244 0 : return;
2245 : }
2246 :
2247 : // Extend by the default failsafe timeout plus our retry timeout, so we can
2248 : // be sure the fail-safe will not expire before we try the next time, if
2249 : // there will be a next time.
2250 : //
2251 : // TODO: Make it possible for our clients to control the exact timeout here?
2252 : uint16_t failsafeTimeout;
2253 0 : if (UINT16_MAX - retryTimeout.count() < kDefaultFailsafeTimeout)
2254 : {
2255 0 : failsafeTimeout = UINT16_MAX;
2256 : }
2257 : else
2258 : {
2259 0 : failsafeTimeout = static_cast<uint16_t>(retryTimeout.count() + kDefaultFailsafeTimeout);
2260 : }
2261 :
2262 : // A false return is fine; we don't want to make the fail-safe shorter here.
2263 0 : self->ExtendArmFailSafeInternal(commissioneeDevice, self->GetCommissioningStage(), failsafeTimeout,
2264 0 : MakeOptional(kMinimumCommissioningStepTimeout), OnExtendFailsafeForCASERetrySuccess,
2265 : OnExtendFailsafeForCASERetryFailure, /* fireAndForget = */ true);
2266 : }
2267 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
2268 :
2269 : // ClusterStateCache::Callback / ReadClient::Callback
2270 0 : void DeviceCommissioner::OnDone(app::ReadClient * readClient)
2271 : {
2272 0 : VerifyOrDie(readClient != nullptr && readClient == mReadClient.get());
2273 0 : mReadClient.reset();
2274 0 : switch (mCommissioningStage)
2275 : {
2276 0 : case CommissioningStage::kReadCommissioningInfo:
2277 0 : ContinueReadingCommissioningInfo(mCommissioningDelegate->GetCommissioningParameters());
2278 0 : break;
2279 0 : default:
2280 0 : VerifyOrDie(false);
2281 : break;
2282 : }
2283 0 : }
2284 :
2285 : namespace {
2286 : // Helper for grouping attribute paths into read interactions in ContinueReadingCommissioningInfo()
2287 : // below. The logic generates a sequence of calls to AddAttributePath(), stopping when the capacity
2288 : // of the builder is exceeded. When creating subsequent read requests, the same sequence of calls
2289 : // is generated again, but the builder will skip however many attributes were already read in
2290 : // previous requests. This makes it easy to have logic that conditionally reads attributes, without
2291 : // needing to write manual code to work out where subsequent reads need to resume -- the logic that
2292 : // decides which attributes to read simply needs to be repeatable / deterministic.
2293 : class ReadInteractionBuilder
2294 : {
2295 : static constexpr auto kCapacity = InteractionModelEngine::kMinSupportedPathsPerReadRequest;
2296 :
2297 : size_t mSkip = 0;
2298 : size_t mCount = 0;
2299 : app::AttributePathParams mPaths[kCapacity];
2300 :
2301 : public:
2302 0 : ReadInteractionBuilder(size_t skip = 0) : mSkip(skip) {}
2303 :
2304 0 : size_t size() { return std::min(mCount, kCapacity); }
2305 0 : bool exceeded() { return mCount > kCapacity; }
2306 0 : app::AttributePathParams * paths() { return mPaths; }
2307 :
2308 : // Adds an attribute path if within the current window.
2309 : // Returns false if the available space has been exceeded.
2310 : template <typename... Ts>
2311 0 : bool AddAttributePath(Ts &&... args)
2312 : {
2313 0 : if (mSkip > 0)
2314 : {
2315 0 : mSkip--;
2316 0 : return true;
2317 : }
2318 0 : if (mCount >= kCapacity)
2319 : {
2320 : // capacity exceeded
2321 0 : mCount = kCapacity + 1;
2322 0 : return false;
2323 : }
2324 0 : mPaths[mCount++] = app::AttributePathParams(std::forward<Ts>(args)...);
2325 0 : return true;
2326 : }
2327 : };
2328 : } // namespace
2329 :
2330 0 : void DeviceCommissioner::ContinueReadingCommissioningInfo(const CommissioningParameters & params)
2331 : {
2332 0 : VerifyOrDie(mCommissioningStage == CommissioningStage::kReadCommissioningInfo);
2333 :
2334 : // mReadCommissioningInfoProgress starts at 0 and counts the number of paths we have read.
2335 : // A marker value is used to indicate that there are no further attributes to read.
2336 : static constexpr auto kReadProgressNoFurtherAttributes = std::numeric_limits<decltype(mReadCommissioningInfoProgress)>::max();
2337 0 : if (mReadCommissioningInfoProgress == kReadProgressNoFurtherAttributes)
2338 : {
2339 0 : FinishReadingCommissioningInfo(params);
2340 0 : return;
2341 : }
2342 :
2343 : // We can ony read 9 paths per Read Interaction, since that is the minimum a server has to
2344 : // support per spec (see "Interaction Model Limits"), so we generally need to perform more
2345 : // that one interaction. To build the list of attributes for each interaction, we use a
2346 : // builder that skips adding paths that we already handled in a previous interaction, and
2347 : // returns false if the current request is exhausted. This construction avoids allocating
2348 : // memory to hold the complete list of attributes to read up front; however the logic to
2349 : // determine the attributes to include must be deterministic since it runs multiple times.
2350 : // The use of an immediately-invoked lambda is convenient for control flow.
2351 0 : ReadInteractionBuilder builder(mReadCommissioningInfoProgress);
2352 0 : [&]() -> void {
2353 : // General Commissioning
2354 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2355 : Clusters::GeneralCommissioning::Attributes::SupportsConcurrentConnection::Id));
2356 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2357 : Clusters::GeneralCommissioning::Attributes::Breadcrumb::Id));
2358 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2359 : Clusters::GeneralCommissioning::Attributes::BasicCommissioningInfo::Id));
2360 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2361 : Clusters::GeneralCommissioning::Attributes::RegulatoryConfig::Id));
2362 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2363 : Clusters::GeneralCommissioning::Attributes::LocationCapability::Id));
2364 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::GeneralCommissioning::Id,
2365 : Clusters::GeneralCommissioning::Attributes::IsCommissioningWithoutPower::Id));
2366 :
2367 : // Basic Information: VID and PID for device attestation purposes
2368 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
2369 : Clusters::BasicInformation::Attributes::VendorID::Id));
2370 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::BasicInformation::Id,
2371 : Clusters::BasicInformation::Attributes::ProductID::Id));
2372 :
2373 : // Time Synchronization: all attributes
2374 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::TimeSynchronization::Id));
2375 :
2376 : // Network Commissioning (all endpoints): Read the feature map and connect time
2377 : // TODO: Expose a flag that disables network setup so we don't need to read this
2378 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2379 : Clusters::NetworkCommissioning::Attributes::FeatureMap::Id));
2380 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2381 : Clusters::NetworkCommissioning::Attributes::ConnectMaxTimeSeconds::Id));
2382 :
2383 : // If we were asked to do network scans, also read ScanMaxTimeSeconds,
2384 : // so we know how long to wait for those.
2385 0 : if (params.GetAttemptWiFiNetworkScan().ValueOr(false) || params.GetAttemptThreadNetworkScan().ValueOr(false))
2386 : {
2387 0 : VerifyOrReturn(builder.AddAttributePath(Clusters::NetworkCommissioning::Id,
2388 : Clusters::NetworkCommissioning::Attributes::ScanMaxTimeSeconds::Id));
2389 : }
2390 :
2391 : // OperationalCredentials: existing fabrics, if necessary
2392 0 : if (params.GetCheckForMatchingFabric())
2393 : {
2394 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::OperationalCredentials::Id,
2395 : Clusters::OperationalCredentials::Attributes::Fabrics::Id));
2396 : }
2397 :
2398 : // ICD Management
2399 0 : if (params.GetICDRegistrationStrategy() != ICDRegistrationStrategy::kIgnore)
2400 : {
2401 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2402 : Clusters::IcdManagement::Attributes::FeatureMap::Id));
2403 : }
2404 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2405 : Clusters::IcdManagement::Attributes::UserActiveModeTriggerHint::Id));
2406 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2407 : Clusters::IcdManagement::Attributes::UserActiveModeTriggerInstruction::Id));
2408 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2409 : Clusters::IcdManagement::Attributes::IdleModeDuration::Id));
2410 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2411 : Clusters::IcdManagement::Attributes::ActiveModeDuration::Id));
2412 0 : VerifyOrReturn(builder.AddAttributePath(kRootEndpointId, Clusters::IcdManagement::Id,
2413 : Clusters::IcdManagement::Attributes::ActiveModeThreshold::Id));
2414 :
2415 : // Extra paths requested via CommissioningParameters
2416 0 : for (auto const & path : params.GetExtraReadPaths())
2417 : {
2418 0 : VerifyOrReturn(builder.AddAttributePath(path));
2419 : }
2420 0 : }();
2421 :
2422 0 : VerifyOrDie(builder.size() > 0); // our logic is broken if there is nothing to read
2423 0 : if (builder.exceeded())
2424 : {
2425 : // Keep track of the number of attributes we have read already so we can resume from there.
2426 0 : auto progress = mReadCommissioningInfoProgress + builder.size();
2427 0 : VerifyOrDie(progress < kReadProgressNoFurtherAttributes);
2428 0 : mReadCommissioningInfoProgress = static_cast<decltype(mReadCommissioningInfoProgress)>(progress);
2429 : }
2430 : else
2431 : {
2432 0 : mReadCommissioningInfoProgress = kReadProgressNoFurtherAttributes;
2433 : }
2434 :
2435 0 : SendCommissioningReadRequest(mDeviceBeingCommissioned, mCommissioningStepTimeout, builder.paths(), builder.size());
2436 : }
2437 :
2438 : namespace {
2439 0 : void AccumulateErrors(CHIP_ERROR & acc, CHIP_ERROR err)
2440 : {
2441 0 : if (acc == CHIP_NO_ERROR && err != CHIP_NO_ERROR)
2442 : {
2443 0 : acc = err;
2444 : }
2445 0 : }
2446 : } // namespace
2447 :
2448 0 : void DeviceCommissioner::FinishReadingCommissioningInfo(const CommissioningParameters & params)
2449 : {
2450 : // We want to parse as much information as possible, even if we eventually end
2451 : // up returning an error (e.g. because some mandatory information was missing).
2452 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2453 0 : ReadCommissioningInfo info;
2454 0 : info.attributes = mAttributeCache.get();
2455 0 : AccumulateErrors(err, ParseGeneralCommissioningInfo(info));
2456 0 : AccumulateErrors(err, ParseBasicInformation(info));
2457 0 : AccumulateErrors(err, ParseNetworkCommissioningInfo(info));
2458 0 : AccumulateErrors(err, ParseTimeSyncInfo(info));
2459 0 : AccumulateErrors(err, ParseFabrics(info));
2460 0 : AccumulateErrors(err, ParseICDInfo(info));
2461 0 : AccumulateErrors(err, ParseExtraCommissioningInfo(info, params));
2462 :
2463 0 : if (mPairingDelegate != nullptr && err == CHIP_NO_ERROR)
2464 : {
2465 0 : mPairingDelegate->OnReadCommissioningInfo(info);
2466 : }
2467 :
2468 0 : CommissioningDelegate::CommissioningReport report;
2469 0 : report.Set<ReadCommissioningInfo>(info);
2470 0 : CommissioningStageComplete(err, report);
2471 :
2472 : // Only release the attribute cache once `info` is no longer needed.
2473 0 : mAttributeCache.reset();
2474 0 : }
2475 :
2476 0 : CHIP_ERROR DeviceCommissioner::ParseGeneralCommissioningInfo(ReadCommissioningInfo & info)
2477 : {
2478 : using namespace GeneralCommissioning::Attributes;
2479 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2480 : CHIP_ERROR err;
2481 :
2482 0 : BasicCommissioningInfo::TypeInfo::DecodableType basicInfo;
2483 0 : err = mAttributeCache->Get<BasicCommissioningInfo::TypeInfo>(kRootEndpointId, basicInfo);
2484 0 : if (err == CHIP_NO_ERROR)
2485 : {
2486 0 : info.general.recommendedFailsafe = basicInfo.failSafeExpiryLengthSeconds;
2487 : }
2488 : else
2489 : {
2490 0 : ChipLogError(Controller, "Failed to read BasicCommissioningInfo: %" CHIP_ERROR_FORMAT, err.Format());
2491 0 : return_err = err;
2492 : }
2493 :
2494 0 : err = mAttributeCache->Get<RegulatoryConfig::TypeInfo>(kRootEndpointId, info.general.currentRegulatoryLocation);
2495 0 : if (err != CHIP_NO_ERROR)
2496 : {
2497 0 : ChipLogError(Controller, "Failed to read RegulatoryConfig: %" CHIP_ERROR_FORMAT, err.Format());
2498 0 : return_err = err;
2499 : }
2500 :
2501 0 : err = mAttributeCache->Get<LocationCapability::TypeInfo>(kRootEndpointId, info.general.locationCapability);
2502 0 : if (err != CHIP_NO_ERROR)
2503 : {
2504 0 : ChipLogError(Controller, "Failed to read LocationCapability: %" CHIP_ERROR_FORMAT, err.Format());
2505 0 : return_err = err;
2506 : }
2507 :
2508 0 : err = mAttributeCache->Get<Breadcrumb::TypeInfo>(kRootEndpointId, info.general.breadcrumb);
2509 0 : if (err != CHIP_NO_ERROR)
2510 : {
2511 0 : ChipLogError(Controller, "Failed to read Breadcrumb: %" CHIP_ERROR_FORMAT, err.Format());
2512 0 : return_err = err;
2513 : }
2514 :
2515 0 : err = mAttributeCache->Get<SupportsConcurrentConnection::TypeInfo>(kRootEndpointId, info.supportsConcurrentConnection);
2516 0 : if (err != CHIP_NO_ERROR)
2517 : {
2518 0 : ChipLogError(Controller, "Ignoring failure to read SupportsConcurrentConnection: %" CHIP_ERROR_FORMAT, err.Format());
2519 0 : info.supportsConcurrentConnection = true; // default to true (concurrent), not a fatal error
2520 : }
2521 :
2522 0 : err = mAttributeCache->Get<IsCommissioningWithoutPower::TypeInfo>(kRootEndpointId, info.general.isCommissioningWithoutPower);
2523 0 : if (err != CHIP_NO_ERROR)
2524 : {
2525 0 : ChipLogError(Controller, "Ignoring failure to read IsCommissioningWithoutPower: %" CHIP_ERROR_FORMAT, err.Format());
2526 0 : info.general.isCommissioningWithoutPower = false; // default to false, not a fatal error
2527 : }
2528 :
2529 0 : return return_err;
2530 : }
2531 :
2532 0 : CHIP_ERROR DeviceCommissioner::ParseBasicInformation(ReadCommissioningInfo & info)
2533 : {
2534 : using namespace BasicInformation::Attributes;
2535 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2536 : CHIP_ERROR err;
2537 :
2538 0 : err = mAttributeCache->Get<VendorID::TypeInfo>(kRootEndpointId, info.basic.vendorId);
2539 0 : if (err != CHIP_NO_ERROR)
2540 : {
2541 0 : ChipLogError(Controller, "Failed to read VendorID: %" CHIP_ERROR_FORMAT, err.Format());
2542 0 : return_err = err;
2543 : }
2544 :
2545 0 : err = mAttributeCache->Get<ProductID::TypeInfo>(kRootEndpointId, info.basic.productId);
2546 0 : if (err != CHIP_NO_ERROR)
2547 : {
2548 0 : ChipLogError(Controller, "Failed to read ProductID: %" CHIP_ERROR_FORMAT, err.Format());
2549 0 : return_err = err;
2550 : }
2551 :
2552 0 : return return_err;
2553 : }
2554 :
2555 0 : CHIP_ERROR DeviceCommissioner::ParseNetworkCommissioningInfo(ReadCommissioningInfo & info)
2556 : {
2557 : using namespace NetworkCommissioning::Attributes;
2558 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2559 : CHIP_ERROR err;
2560 :
2561 : // Set the network cluster endpoints first so we can match up the connection
2562 : // times. Note that here we don't know what endpoints the network
2563 : // commissioning clusters might be on.
2564 0 : err = mAttributeCache->ForEachAttribute(NetworkCommissioning::Id, [this, &info](const ConcreteAttributePath & path) {
2565 0 : VerifyOrReturnError(path.mAttributeId == FeatureMap::Id, CHIP_NO_ERROR);
2566 0 : BitFlags<NetworkCommissioning::Feature> features;
2567 0 : if (mAttributeCache->Get<FeatureMap::TypeInfo>(path, *features.RawStorage()) == CHIP_NO_ERROR)
2568 : {
2569 0 : if (features.Has(NetworkCommissioning::Feature::kWiFiNetworkInterface))
2570 : {
2571 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has WiFi. endpointid = %u", path.mEndpointId);
2572 0 : info.network.wifi.endpoint = path.mEndpointId;
2573 : }
2574 0 : else if (features.Has(NetworkCommissioning::Feature::kThreadNetworkInterface))
2575 : {
2576 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has Thread. endpointid = %u", path.mEndpointId);
2577 0 : info.network.thread.endpoint = path.mEndpointId;
2578 : }
2579 0 : else if (features.Has(NetworkCommissioning::Feature::kEthernetNetworkInterface))
2580 : {
2581 0 : ChipLogProgress(Controller, "NetworkCommissioning Features: has Ethernet. endpointid = %u", path.mEndpointId);
2582 0 : info.network.eth.endpoint = path.mEndpointId;
2583 : }
2584 : }
2585 0 : return CHIP_NO_ERROR;
2586 : });
2587 0 : AccumulateErrors(return_err, err);
2588 :
2589 0 : if (info.network.thread.endpoint != kInvalidEndpointId)
2590 : {
2591 0 : err = ParseNetworkCommissioningTimeouts(info.network.thread, "Thread");
2592 0 : AccumulateErrors(return_err, err);
2593 : }
2594 :
2595 0 : if (info.network.wifi.endpoint != kInvalidEndpointId)
2596 : {
2597 0 : err = ParseNetworkCommissioningTimeouts(info.network.wifi, "Wi-Fi");
2598 0 : AccumulateErrors(return_err, err);
2599 : }
2600 :
2601 0 : if (return_err != CHIP_NO_ERROR)
2602 : {
2603 0 : ChipLogError(Controller, "Failed to parse Network Commissioning information: %" CHIP_ERROR_FORMAT, return_err.Format());
2604 : }
2605 0 : return return_err;
2606 : }
2607 :
2608 0 : CHIP_ERROR DeviceCommissioner::ParseNetworkCommissioningTimeouts(NetworkClusterInfo & networkInfo, const char * networkType)
2609 : {
2610 : using namespace NetworkCommissioning::Attributes;
2611 :
2612 0 : CHIP_ERROR err = mAttributeCache->Get<ConnectMaxTimeSeconds::TypeInfo>(networkInfo.endpoint, networkInfo.minConnectionTime);
2613 0 : if (err != CHIP_NO_ERROR)
2614 : {
2615 0 : ChipLogError(Controller, "Failed to read %s ConnectMaxTimeSeconds (endpoint %u): %" CHIP_ERROR_FORMAT, networkType,
2616 : networkInfo.endpoint, err.Format());
2617 0 : return err;
2618 : }
2619 :
2620 0 : err = mAttributeCache->Get<ScanMaxTimeSeconds::TypeInfo>(networkInfo.endpoint, networkInfo.maxScanTime);
2621 0 : if (err != CHIP_NO_ERROR)
2622 : {
2623 : // We don't always read this attribute, and we read it as a wildcard, so
2624 : // don't treat it as an error simply because it's missing.
2625 0 : if (err != CHIP_ERROR_KEY_NOT_FOUND)
2626 : {
2627 0 : ChipLogError(Controller, "Failed to read %s ScanMaxTimeSeconds (endpoint: %u): %" CHIP_ERROR_FORMAT, networkType,
2628 : networkInfo.endpoint, err.Format());
2629 0 : return err;
2630 : }
2631 :
2632 : // Just flag as "we don't know".
2633 0 : networkInfo.maxScanTime = 0;
2634 : }
2635 :
2636 0 : return CHIP_NO_ERROR;
2637 : }
2638 :
2639 0 : CHIP_ERROR DeviceCommissioner::ParseTimeSyncInfo(ReadCommissioningInfo & info)
2640 : {
2641 : using namespace TimeSynchronization::Attributes;
2642 : CHIP_ERROR err;
2643 :
2644 : // If we fail to get the feature map, there's no viable time cluster, don't set anything.
2645 0 : BitFlags<TimeSynchronization::Feature> featureMap;
2646 0 : err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
2647 0 : if (err != CHIP_NO_ERROR)
2648 : {
2649 0 : info.requiresUTC = false;
2650 0 : info.requiresTimeZone = false;
2651 0 : info.requiresDefaultNTP = false;
2652 0 : info.requiresTrustedTimeSource = false;
2653 0 : return CHIP_NO_ERROR;
2654 : }
2655 0 : info.requiresUTC = true;
2656 0 : info.requiresTimeZone = featureMap.Has(TimeSynchronization::Feature::kTimeZone);
2657 0 : info.requiresDefaultNTP = featureMap.Has(TimeSynchronization::Feature::kNTPClient);
2658 0 : info.requiresTrustedTimeSource = featureMap.Has(TimeSynchronization::Feature::kTimeSyncClient);
2659 :
2660 0 : if (info.requiresTimeZone)
2661 : {
2662 0 : err = mAttributeCache->Get<TimeZoneListMaxSize::TypeInfo>(kRootEndpointId, info.maxTimeZoneSize);
2663 0 : if (err != CHIP_NO_ERROR)
2664 : {
2665 : // This information should be available, let's do our best with what we have, but we can't set
2666 : // the time zone without this information
2667 0 : info.requiresTimeZone = false;
2668 : }
2669 0 : err = mAttributeCache->Get<DSTOffsetListMaxSize::TypeInfo>(kRootEndpointId, info.maxDSTSize);
2670 0 : if (err != CHIP_NO_ERROR)
2671 : {
2672 0 : info.requiresTimeZone = false;
2673 : }
2674 : }
2675 0 : if (info.requiresDefaultNTP)
2676 : {
2677 0 : DefaultNTP::TypeInfo::DecodableType defaultNTP;
2678 0 : err = mAttributeCache->Get<DefaultNTP::TypeInfo>(kRootEndpointId, defaultNTP);
2679 0 : if (err == CHIP_NO_ERROR && (!defaultNTP.IsNull()) && (defaultNTP.Value().size() != 0))
2680 : {
2681 0 : info.requiresDefaultNTP = false;
2682 : }
2683 : }
2684 0 : if (info.requiresTrustedTimeSource)
2685 : {
2686 0 : TrustedTimeSource::TypeInfo::DecodableType trustedTimeSource;
2687 0 : err = mAttributeCache->Get<TrustedTimeSource::TypeInfo>(kRootEndpointId, trustedTimeSource);
2688 0 : if (err == CHIP_NO_ERROR && !trustedTimeSource.IsNull())
2689 : {
2690 0 : info.requiresTrustedTimeSource = false;
2691 : }
2692 : }
2693 :
2694 0 : return CHIP_NO_ERROR;
2695 : }
2696 :
2697 0 : CHIP_ERROR DeviceCommissioner::ParseFabrics(ReadCommissioningInfo & info)
2698 : {
2699 : using namespace OperationalCredentials::Attributes;
2700 : CHIP_ERROR err;
2701 0 : CHIP_ERROR return_err = CHIP_NO_ERROR;
2702 :
2703 : // We might not have requested a Fabrics attribute at all, so not having a
2704 : // value for it is not an error.
2705 0 : err = mAttributeCache->ForEachAttribute(OperationalCredentials::Id, [this, &info](const ConcreteAttributePath & path) {
2706 : using namespace chip::app::Clusters::OperationalCredentials::Attributes;
2707 : // this code is checking if the device is already on the commissioner's fabric.
2708 : // if a matching fabric is found, then remember the nodeId so that the commissioner
2709 : // can, if it decides to, cancel commissioning (before it fails in AddNoc) and know
2710 : // the device's nodeId on its fabric.
2711 0 : switch (path.mAttributeId)
2712 : {
2713 0 : case Fabrics::Id: {
2714 0 : Fabrics::TypeInfo::DecodableType fabrics;
2715 0 : ReturnErrorOnFailure(this->mAttributeCache->Get<Fabrics::TypeInfo>(path, fabrics));
2716 : // this is a best effort attempt to find a matching fabric, so no error checking on iter
2717 0 : auto iter = fabrics.begin();
2718 0 : while (iter.Next())
2719 : {
2720 0 : auto & fabricDescriptor = iter.GetValue();
2721 0 : ChipLogProgress(Controller,
2722 : "DeviceCommissioner::OnDone - fabric.vendorId=0x%04X fabric.fabricId=0x" ChipLogFormatX64
2723 : " fabric.nodeId=0x" ChipLogFormatX64,
2724 : fabricDescriptor.vendorID, ChipLogValueX64(fabricDescriptor.fabricID),
2725 : ChipLogValueX64(fabricDescriptor.nodeID));
2726 0 : if (GetFabricId() == fabricDescriptor.fabricID)
2727 : {
2728 0 : ChipLogProgress(Controller, "DeviceCommissioner::OnDone - found a matching fabric id");
2729 0 : chip::ByteSpan rootKeySpan = fabricDescriptor.rootPublicKey;
2730 0 : if (rootKeySpan.size() != Crypto::kP256_PublicKey_Length)
2731 : {
2732 0 : ChipLogError(Controller, "DeviceCommissioner::OnDone - fabric root key size mismatch %u != %u",
2733 : static_cast<unsigned>(rootKeySpan.size()),
2734 : static_cast<unsigned>(Crypto::kP256_PublicKey_Length));
2735 0 : continue;
2736 : }
2737 0 : P256PublicKeySpan rootPubKeySpan(rootKeySpan.data());
2738 0 : Crypto::P256PublicKey deviceRootPublicKey(rootPubKeySpan);
2739 :
2740 0 : Crypto::P256PublicKey commissionerRootPublicKey;
2741 0 : if (CHIP_NO_ERROR != GetRootPublicKey(commissionerRootPublicKey))
2742 : {
2743 0 : ChipLogError(Controller, "DeviceCommissioner::OnDone - error reading commissioner root public key");
2744 : }
2745 0 : else if (commissionerRootPublicKey.Matches(deviceRootPublicKey))
2746 : {
2747 0 : ChipLogProgress(Controller, "DeviceCommissioner::OnDone - fabric root keys match");
2748 0 : info.remoteNodeId = fabricDescriptor.nodeID;
2749 : }
2750 0 : }
2751 : }
2752 :
2753 0 : return CHIP_NO_ERROR;
2754 : }
2755 0 : default:
2756 0 : return CHIP_NO_ERROR;
2757 : }
2758 : });
2759 :
2760 0 : if (mPairingDelegate != nullptr)
2761 : {
2762 0 : mPairingDelegate->OnFabricCheck(info.remoteNodeId);
2763 : }
2764 :
2765 0 : return return_err;
2766 : }
2767 :
2768 0 : CHIP_ERROR DeviceCommissioner::ParseICDInfo(ReadCommissioningInfo & info)
2769 : {
2770 : using namespace IcdManagement::Attributes;
2771 : CHIP_ERROR err;
2772 :
2773 0 : bool hasUserActiveModeTrigger = false;
2774 0 : bool isICD = false;
2775 :
2776 0 : BitFlags<IcdManagement::Feature> featureMap;
2777 0 : err = mAttributeCache->Get<FeatureMap::TypeInfo>(kRootEndpointId, *featureMap.RawStorage());
2778 0 : if (err == CHIP_NO_ERROR)
2779 : {
2780 0 : info.icd.isLIT = featureMap.Has(IcdManagement::Feature::kLongIdleTimeSupport);
2781 0 : info.icd.checkInProtocolSupport = featureMap.Has(IcdManagement::Feature::kCheckInProtocolSupport);
2782 0 : hasUserActiveModeTrigger = featureMap.Has(IcdManagement::Feature::kUserActiveModeTrigger);
2783 0 : isICD = true;
2784 : }
2785 0 : else if (err == CHIP_ERROR_KEY_NOT_FOUND)
2786 : {
2787 : // This key is optional so not an error
2788 0 : info.icd.isLIT = false;
2789 0 : err = CHIP_NO_ERROR;
2790 : }
2791 0 : else if (err == CHIP_ERROR_IM_STATUS_CODE_RECEIVED)
2792 : {
2793 0 : app::StatusIB statusIB;
2794 0 : err = mAttributeCache->GetStatus(app::ConcreteAttributePath(kRootEndpointId, IcdManagement::Id, FeatureMap::Id), statusIB);
2795 0 : if (err == CHIP_NO_ERROR)
2796 : {
2797 0 : if (statusIB.mStatus == Protocols::InteractionModel::Status::UnsupportedCluster)
2798 : {
2799 0 : info.icd.isLIT = false;
2800 : }
2801 : else
2802 : {
2803 0 : err = statusIB.ToChipError();
2804 : }
2805 : }
2806 : }
2807 :
2808 0 : ReturnErrorOnFailure(err);
2809 :
2810 0 : info.icd.userActiveModeTriggerHint.ClearAll();
2811 0 : info.icd.userActiveModeTriggerInstruction = CharSpan();
2812 :
2813 0 : if (hasUserActiveModeTrigger)
2814 : {
2815 : // Intentionally ignore errors since they are not mandatory.
2816 0 : bool activeModeTriggerInstructionRequired = false;
2817 :
2818 0 : err = mAttributeCache->Get<UserActiveModeTriggerHint::TypeInfo>(kRootEndpointId, info.icd.userActiveModeTriggerHint);
2819 0 : if (err != CHIP_NO_ERROR)
2820 : {
2821 0 : ChipLogError(Controller, "IcdManagement.UserActiveModeTriggerHint expected, but failed to read.");
2822 0 : return err;
2823 : }
2824 :
2825 : using IcdManagement::UserActiveModeTriggerBitmap;
2826 0 : activeModeTriggerInstructionRequired = info.icd.userActiveModeTriggerHint.HasAny(
2827 0 : UserActiveModeTriggerBitmap::kCustomInstruction, UserActiveModeTriggerBitmap::kActuateSensorSeconds,
2828 0 : UserActiveModeTriggerBitmap::kActuateSensorTimes, UserActiveModeTriggerBitmap::kActuateSensorLightsBlink,
2829 0 : UserActiveModeTriggerBitmap::kResetButtonLightsBlink, UserActiveModeTriggerBitmap::kResetButtonSeconds,
2830 0 : UserActiveModeTriggerBitmap::kResetButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonSeconds,
2831 0 : UserActiveModeTriggerBitmap::kSetupButtonTimes, UserActiveModeTriggerBitmap::kSetupButtonTimes,
2832 0 : UserActiveModeTriggerBitmap::kAppDefinedButton);
2833 :
2834 0 : if (activeModeTriggerInstructionRequired)
2835 : {
2836 0 : err = mAttributeCache->Get<UserActiveModeTriggerInstruction::TypeInfo>(kRootEndpointId,
2837 0 : info.icd.userActiveModeTriggerInstruction);
2838 0 : if (err != CHIP_NO_ERROR)
2839 : {
2840 0 : ChipLogError(Controller,
2841 : "IcdManagement.UserActiveModeTriggerInstruction expected for given active mode trigger hint, but "
2842 : "failed to read.");
2843 0 : return err;
2844 : }
2845 : }
2846 : }
2847 :
2848 0 : if (!isICD)
2849 : {
2850 0 : info.icd.idleModeDuration = 0;
2851 0 : info.icd.activeModeDuration = 0;
2852 0 : info.icd.activeModeThreshold = 0;
2853 0 : return CHIP_NO_ERROR;
2854 : }
2855 :
2856 0 : err = mAttributeCache->Get<IdleModeDuration::TypeInfo>(kRootEndpointId, info.icd.idleModeDuration);
2857 0 : if (err != CHIP_NO_ERROR)
2858 : {
2859 0 : ChipLogError(Controller, "IcdManagement.IdleModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT, err.Format());
2860 0 : return err;
2861 : }
2862 :
2863 0 : err = mAttributeCache->Get<ActiveModeDuration::TypeInfo>(kRootEndpointId, info.icd.activeModeDuration);
2864 0 : if (err != CHIP_NO_ERROR)
2865 : {
2866 0 : ChipLogError(Controller, "IcdManagement.ActiveModeDuration expected, but failed to read: %" CHIP_ERROR_FORMAT,
2867 : err.Format());
2868 0 : return err;
2869 : }
2870 :
2871 0 : err = mAttributeCache->Get<ActiveModeThreshold::TypeInfo>(kRootEndpointId, info.icd.activeModeThreshold);
2872 0 : if (err != CHIP_NO_ERROR)
2873 : {
2874 0 : ChipLogError(Controller, "IcdManagement.ActiveModeThreshold expected, but failed to read: %" CHIP_ERROR_FORMAT,
2875 : err.Format());
2876 : }
2877 :
2878 0 : return err;
2879 : }
2880 :
2881 0 : void DeviceCommissioner::OnArmFailSafe(void * context,
2882 : const GeneralCommissioning::Commands::ArmFailSafeResponse::DecodableType & data)
2883 : {
2884 0 : CommissioningDelegate::CommissioningReport report;
2885 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2886 :
2887 0 : ChipLogProgress(Controller, "Received ArmFailSafe response errorCode=%u", to_underlying(data.errorCode));
2888 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2889 : {
2890 0 : err = CHIP_ERROR_INTERNAL;
2891 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2892 : }
2893 :
2894 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2895 0 : commissioner->CommissioningStageComplete(err, report);
2896 0 : }
2897 :
2898 0 : void DeviceCommissioner::OnSetRegulatoryConfigResponse(
2899 : void * context, const GeneralCommissioning::Commands::SetRegulatoryConfigResponse::DecodableType & data)
2900 : {
2901 0 : CommissioningDelegate::CommissioningReport report;
2902 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2903 :
2904 0 : ChipLogProgress(Controller, "Received SetRegulatoryConfig response errorCode=%u", to_underlying(data.errorCode));
2905 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2906 : {
2907 0 : err = CHIP_ERROR_INTERNAL;
2908 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2909 : }
2910 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2911 0 : commissioner->CommissioningStageComplete(err, report);
2912 0 : }
2913 :
2914 0 : void DeviceCommissioner::OnSetTCAcknowledgementsResponse(
2915 : void * context, const GeneralCommissioning::Commands::SetTCAcknowledgementsResponse::DecodableType & data)
2916 : {
2917 0 : CommissioningDelegate::CommissioningReport report;
2918 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2919 :
2920 0 : ChipLogProgress(Controller, "Received SetTCAcknowledgements response errorCode=%u", to_underlying(data.errorCode));
2921 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
2922 : {
2923 0 : err = CHIP_ERROR_INTERNAL;
2924 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
2925 : }
2926 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2927 0 : commissioner->CommissioningStageComplete(err, report);
2928 0 : }
2929 :
2930 0 : void DeviceCommissioner::OnSetTimeZoneResponse(void * context,
2931 : const TimeSynchronization::Commands::SetTimeZoneResponse::DecodableType & data)
2932 : {
2933 0 : CommissioningDelegate::CommissioningReport report;
2934 0 : CHIP_ERROR err = CHIP_NO_ERROR;
2935 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2936 : TimeZoneResponseInfo info;
2937 0 : info.requiresDSTOffsets = data.DSTOffsetRequired;
2938 0 : report.Set<TimeZoneResponseInfo>(info);
2939 0 : commissioner->CommissioningStageComplete(err, report);
2940 0 : }
2941 :
2942 0 : void DeviceCommissioner::OnSetUTCError(void * context, CHIP_ERROR error)
2943 : {
2944 : // For SetUTCTime, we don't actually care if the commissionee didn't want out time, that's its choice
2945 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2946 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2947 0 : }
2948 :
2949 0 : void DeviceCommissioner::OnScanNetworksFailure(void * context, CHIP_ERROR error)
2950 : {
2951 0 : ChipLogProgress(Controller, "Received ScanNetworks failure response %" CHIP_ERROR_FORMAT, error.Format());
2952 :
2953 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2954 :
2955 : // advance to the kNeedsNetworkCreds waiting step
2956 : // clear error so that we don't abort the commissioning when ScanNetworks fails
2957 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2958 :
2959 0 : if (commissioner->GetPairingDelegate() != nullptr)
2960 : {
2961 0 : commissioner->GetPairingDelegate()->OnScanNetworksFailure(error);
2962 : }
2963 0 : }
2964 :
2965 0 : void DeviceCommissioner::OnScanNetworksResponse(void * context,
2966 : const NetworkCommissioning::Commands::ScanNetworksResponse::DecodableType & data)
2967 : {
2968 0 : CommissioningDelegate::CommissioningReport report;
2969 :
2970 0 : ChipLogProgress(Controller, "Received ScanNetwork response, networkingStatus=%u debugText=%s",
2971 : to_underlying(data.networkingStatus),
2972 : (data.debugText.HasValue() ? std::string(data.debugText.Value().data(), data.debugText.Value().size()).c_str()
2973 : : "none provided"));
2974 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
2975 :
2976 : // advance to the kNeedsNetworkCreds waiting step
2977 0 : commissioner->CommissioningStageComplete(CHIP_NO_ERROR);
2978 :
2979 0 : if (commissioner->GetPairingDelegate() != nullptr)
2980 : {
2981 0 : commissioner->GetPairingDelegate()->OnScanNetworksSuccess(data);
2982 : }
2983 0 : }
2984 :
2985 0 : CHIP_ERROR DeviceCommissioner::NetworkCredentialsReady()
2986 : {
2987 0 : VerifyOrReturnError(mCommissioningStage == CommissioningStage::kNeedsNetworkCreds, CHIP_ERROR_INCORRECT_STATE);
2988 :
2989 : // need to advance to next step
2990 0 : CommissioningStageComplete(CHIP_NO_ERROR);
2991 :
2992 0 : return CHIP_NO_ERROR;
2993 : }
2994 :
2995 0 : CHIP_ERROR DeviceCommissioner::ICDRegistrationInfoReady()
2996 : {
2997 0 : VerifyOrReturnError(mCommissioningStage == CommissioningStage::kICDGetRegistrationInfo, CHIP_ERROR_INCORRECT_STATE);
2998 :
2999 : // need to advance to next step
3000 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3001 :
3002 0 : return CHIP_NO_ERROR;
3003 : }
3004 :
3005 0 : void DeviceCommissioner::OnNetworkConfigResponse(void * context,
3006 : const NetworkCommissioning::Commands::NetworkConfigResponse::DecodableType & data)
3007 : {
3008 0 : CommissioningDelegate::CommissioningReport report;
3009 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3010 :
3011 0 : ChipLogProgress(Controller, "Received NetworkConfig response, networkingStatus=%u", to_underlying(data.networkingStatus));
3012 0 : if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
3013 : {
3014 0 : err = CHIP_ERROR_INTERNAL;
3015 0 : report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
3016 : }
3017 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3018 0 : commissioner->CommissioningStageComplete(err, report);
3019 0 : }
3020 :
3021 0 : void DeviceCommissioner::OnConnectNetworkResponse(
3022 : void * context, const NetworkCommissioning::Commands::ConnectNetworkResponse::DecodableType & data)
3023 : {
3024 0 : CommissioningDelegate::CommissioningReport report;
3025 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3026 :
3027 0 : ChipLogProgress(Controller, "Received ConnectNetwork response, networkingStatus=%u", to_underlying(data.networkingStatus));
3028 0 : if (data.networkingStatus != NetworkCommissioning::NetworkCommissioningStatusEnum::kSuccess)
3029 : {
3030 0 : err = CHIP_ERROR_INTERNAL;
3031 0 : report.Set<NetworkCommissioningStatusInfo>(data.networkingStatus);
3032 : }
3033 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3034 0 : commissioner->CommissioningStageComplete(err, report);
3035 0 : }
3036 :
3037 0 : void DeviceCommissioner::OnCommissioningCompleteResponse(
3038 : void * context, const GeneralCommissioning::Commands::CommissioningCompleteResponse::DecodableType & data)
3039 : {
3040 0 : CommissioningDelegate::CommissioningReport report;
3041 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3042 :
3043 0 : ChipLogProgress(Controller, "Received CommissioningComplete response, errorCode=%u", to_underlying(data.errorCode));
3044 0 : if (data.errorCode != GeneralCommissioning::CommissioningErrorEnum::kOk)
3045 : {
3046 0 : err = CHIP_ERROR_INTERNAL;
3047 0 : report.Set<CommissioningErrorInfo>(data.errorCode);
3048 : }
3049 0 : DeviceCommissioner * commissioner = static_cast<DeviceCommissioner *>(context);
3050 0 : commissioner->CommissioningStageComplete(err, report);
3051 0 : }
3052 :
3053 : template <typename RequestObjectT>
3054 : CHIP_ERROR
3055 0 : DeviceCommissioner::SendCommissioningCommand(DeviceProxy * device, const RequestObjectT & request,
3056 : CommandResponseSuccessCallback<typename RequestObjectT::ResponseType> successCb,
3057 : CommandResponseFailureCallback failureCb, EndpointId endpoint,
3058 : Optional<System::Clock::Timeout> timeout, bool fireAndForget)
3059 :
3060 : {
3061 : // Default behavior is to make sequential, cancellable calls tracked via mInvokeCancelFn.
3062 : // Fire-and-forget calls are not cancellable and don't receive `this` as context in callbacks.
3063 0 : VerifyOrDie(fireAndForget || !mInvokeCancelFn); // we don't make parallel (cancellable) calls
3064 :
3065 0 : void * context = (!fireAndForget) ? this : nullptr;
3066 0 : auto onSuccessCb = [context, successCb](const app::ConcreteCommandPath & aPath, const app::StatusIB & aStatus,
3067 : const typename RequestObjectT::ResponseType & responseData) {
3068 0 : successCb(context, responseData);
3069 : };
3070 0 : auto onFailureCb = [context, failureCb](CHIP_ERROR aError) { failureCb(context, aError); };
3071 :
3072 0 : return InvokeCommandRequest(device->GetExchangeManager(), device->GetSecureSession().Value(), endpoint, request, onSuccessCb,
3073 0 : onFailureCb, NullOptional, timeout, (!fireAndForget) ? &mInvokeCancelFn : nullptr);
3074 : }
3075 :
3076 : template <typename AttrType>
3077 : CHIP_ERROR DeviceCommissioner::SendCommissioningWriteRequest(DeviceProxy * device, EndpointId endpoint, ClusterId cluster,
3078 : AttributeId attribute, const AttrType & requestData,
3079 : WriteResponseSuccessCallback successCb,
3080 : WriteResponseFailureCallback failureCb)
3081 : {
3082 : VerifyOrDie(!mWriteCancelFn); // we don't make parallel (cancellable) calls
3083 : auto onSuccessCb = [this, successCb](const app::ConcreteAttributePath & aPath) { successCb(this); };
3084 : auto onFailureCb = [this, failureCb](const app::ConcreteAttributePath * aPath, CHIP_ERROR aError) { failureCb(this, aError); };
3085 : return WriteAttribute(device->GetSecureSession().Value(), endpoint, cluster, attribute, requestData, onSuccessCb, onFailureCb,
3086 : /* aTimedWriteTimeoutMs = */ NullOptional, /* onDoneCb = */ nullptr, /* aDataVersion = */ NullOptional,
3087 : /* outCancelFn = */ &mWriteCancelFn);
3088 : }
3089 :
3090 0 : void DeviceCommissioner::SendCommissioningReadRequest(DeviceProxy * proxy, Optional<System::Clock::Timeout> timeout,
3091 : app::AttributePathParams * readPaths, size_t readPathsSize)
3092 : {
3093 0 : VerifyOrDie(!mReadClient); // we don't perform parallel reads
3094 :
3095 0 : app::InteractionModelEngine * engine = app::InteractionModelEngine::GetInstance();
3096 0 : app::ReadPrepareParams readParams(proxy->GetSecureSession().Value());
3097 0 : readParams.mIsFabricFiltered = false;
3098 0 : if (timeout.HasValue())
3099 : {
3100 0 : readParams.mTimeout = timeout.Value();
3101 : }
3102 0 : readParams.mpAttributePathParamsList = readPaths;
3103 0 : readParams.mAttributePathParamsListSize = readPathsSize;
3104 :
3105 : // Take ownership of the attribute cache, so it can be released if SendRequest fails.
3106 0 : auto attributeCache = std::move(mAttributeCache);
3107 : auto readClient = chip::Platform::MakeUnique<app::ReadClient>(
3108 0 : engine, proxy->GetExchangeManager(), attributeCache->GetBufferedCallback(), app::ReadClient::InteractionType::Read);
3109 0 : CHIP_ERROR err = readClient->SendRequest(readParams);
3110 0 : if (err != CHIP_NO_ERROR)
3111 : {
3112 0 : ChipLogError(Controller, "Failed to send read request: %" CHIP_ERROR_FORMAT, err.Format());
3113 0 : CommissioningStageComplete(err);
3114 0 : return;
3115 : }
3116 0 : mAttributeCache = std::move(attributeCache);
3117 0 : mReadClient = std::move(readClient);
3118 0 : }
3119 :
3120 0 : void DeviceCommissioner::PerformCommissioningStep(DeviceProxy * proxy, CommissioningStage step, CommissioningParameters & params,
3121 : CommissioningDelegate * delegate, EndpointId endpoint,
3122 : Optional<System::Clock::Timeout> timeout)
3123 :
3124 : {
3125 : MATTER_LOG_METRIC(kMetricDeviceCommissionerCommissionStage, step);
3126 : MATTER_LOG_METRIC_BEGIN(MetricKeyForCommissioningStage(step));
3127 :
3128 0 : if (params.GetCompletionStatus().err == CHIP_NO_ERROR)
3129 : {
3130 0 : ChipLogProgress(Controller, "Performing next commissioning step '%s'", StageToString(step));
3131 : }
3132 : else
3133 : {
3134 0 : ChipLogProgress(Controller, "Performing next commissioning step '%s' with completion status = '%s'", StageToString(step),
3135 : params.GetCompletionStatus().err.AsString());
3136 : }
3137 :
3138 0 : if (mPairingDelegate)
3139 : {
3140 0 : mPairingDelegate->OnCommissioningStageStart(PeerId(GetCompressedFabricId(), proxy->GetDeviceId()), step);
3141 : }
3142 :
3143 0 : mCommissioningStepTimeout = timeout;
3144 0 : mCommissioningStage = step;
3145 0 : mCommissioningDelegate = delegate;
3146 0 : mDeviceBeingCommissioned = proxy;
3147 :
3148 : // TODO: Extend timeouts to the DAC and Opcert requests.
3149 : // TODO(cecille): We probably want something better than this for breadcrumbs.
3150 0 : uint64_t breadcrumb = static_cast<uint64_t>(step);
3151 :
3152 0 : switch (step)
3153 : {
3154 0 : case CommissioningStage::kArmFailsafe: {
3155 0 : VerifyOrDie(endpoint == kRootEndpointId);
3156 : // Make sure the fail-safe value we set here actually ends up being used
3157 : // no matter what.
3158 0 : proxy->SetFailSafeExpirationTimestamp(System::Clock::kZero);
3159 0 : VerifyOrDie(ExtendArmFailSafeInternal(proxy, step, params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout),
3160 : timeout, OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false));
3161 : }
3162 0 : break;
3163 0 : case CommissioningStage::kReadCommissioningInfo: {
3164 0 : VerifyOrDie(endpoint == kRootEndpointId);
3165 0 : ChipLogProgress(Controller, "Sending read requests for commissioning information");
3166 :
3167 : // Allocate a ClusterStateCache to collect the data from our read requests.
3168 : // The cache will be released in:
3169 : // - SendCommissioningReadRequest when failing to send a read request.
3170 : // - FinishReadingCommissioningInfo when the ReadCommissioningInfo stage is completed.
3171 : // - CancelCommissioningInteractions
3172 0 : mAttributeCache = Platform::MakeUnique<app::ClusterStateCache>(*this);
3173 :
3174 : // Generally we need to make more than one read request, because as per spec a server only
3175 : // supports a limited number of paths per Read Interaction. Because the actual number of
3176 : // interactions we end up performing is dynamic, we track all of them within a single
3177 : // commissioning stage.
3178 0 : mReadCommissioningInfoProgress = 0;
3179 0 : ContinueReadingCommissioningInfo(params); // Note: assume params == delegate.GetCommissioningParameters()
3180 0 : break;
3181 : }
3182 0 : case CommissioningStage::kConfigureUTCTime: {
3183 0 : TimeSynchronization::Commands::SetUTCTime::Type request;
3184 0 : uint64_t kChipEpochUsSinceUnixEpoch = static_cast<uint64_t>(kChipEpochSecondsSinceUnixEpoch) * chip::kMicrosecondsPerSecond;
3185 : System::Clock::Microseconds64 utcTime;
3186 0 : if (System::SystemClock().GetClock_RealTime(utcTime) != CHIP_NO_ERROR || utcTime.count() <= kChipEpochUsSinceUnixEpoch)
3187 : {
3188 : // We have no time to give, but that's OK, just complete this stage
3189 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3190 0 : return;
3191 : }
3192 :
3193 0 : request.UTCTime = utcTime.count() - kChipEpochUsSinceUnixEpoch;
3194 : // For now, we assume a seconds granularity
3195 0 : request.granularity = TimeSynchronization::GranularityEnum::kSecondsGranularity;
3196 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnSetUTCError, endpoint, timeout);
3197 0 : if (err != CHIP_NO_ERROR)
3198 : {
3199 : // We won't get any async callbacks here, so just complete our stage.
3200 0 : ChipLogError(Controller, "Failed to send SetUTCTime command: %" CHIP_ERROR_FORMAT, err.Format());
3201 0 : CommissioningStageComplete(err);
3202 0 : return;
3203 : }
3204 0 : break;
3205 : }
3206 0 : case CommissioningStage::kConfigureTimeZone: {
3207 0 : if (!params.GetTimeZone().HasValue())
3208 : {
3209 0 : ChipLogError(Controller, "ConfigureTimeZone stage called with no time zone data");
3210 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3211 0 : return;
3212 : }
3213 0 : TimeSynchronization::Commands::SetTimeZone::Type request;
3214 0 : request.timeZone = params.GetTimeZone().Value();
3215 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetTimeZoneResponse, OnBasicFailure, endpoint, timeout);
3216 0 : if (err != CHIP_NO_ERROR)
3217 : {
3218 : // We won't get any async callbacks here, so just complete our stage.
3219 0 : ChipLogError(Controller, "Failed to send SetTimeZone command: %" CHIP_ERROR_FORMAT, err.Format());
3220 0 : CommissioningStageComplete(err);
3221 0 : return;
3222 : }
3223 0 : break;
3224 : }
3225 0 : case CommissioningStage::kConfigureDSTOffset: {
3226 0 : if (!params.GetDSTOffsets().HasValue())
3227 : {
3228 0 : ChipLogError(Controller, "ConfigureDSTOffset stage called with no DST data");
3229 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3230 0 : return;
3231 : }
3232 0 : TimeSynchronization::Commands::SetDSTOffset::Type request;
3233 0 : request.DSTOffset = params.GetDSTOffsets().Value();
3234 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3235 0 : if (err != CHIP_NO_ERROR)
3236 : {
3237 : // We won't get any async callbacks here, so just complete our stage.
3238 0 : ChipLogError(Controller, "Failed to send SetDSTOffset command: %" CHIP_ERROR_FORMAT, err.Format());
3239 0 : CommissioningStageComplete(err);
3240 0 : return;
3241 : }
3242 0 : break;
3243 : }
3244 0 : case CommissioningStage::kConfigureDefaultNTP: {
3245 0 : if (!params.GetDefaultNTP().HasValue())
3246 : {
3247 0 : ChipLogError(Controller, "ConfigureDefaultNTP stage called with no default NTP data");
3248 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3249 0 : return;
3250 : }
3251 0 : TimeSynchronization::Commands::SetDefaultNTP::Type request;
3252 0 : request.defaultNTP = params.GetDefaultNTP().Value();
3253 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3254 0 : if (err != CHIP_NO_ERROR)
3255 : {
3256 : // We won't get any async callbacks here, so just complete our stage.
3257 0 : ChipLogError(Controller, "Failed to send SetDefaultNTP command: %" CHIP_ERROR_FORMAT, err.Format());
3258 0 : CommissioningStageComplete(err);
3259 0 : return;
3260 : }
3261 0 : break;
3262 : }
3263 0 : case CommissioningStage::kScanNetworks: {
3264 0 : NetworkCommissioning::Commands::ScanNetworks::Type request;
3265 0 : if (params.GetWiFiCredentials().HasValue())
3266 : {
3267 0 : request.ssid.Emplace(params.GetWiFiCredentials().Value().ssid);
3268 : }
3269 0 : request.breadcrumb.Emplace(breadcrumb);
3270 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnScanNetworksResponse, OnScanNetworksFailure, endpoint, timeout);
3271 0 : if (err != CHIP_NO_ERROR)
3272 : {
3273 : // We won't get any async callbacks here, so just complete our stage.
3274 0 : ChipLogError(Controller, "Failed to send ScanNetworks command: %" CHIP_ERROR_FORMAT, err.Format());
3275 0 : CommissioningStageComplete(err);
3276 0 : return;
3277 : }
3278 0 : break;
3279 : }
3280 0 : case CommissioningStage::kNeedsNetworkCreds: {
3281 : // Nothing to do.
3282 : //
3283 : // Either we did a scan and the OnScanNetworksSuccess and OnScanNetworksFailure
3284 : // callbacks will tell the DevicePairingDelegate that network credentials are
3285 : // needed, or we asked the DevicePairingDelegate for network credentials
3286 : // explicitly, and are waiting for it to get back to us.
3287 0 : break;
3288 : }
3289 0 : case CommissioningStage::kConfigRegulatory: {
3290 : // TODO(cecille): Worthwhile to keep this around as part of the class?
3291 : // TODO(cecille): Where is the country config actually set?
3292 0 : ChipLogProgress(Controller, "Setting Regulatory Config");
3293 : auto capability =
3294 0 : params.GetLocationCapability().ValueOr(app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor);
3295 : app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum regulatoryConfig;
3296 : // Value is only switchable on the devices with indoor/outdoor capability
3297 0 : if (capability == app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kIndoorOutdoor)
3298 : {
3299 : // If the device supports indoor and outdoor configs, use the setting from the commissioner, otherwise fall back to
3300 : // the current device setting then to outdoor (most restrictive)
3301 0 : if (params.GetDeviceRegulatoryLocation().HasValue())
3302 : {
3303 0 : regulatoryConfig = params.GetDeviceRegulatoryLocation().Value();
3304 0 : ChipLogProgress(Controller, "Setting regulatory config to %u from commissioner override",
3305 : static_cast<uint8_t>(regulatoryConfig));
3306 : }
3307 0 : else if (params.GetDefaultRegulatoryLocation().HasValue())
3308 : {
3309 0 : regulatoryConfig = params.GetDefaultRegulatoryLocation().Value();
3310 0 : ChipLogProgress(Controller, "No regulatory config supplied by controller, leaving as device default (%u)",
3311 : static_cast<uint8_t>(regulatoryConfig));
3312 : }
3313 : else
3314 : {
3315 0 : regulatoryConfig = app::Clusters::GeneralCommissioning::RegulatoryLocationTypeEnum::kOutdoor;
3316 0 : ChipLogProgress(Controller, "No overrride or device regulatory config supplied, setting to outdoor");
3317 : }
3318 : }
3319 : else
3320 : {
3321 0 : ChipLogProgress(Controller, "Device does not support configurable regulatory location");
3322 0 : regulatoryConfig = capability;
3323 : }
3324 :
3325 0 : CharSpan countryCode;
3326 0 : const auto & providedCountryCode = params.GetCountryCode();
3327 0 : if (providedCountryCode.HasValue())
3328 : {
3329 0 : countryCode = providedCountryCode.Value();
3330 : }
3331 : else
3332 : {
3333 : // Default to "XX", for lack of anything better.
3334 0 : countryCode = "XX"_span;
3335 : }
3336 :
3337 0 : GeneralCommissioning::Commands::SetRegulatoryConfig::Type request;
3338 0 : request.newRegulatoryConfig = regulatoryConfig;
3339 0 : request.countryCode = countryCode;
3340 0 : request.breadcrumb = breadcrumb;
3341 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnSetRegulatoryConfigResponse, OnBasicFailure, endpoint, timeout);
3342 0 : if (err != CHIP_NO_ERROR)
3343 : {
3344 : // We won't get any async callbacks here, so just complete our stage.
3345 0 : ChipLogError(Controller, "Failed to send SetRegulatoryConfig command: %" CHIP_ERROR_FORMAT, err.Format());
3346 0 : CommissioningStageComplete(err);
3347 0 : return;
3348 : }
3349 : }
3350 0 : break;
3351 0 : case CommissioningStage::kConfigureTCAcknowledgments: {
3352 0 : ChipLogProgress(Controller, "Setting Terms and Conditions");
3353 :
3354 0 : if (!params.GetTermsAndConditionsAcknowledgement().HasValue())
3355 : {
3356 0 : ChipLogProgress(Controller, "Setting Terms and Conditions: Skipped");
3357 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3358 0 : return;
3359 : }
3360 :
3361 0 : GeneralCommissioning::Commands::SetTCAcknowledgements::Type request;
3362 0 : TermsAndConditionsAcknowledgement termsAndConditionsAcknowledgement = params.GetTermsAndConditionsAcknowledgement().Value();
3363 0 : request.TCUserResponse = termsAndConditionsAcknowledgement.acceptedTermsAndConditions;
3364 0 : request.TCVersion = termsAndConditionsAcknowledgement.acceptedTermsAndConditionsVersion;
3365 :
3366 0 : ChipLogProgress(Controller, "Setting Terms and Conditions: %hu, %hu", request.TCUserResponse, request.TCVersion);
3367 : CHIP_ERROR err =
3368 0 : SendCommissioningCommand(proxy, request, OnSetTCAcknowledgementsResponse, OnBasicFailure, endpoint, timeout);
3369 0 : if (err != CHIP_NO_ERROR)
3370 : {
3371 0 : ChipLogError(Controller, "Failed to send SetTCAcknowledgements command: %" CHIP_ERROR_FORMAT, err.Format());
3372 0 : CommissioningStageComplete(err);
3373 0 : return;
3374 : }
3375 0 : break;
3376 : }
3377 0 : case CommissioningStage::kSendPAICertificateRequest: {
3378 0 : ChipLogProgress(Controller, "Sending request for PAI certificate");
3379 0 : CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kPAI, timeout);
3380 0 : if (err != CHIP_NO_ERROR)
3381 : {
3382 : // We won't get any async callbacks here, so just complete our stage.
3383 0 : ChipLogError(Controller, "Failed to send CertificateChainRequest command to get PAI: %" CHIP_ERROR_FORMAT,
3384 : err.Format());
3385 0 : CommissioningStageComplete(err);
3386 0 : return;
3387 : }
3388 0 : break;
3389 : }
3390 0 : case CommissioningStage::kSendDACCertificateRequest: {
3391 0 : ChipLogProgress(Controller, "Sending request for DAC certificate");
3392 0 : CHIP_ERROR err = SendCertificateChainRequestCommand(proxy, CertificateType::kDAC, timeout);
3393 0 : if (err != CHIP_NO_ERROR)
3394 : {
3395 : // We won't get any async callbacks here, so just complete our stage.
3396 0 : ChipLogError(Controller, "Failed to send CertificateChainRequest command to get DAC: %" CHIP_ERROR_FORMAT,
3397 : err.Format());
3398 0 : CommissioningStageComplete(err);
3399 0 : return;
3400 : }
3401 0 : break;
3402 : }
3403 0 : case CommissioningStage::kSendAttestationRequest: {
3404 0 : ChipLogProgress(Controller, "Sending Attestation Request to the device.");
3405 0 : if (!params.GetAttestationNonce().HasValue())
3406 : {
3407 0 : ChipLogError(Controller, "No attestation nonce found");
3408 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3409 0 : return;
3410 : }
3411 0 : CHIP_ERROR err = SendAttestationRequestCommand(proxy, params.GetAttestationNonce().Value(), timeout);
3412 0 : if (err != CHIP_NO_ERROR)
3413 : {
3414 : // We won't get any async callbacks here, so just complete our stage.
3415 0 : ChipLogError(Controller, "Failed to send AttestationRequest command: %" CHIP_ERROR_FORMAT, err.Format());
3416 0 : CommissioningStageComplete(err);
3417 0 : return;
3418 : }
3419 0 : break;
3420 : }
3421 0 : case CommissioningStage::kAttestationVerification: {
3422 0 : ChipLogProgress(Controller, "Verifying Device Attestation information received from the device");
3423 0 : if (IsAttestationInformationMissing(params))
3424 : {
3425 0 : ChipLogError(Controller, "Missing attestation information");
3426 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3427 0 : return;
3428 : }
3429 :
3430 : DeviceAttestationVerifier::AttestationInfo info(
3431 0 : params.GetAttestationElements().Value(),
3432 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
3433 0 : params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
3434 0 : params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
3435 :
3436 0 : CHIP_ERROR err = ValidateAttestationInfo(info);
3437 0 : if (err != CHIP_NO_ERROR)
3438 : {
3439 0 : ChipLogError(Controller, "Error validating attestation information: %" CHIP_ERROR_FORMAT, err.Format());
3440 0 : CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
3441 0 : return;
3442 : }
3443 : }
3444 0 : break;
3445 0 : case CommissioningStage::kAttestationRevocationCheck: {
3446 0 : ChipLogProgress(Controller, "Verifying the device's DAC chain revocation status");
3447 0 : if (IsAttestationInformationMissing(params))
3448 : {
3449 0 : ChipLogError(Controller, "Missing attestation information");
3450 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3451 0 : return;
3452 : }
3453 :
3454 : DeviceAttestationVerifier::AttestationInfo info(
3455 0 : params.GetAttestationElements().Value(),
3456 0 : proxy->GetSecureSession().Value()->AsSecureSession()->GetCryptoContext().GetAttestationChallenge(),
3457 0 : params.GetAttestationSignature().Value(), params.GetPAI().Value(), params.GetDAC().Value(),
3458 0 : params.GetAttestationNonce().Value(), params.GetRemoteVendorId().Value(), params.GetRemoteProductId().Value());
3459 :
3460 0 : CHIP_ERROR err = CheckForRevokedDACChain(info);
3461 :
3462 0 : if (err != CHIP_NO_ERROR)
3463 : {
3464 0 : ChipLogError(Controller, "Error validating device's DAC chain revocation status: %" CHIP_ERROR_FORMAT, err.Format());
3465 0 : CommissioningStageComplete(CHIP_ERROR_FAILED_DEVICE_ATTESTATION);
3466 0 : return;
3467 : }
3468 : }
3469 0 : break;
3470 0 : case CommissioningStage::kJCMTrustVerification: {
3471 0 : CHIP_ERROR err = StartJCMTrustVerification(proxy);
3472 0 : if (err != CHIP_NO_ERROR)
3473 : {
3474 0 : ChipLogError(Controller, "Failed to start JCM Trust Verification: %" CHIP_ERROR_FORMAT, err.Format());
3475 0 : CommissioningStageComplete(err);
3476 0 : return;
3477 : }
3478 0 : break;
3479 : }
3480 :
3481 0 : case CommissioningStage::kSendOpCertSigningRequest: {
3482 0 : if (!params.GetCSRNonce().HasValue())
3483 : {
3484 0 : ChipLogError(Controller, "No CSR nonce found");
3485 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3486 0 : return;
3487 : }
3488 0 : CHIP_ERROR err = SendOperationalCertificateSigningRequestCommand(proxy, params.GetCSRNonce().Value(), timeout);
3489 0 : if (err != CHIP_NO_ERROR)
3490 : {
3491 : // We won't get any async callbacks here, so just complete our stage.
3492 0 : ChipLogError(Controller, "Failed to send CSR request: %" CHIP_ERROR_FORMAT, err.Format());
3493 0 : CommissioningStageComplete(err);
3494 0 : return;
3495 : }
3496 0 : break;
3497 : }
3498 0 : case CommissioningStage::kValidateCSR: {
3499 0 : if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetCSRNonce().HasValue())
3500 : {
3501 0 : ChipLogError(Controller, "Unable to validate CSR");
3502 0 : return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3503 : }
3504 : // This is non-blocking, so send the callback immediately.
3505 0 : CHIP_ERROR err = ValidateCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
3506 0 : params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
3507 0 : params.GetCSRNonce().Value());
3508 0 : if (err != CHIP_NO_ERROR)
3509 : {
3510 0 : ChipLogError(Controller, "Failed to validate CSR: %" CHIP_ERROR_FORMAT, err.Format());
3511 : }
3512 0 : CommissioningStageComplete(err);
3513 0 : return;
3514 : }
3515 : break;
3516 0 : case CommissioningStage::kGenerateNOCChain: {
3517 0 : if (!params.GetNOCChainGenerationParameters().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
3518 0 : !params.GetCSRNonce().HasValue())
3519 : {
3520 0 : ChipLogError(Controller, "Unable to generate NOC chain parameters");
3521 0 : return CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3522 : }
3523 0 : CHIP_ERROR err = ProcessCSR(proxy, params.GetNOCChainGenerationParameters().Value().nocsrElements,
3524 0 : params.GetNOCChainGenerationParameters().Value().signature, params.GetDAC().Value(),
3525 0 : params.GetPAI().Value(), params.GetCSRNonce().Value());
3526 0 : if (err != CHIP_NO_ERROR)
3527 : {
3528 0 : ChipLogError(Controller, "Failed to process Operational Certificate Signing Request (CSR): %" CHIP_ERROR_FORMAT,
3529 : err.Format());
3530 0 : CommissioningStageComplete(err);
3531 0 : return;
3532 : }
3533 : }
3534 0 : break;
3535 0 : case CommissioningStage::kSendTrustedRootCert: {
3536 0 : if (!params.GetRootCert().HasValue() || !params.GetNoc().HasValue())
3537 : {
3538 0 : ChipLogError(Controller, "No trusted root cert or NOC specified");
3539 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3540 0 : return;
3541 : }
3542 0 : CHIP_ERROR err = SendTrustedRootCertificate(proxy, params.GetRootCert().Value(), timeout);
3543 0 : if (err != CHIP_NO_ERROR)
3544 : {
3545 0 : ChipLogError(Controller, "Error sending trusted root certificate: %" CHIP_ERROR_FORMAT, err.Format());
3546 0 : CommissioningStageComplete(err);
3547 0 : return;
3548 : }
3549 :
3550 0 : err = proxy->SetPeerId(params.GetRootCert().Value(), params.GetNoc().Value());
3551 0 : if (err != CHIP_NO_ERROR)
3552 : {
3553 0 : ChipLogError(Controller, "Error setting peer id: %" CHIP_ERROR_FORMAT, err.Format());
3554 0 : CommissioningStageComplete(err);
3555 0 : return;
3556 : }
3557 0 : if (!IsOperationalNodeId(proxy->GetDeviceId()))
3558 : {
3559 0 : ChipLogError(Controller, "Given node ID is not an operational node ID");
3560 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3561 0 : return;
3562 : }
3563 : }
3564 0 : break;
3565 0 : case CommissioningStage::kSendNOC: {
3566 0 : if (!params.GetNoc().HasValue() || !params.GetIpk().HasValue() || !params.GetAdminSubject().HasValue())
3567 : {
3568 0 : ChipLogError(Controller, "AddNOC contents not specified");
3569 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3570 0 : return;
3571 : }
3572 0 : CHIP_ERROR err = SendOperationalCertificate(proxy, params.GetNoc().Value(), params.GetIcac(), params.GetIpk().Value(),
3573 0 : params.GetAdminSubject().Value(), timeout);
3574 0 : if (err != CHIP_NO_ERROR)
3575 : {
3576 : // We won't get any async callbacks here, so just complete our stage.
3577 0 : ChipLogError(Controller, "Error installing operational certificate with AddNOC: %" CHIP_ERROR_FORMAT, err.Format());
3578 0 : CommissioningStageComplete(err);
3579 0 : return;
3580 : }
3581 0 : break;
3582 : }
3583 0 : case CommissioningStage::kConfigureTrustedTimeSource: {
3584 0 : if (!params.GetTrustedTimeSource().HasValue())
3585 : {
3586 0 : ChipLogError(Controller, "ConfigureTrustedTimeSource stage called with no trusted time source data!");
3587 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3588 0 : return;
3589 : }
3590 0 : TimeSynchronization::Commands::SetTrustedTimeSource::Type request;
3591 0 : request.trustedTimeSource = params.GetTrustedTimeSource().Value();
3592 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnBasicSuccess, OnBasicFailure, endpoint, timeout);
3593 0 : if (err != CHIP_NO_ERROR)
3594 : {
3595 : // We won't get any async callbacks here, so just complete our stage.
3596 0 : ChipLogError(Controller, "Failed to send SendTrustedTimeSource command: %" CHIP_ERROR_FORMAT, err.Format());
3597 0 : CommissioningStageComplete(err);
3598 0 : return;
3599 : }
3600 0 : break;
3601 : }
3602 0 : case CommissioningStage::kRequestWiFiCredentials: {
3603 0 : if (!mPairingDelegate)
3604 : {
3605 0 : ChipLogError(Controller, "Unable to request Wi-Fi credentials: no delegate available");
3606 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE);
3607 0 : return;
3608 : }
3609 :
3610 0 : CHIP_ERROR err = mPairingDelegate->WiFiCredentialsNeeded(endpoint);
3611 0 : CommissioningStageComplete(err);
3612 0 : return;
3613 : }
3614 0 : case CommissioningStage::kRequestThreadCredentials: {
3615 0 : if (!mPairingDelegate)
3616 : {
3617 0 : ChipLogError(Controller, "Unable to request Thread credentials: no delegate available");
3618 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE);
3619 0 : return;
3620 : }
3621 :
3622 0 : CHIP_ERROR err = mPairingDelegate->ThreadCredentialsNeeded(endpoint);
3623 0 : CommissioningStageComplete(err);
3624 0 : return;
3625 : }
3626 0 : case CommissioningStage::kWiFiNetworkSetup: {
3627 0 : if (!params.GetWiFiCredentials().HasValue())
3628 : {
3629 0 : ChipLogError(Controller, "No wifi credentials specified");
3630 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3631 0 : return;
3632 : }
3633 :
3634 0 : NetworkCommissioning::Commands::AddOrUpdateWiFiNetwork::Type request;
3635 0 : request.ssid = params.GetWiFiCredentials().Value().ssid;
3636 0 : request.credentials = params.GetWiFiCredentials().Value().credentials;
3637 0 : request.breadcrumb.Emplace(breadcrumb);
3638 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3639 0 : if (err != CHIP_NO_ERROR)
3640 : {
3641 : // We won't get any async callbacks here, so just complete our stage.
3642 0 : ChipLogError(Controller, "Failed to send AddOrUpdateWiFiNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3643 0 : CommissioningStageComplete(err);
3644 0 : return;
3645 : }
3646 : }
3647 0 : break;
3648 0 : case CommissioningStage::kThreadNetworkSetup: {
3649 0 : if (!params.GetThreadOperationalDataset().HasValue())
3650 : {
3651 0 : ChipLogError(Controller, "No thread credentials specified");
3652 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3653 0 : return;
3654 : }
3655 0 : NetworkCommissioning::Commands::AddOrUpdateThreadNetwork::Type request;
3656 0 : request.operationalDataset = params.GetThreadOperationalDataset().Value();
3657 0 : request.breadcrumb.Emplace(breadcrumb);
3658 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3659 0 : if (err != CHIP_NO_ERROR)
3660 : {
3661 : // We won't get any async callbacks here, so just complete our stage.
3662 0 : ChipLogError(Controller, "Failed to send AddOrUpdateThreadNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3663 0 : CommissioningStageComplete(err);
3664 0 : return;
3665 : }
3666 : }
3667 0 : break;
3668 0 : case CommissioningStage::kFailsafeBeforeWiFiEnable:
3669 : FALLTHROUGH;
3670 : case CommissioningStage::kFailsafeBeforeThreadEnable:
3671 : // Before we try to do network enablement, make sure that our fail-safe
3672 : // is set far enough out that we can later try to do operational
3673 : // discovery without it timing out.
3674 0 : ExtendFailsafeBeforeNetworkEnable(proxy, params, step);
3675 0 : break;
3676 0 : case CommissioningStage::kWiFiNetworkEnable: {
3677 0 : if (!params.GetWiFiCredentials().HasValue())
3678 : {
3679 0 : ChipLogError(Controller, "No wifi credentials specified");
3680 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3681 0 : return;
3682 : }
3683 0 : NetworkCommissioning::Commands::ConnectNetwork::Type request;
3684 0 : request.networkID = params.GetWiFiCredentials().Value().ssid;
3685 0 : request.breadcrumb.Emplace(breadcrumb);
3686 :
3687 0 : CHIP_ERROR err = CHIP_NO_ERROR;
3688 0 : ChipLogProgress(Controller, "SendCommand kWiFiNetworkEnable, supportsConcurrentConnection=%s",
3689 : params.GetSupportsConcurrentConnection().HasValue()
3690 : ? (params.GetSupportsConcurrentConnection().Value() ? "true" : "false")
3691 : : "missing");
3692 0 : err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
3693 :
3694 0 : if (err != CHIP_NO_ERROR)
3695 : {
3696 : // We won't get any async callbacks here, so just complete our stage.
3697 0 : ChipLogError(Controller, "Failed to send WiFi ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3698 0 : CommissioningStageComplete(err);
3699 0 : return;
3700 : }
3701 : }
3702 0 : break;
3703 0 : case CommissioningStage::kThreadNetworkEnable: {
3704 0 : ByteSpan extendedPanId;
3705 0 : chip::Thread::OperationalDataset operationalDataset;
3706 0 : if (!params.GetThreadOperationalDataset().HasValue() ||
3707 0 : operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
3708 0 : operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
3709 : {
3710 0 : ChipLogError(Controller, "Invalid Thread operational dataset configured at commissioner!");
3711 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3712 0 : return;
3713 : }
3714 0 : NetworkCommissioning::Commands::ConnectNetwork::Type request;
3715 0 : request.networkID = extendedPanId;
3716 0 : request.breadcrumb.Emplace(breadcrumb);
3717 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnConnectNetworkResponse, OnBasicFailure, endpoint, timeout);
3718 0 : if (err != CHIP_NO_ERROR)
3719 : {
3720 : // We won't get any async callbacks here, so just complete our stage.
3721 0 : ChipLogError(Controller, "Failed to send Thread ConnectNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3722 0 : CommissioningStageComplete(err);
3723 0 : return;
3724 : }
3725 : }
3726 0 : break;
3727 0 : case CommissioningStage::kICDGetRegistrationInfo: {
3728 0 : GetPairingDelegate()->OnICDRegistrationInfoRequired();
3729 0 : return;
3730 : }
3731 : break;
3732 0 : case CommissioningStage::kICDRegistration: {
3733 0 : IcdManagement::Commands::RegisterClient::Type request;
3734 :
3735 0 : if (!(params.GetICDCheckInNodeId().HasValue() && params.GetICDMonitoredSubject().HasValue() &&
3736 0 : params.GetICDSymmetricKey().HasValue()))
3737 : {
3738 0 : ChipLogError(Controller, "No ICD Registration information provided!");
3739 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE);
3740 0 : return;
3741 : }
3742 :
3743 0 : request.checkInNodeID = params.GetICDCheckInNodeId().Value();
3744 0 : request.monitoredSubject = params.GetICDMonitoredSubject().Value();
3745 0 : request.key = params.GetICDSymmetricKey().Value();
3746 :
3747 : CHIP_ERROR err =
3748 0 : SendCommissioningCommand(proxy, request, OnICDManagementRegisterClientResponse, OnBasicFailure, endpoint, timeout);
3749 0 : if (err != CHIP_NO_ERROR)
3750 : {
3751 : // We won't get any async callbacks here, so just complete our stage.
3752 0 : ChipLogError(Controller, "Failed to send IcdManagement.RegisterClient command: %" CHIP_ERROR_FORMAT, err.Format());
3753 0 : CommissioningStageComplete(err);
3754 0 : return;
3755 : }
3756 : }
3757 0 : break;
3758 0 : case CommissioningStage::kEvictPreviousCaseSessions: {
3759 0 : auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
3760 :
3761 : // If we ever had a commissioned device with this node ID before, we may
3762 : // have stale sessions to it. Make sure we don't re-use any of those,
3763 : // because clearly they are not related to this new device we are
3764 : // commissioning. We only care about sessions we might reuse, so just
3765 : // clearing the ones associated with our fabric index is good enough and
3766 : // we don't need to worry about ExpireAllSessionsOnLogicalFabric.
3767 0 : mSystemState->SessionMgr()->ExpireAllSessions(scopedPeerId);
3768 : #if CHIP_CONFIG_ENABLE_ADDRESS_RESOLVE_FALLBACK
3769 : Transport::Type type = proxy->GetSecureSession().Value()->AsSecureSession()->GetPeerAddress().GetTransportType();
3770 : // cache address if we are connected over TCP or UDP
3771 : if (type == Transport::Type::kTcp || type == Transport::Type::kUdp)
3772 : {
3773 : // Store the address we are using for PASE as a fallback for operational discovery
3774 : ResolveResult result;
3775 : result.address = proxy->GetSecureSession().Value()->AsSecureSession()->GetPeerAddress();
3776 : result.mrpRemoteConfig = proxy->GetSecureSession().Value()->GetRemoteMRPConfig();
3777 : // Note: supportsTcpClient and supportsTcpServer are device capabilities from DNS-SD TXT records,
3778 : // not derivable from the transport type. They remain false (default) here.
3779 : // TODO: Consider passing these through RendezvousParameters if available from SetUpCodePairer.
3780 : mFallbackOperationalResolveResult.SetValue(result);
3781 : }
3782 : #endif // CHIP_CONFIG_ENABLE_ADDRESS_RESOLVE_FALLBACK
3783 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3784 0 : return;
3785 : }
3786 0 : case CommissioningStage::kFindOperationalForStayActive:
3787 : case CommissioningStage::kFindOperationalForCommissioningComplete: {
3788 : // If there is an error, CommissioningStageComplete will be called from OnDeviceConnectionFailureFn.
3789 0 : auto scopedPeerId = GetPeerScopedId(proxy->GetDeviceId());
3790 : MATTER_LOG_METRIC_BEGIN(kMetricDeviceCommissioningOperationalSetup);
3791 0 : mSystemState->CASESessionMgr()->FindOrEstablishSession(
3792 : scopedPeerId, &mOnDeviceConnectedCallback, &mOnDeviceConnectionFailureCallback,
3793 : #if CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
3794 : /* attemptCount = */ 3, &mOnDeviceConnectionRetryCallback,
3795 : #endif // CHIP_DEVICE_CONFIG_ENABLE_AUTOMATIC_CASE_RETRIES
3796 0 : TransportPayloadCapability::kMRPPayload, mFallbackOperationalResolveResult);
3797 : }
3798 0 : break;
3799 0 : case CommissioningStage::kPrimaryOperationalNetworkFailed: {
3800 : // nothing to do. This stage indicates that the primary operational network failed and the network config should be
3801 : // removed later.
3802 0 : break;
3803 : }
3804 0 : case CommissioningStage::kRemoveWiFiNetworkConfig: {
3805 0 : NetworkCommissioning::Commands::RemoveNetwork::Type request;
3806 0 : request.networkID = params.GetWiFiCredentials().Value().ssid;
3807 0 : request.breadcrumb.Emplace(breadcrumb);
3808 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3809 0 : if (err != CHIP_NO_ERROR)
3810 : {
3811 : // We won't get any async callbacks here, so just complete our stage.
3812 0 : ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3813 0 : CommissioningStageComplete(err);
3814 0 : return;
3815 : }
3816 0 : break;
3817 : }
3818 0 : case CommissioningStage::kRemoveThreadNetworkConfig: {
3819 0 : ByteSpan extendedPanId;
3820 0 : chip::Thread::OperationalDataset operationalDataset;
3821 0 : if (!params.GetThreadOperationalDataset().HasValue() ||
3822 0 : operationalDataset.Init(params.GetThreadOperationalDataset().Value()) != CHIP_NO_ERROR ||
3823 0 : operationalDataset.GetExtendedPanIdAsByteSpan(extendedPanId) != CHIP_NO_ERROR)
3824 : {
3825 0 : ChipLogError(Controller, "Invalid Thread operational dataset configured at commissioner!");
3826 0 : CommissioningStageComplete(CHIP_ERROR_INVALID_ARGUMENT);
3827 0 : return;
3828 : }
3829 0 : NetworkCommissioning::Commands::RemoveNetwork::Type request;
3830 0 : request.networkID = extendedPanId;
3831 0 : request.breadcrumb.Emplace(breadcrumb);
3832 0 : CHIP_ERROR err = SendCommissioningCommand(proxy, request, OnNetworkConfigResponse, OnBasicFailure, endpoint, timeout);
3833 0 : if (err != CHIP_NO_ERROR)
3834 : {
3835 : // We won't get any async callbacks here, so just complete our stage.
3836 0 : ChipLogError(Controller, "Failed to send RemoveNetwork command: %" CHIP_ERROR_FORMAT, err.Format());
3837 0 : CommissioningStageComplete(err);
3838 0 : return;
3839 : }
3840 0 : break;
3841 : }
3842 0 : case CommissioningStage::kICDSendStayActive: {
3843 0 : if (!(params.GetICDStayActiveDurationMsec().HasValue()))
3844 : {
3845 0 : ChipLogProgress(Controller, "Skipping kICDSendStayActive");
3846 0 : CommissioningStageComplete(CHIP_NO_ERROR);
3847 0 : return;
3848 : }
3849 :
3850 : // StayActive Command happens over CASE Connection
3851 0 : IcdManagement::Commands::StayActiveRequest::Type request;
3852 0 : request.stayActiveDuration = params.GetICDStayActiveDurationMsec().Value();
3853 0 : ChipLogError(Controller, "Send ICD StayActive with Duration %u", request.stayActiveDuration);
3854 : CHIP_ERROR err =
3855 0 : SendCommissioningCommand(proxy, request, OnICDManagementStayActiveResponse, OnBasicFailure, endpoint, timeout);
3856 0 : if (err != CHIP_NO_ERROR)
3857 : {
3858 : // We won't get any async callbacks here, so just complete our stage.
3859 0 : ChipLogError(Controller, "Failed to send IcdManagement.StayActive command: %" CHIP_ERROR_FORMAT, err.Format());
3860 0 : CommissioningStageComplete(err);
3861 0 : return;
3862 : }
3863 : }
3864 0 : break;
3865 0 : case CommissioningStage::kSendComplete: {
3866 : // CommissioningComplete command happens over the CASE connection.
3867 : GeneralCommissioning::Commands::CommissioningComplete::Type request;
3868 : CHIP_ERROR err =
3869 0 : SendCommissioningCommand(proxy, request, OnCommissioningCompleteResponse, OnBasicFailure, endpoint, timeout);
3870 0 : if (err != CHIP_NO_ERROR)
3871 : {
3872 : // We won't get any async callbacks here, so just complete our stage.
3873 0 : ChipLogError(Controller, "Failed to send CommissioningComplete command: %" CHIP_ERROR_FORMAT, err.Format());
3874 0 : CommissioningStageComplete(err);
3875 0 : return;
3876 : }
3877 : }
3878 0 : break;
3879 : #if CHIP_DEVICE_CONFIG_ENABLE_NFC_BASED_COMMISSIONING
3880 : case CommissioningStage::kUnpoweredPhaseComplete:
3881 : ChipLogProgress(Controller, "Completed unpowered commissioning phase, marking commissioning as complete");
3882 : CommissioningStageComplete(CHIP_NO_ERROR);
3883 : break;
3884 : #endif
3885 0 : case CommissioningStage::kCleanup:
3886 0 : CleanupCommissioning(proxy, proxy->GetDeviceId(), params.GetCompletionStatus());
3887 0 : break;
3888 0 : case CommissioningStage::kError:
3889 0 : mCommissioningStage = CommissioningStage::kSecurePairing;
3890 0 : break;
3891 0 : case CommissioningStage::kSecurePairing:
3892 0 : break;
3893 : }
3894 : }
3895 :
3896 0 : void DeviceCommissioner::ExtendFailsafeBeforeNetworkEnable(DeviceProxy * device, CommissioningParameters & params,
3897 : CommissioningStage step)
3898 : {
3899 0 : auto * commissioneeDevice = FindCommissioneeDevice(device->GetDeviceId());
3900 0 : if (device != commissioneeDevice)
3901 : {
3902 : // Not a commissionee device; just return.
3903 0 : ChipLogError(Controller, "Trying to extend fail-safe for an unknown commissionee with device id " ChipLogFormatX64,
3904 : ChipLogValueX64(device->GetDeviceId()));
3905 0 : CommissioningStageComplete(CHIP_ERROR_INCORRECT_STATE, CommissioningDelegate::CommissioningReport());
3906 0 : return;
3907 : }
3908 :
3909 : // Try to make sure we have at least enough time for our expected
3910 : // commissioning bits plus the MRP retries for a Sigma1.
3911 0 : uint16_t failSafeTimeoutSecs = params.GetFailsafeTimerSeconds().ValueOr(kDefaultFailsafeTimeout);
3912 0 : auto sigma1Timeout = CASESession::ComputeSigma1ResponseTimeout(commissioneeDevice->GetPairing().GetRemoteMRPConfig());
3913 0 : uint16_t sigma1TimeoutSecs = std::chrono::duration_cast<System::Clock::Seconds16>(sigma1Timeout).count();
3914 0 : if (UINT16_MAX - failSafeTimeoutSecs < sigma1TimeoutSecs)
3915 : {
3916 0 : failSafeTimeoutSecs = UINT16_MAX;
3917 : }
3918 : else
3919 : {
3920 0 : failSafeTimeoutSecs = static_cast<uint16_t>(failSafeTimeoutSecs + sigma1TimeoutSecs);
3921 : }
3922 :
3923 0 : if (!ExtendArmFailSafeInternal(commissioneeDevice, step, failSafeTimeoutSecs, MakeOptional(kMinimumCommissioningStepTimeout),
3924 : OnArmFailSafe, OnBasicFailure, /* fireAndForget = */ false))
3925 : {
3926 : // A false return is fine; we don't want to make the fail-safe shorter here.
3927 0 : CommissioningStageComplete(CHIP_NO_ERROR, CommissioningDelegate::CommissioningReport());
3928 : }
3929 : }
3930 :
3931 0 : bool DeviceCommissioner::IsAttestationInformationMissing(const CommissioningParameters & params)
3932 : {
3933 0 : if (!params.GetAttestationElements().HasValue() || !params.GetAttestationSignature().HasValue() ||
3934 0 : !params.GetAttestationNonce().HasValue() || !params.GetDAC().HasValue() || !params.GetPAI().HasValue() ||
3935 0 : !params.GetRemoteVendorId().HasValue() || !params.GetRemoteProductId().HasValue())
3936 : {
3937 0 : return true;
3938 : }
3939 :
3940 0 : return false;
3941 : }
3942 :
3943 0 : CHIP_ERROR DeviceController::GetCompressedFabricIdBytes(MutableByteSpan & outBytes) const
3944 : {
3945 0 : const auto * fabricInfo = GetFabricInfo();
3946 0 : VerifyOrReturnError(fabricInfo != nullptr, CHIP_ERROR_INVALID_FABRIC_INDEX);
3947 0 : return fabricInfo->GetCompressedFabricIdBytes(outBytes);
3948 : }
3949 :
3950 0 : CHIP_ERROR DeviceController::GetRootPublicKey(Crypto::P256PublicKey & outRootPublicKey) const
3951 : {
3952 0 : const auto * fabricTable = GetFabricTable();
3953 0 : VerifyOrReturnError(fabricTable != nullptr, CHIP_ERROR_INCORRECT_STATE);
3954 0 : return fabricTable->FetchRootPubkey(mFabricIndex, outRootPublicKey);
3955 : }
3956 :
3957 0 : bool DeviceCommissioner::HasValidCommissioningMode(const Dnssd::CommissionNodeData & nodeData)
3958 : {
3959 0 : if (nodeData.commissioningMode == to_underlying(Dnssd::CommissioningMode::kDisabled))
3960 : {
3961 0 : ChipLogProgress(Controller, "Discovered device does not have an open commissioning window.");
3962 0 : return false;
3963 : }
3964 0 : return true;
3965 : }
3966 :
3967 : } // namespace Controller
3968 : } // namespace chip
|