Matter SDK Coverage Report
Current view: top level - crypto - CHIPCryptoPAL.cpp (source / functions) Coverage Total Hit
Test: SHA:b879ecb8e99e175eea0a293a888bda853da2b19c Lines: 99.2 % 514 510
Test Date: 2025-01-17 19:00:11 Functions: 100.0 % 39 39

            Line data    Source code
       1              : /*
       2              :  *
       3              :  *    Copyright (c) 2020-2022 Project CHIP Authors
       4              :  *
       5              :  *    Licensed under the Apache License, Version 2.0 (the "License");
       6              :  *    you may not use this file except in compliance with the License.
       7              :  *    You may obtain a copy of the License at
       8              :  *
       9              :  *        http://www.apache.org/licenses/LICENSE-2.0
      10              :  *
      11              :  *    Unless required by applicable law or agreed to in writing, software
      12              :  *    distributed under the License is distributed on an "AS IS" BASIS,
      13              :  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      14              :  *    See the License for the specific language governing permissions and
      15              :  *    limitations under the License.
      16              :  */
      17              : 
      18              : /**
      19              :  *    @file
      20              :  *      Platform agnostic implementation of CHIP crypto algorithms
      21              :  */
      22              : 
      23              : #include "CHIPCryptoPAL.h"
      24              : 
      25              : #include "SessionKeystore.h"
      26              : 
      27              : #include <lib/asn1/ASN1.h>
      28              : #include <lib/asn1/ASN1Macros.h>
      29              : #include <lib/core/CHIPEncoding.h>
      30              : #include <lib/support/BufferReader.h>
      31              : #include <lib/support/BufferWriter.h>
      32              : #include <lib/support/BytesToHex.h>
      33              : #include <lib/support/CodeUtils.h>
      34              : #include <lib/support/Span.h>
      35              : #include <stdint.h>
      36              : #include <string.h>
      37              : 
      38              : using chip::ByteSpan;
      39              : using chip::MutableByteSpan;
      40              : using chip::Encoding::BufferWriter;
      41              : using chip::Encoding::LittleEndian::Reader;
      42              : 
      43              : using namespace chip::ASN1;
      44              : 
      45              : namespace chip {
      46              : namespace Crypto {
      47              : namespace {
      48              : 
      49              : constexpr uint8_t kIntegerTag         = 0x02u;
      50              : constexpr uint8_t kSeqTag             = 0x30u;
      51              : constexpr size_t kMinSequenceOverhead = 1 /* tag */ + 1 /* length */ + 1 /* actual data or second length byte*/;
      52              : 
      53              : /**
      54              :  * @brief Utility to convert DER-encoded INTEGER into a raw integer buffer in big-endian order
      55              :  *        with leading zeroes if the output buffer is larger than needed.
      56              :  * @param[in] reader Reader instance from which the input will be read
      57              :  * @param[out] raw_integer_out Buffer to receive the DER-encoded integer
      58              :  * @return CHIP_ERROR_INVALID_ARGUMENT or CHIP_ERROR_BUFFER_TOO_SMALL on error, CHIP_NO_ERROR otherwise
      59              :  */
      60          368 : CHIP_ERROR ReadDerUnsignedIntegerIntoRaw(Reader & reader, MutableByteSpan raw_integer_out)
      61              : {
      62          368 :     uint8_t cur_byte = 0;
      63              : 
      64          368 :     ReturnErrorOnFailure(reader.Read8(&cur_byte).StatusCode());
      65              : 
      66              :     // We expect first tag to be INTEGER
      67          368 :     VerifyOrReturnError(cur_byte == kIntegerTag, CHIP_ERROR_INVALID_ARGUMENT);
      68              : 
      69              :     // Read the length
      70          368 :     size_t integer_len = 0;
      71          368 :     ReturnErrorOnFailure(chip::Crypto::ReadDerLength(reader, integer_len));
      72              : 
      73              :     // Clear the destination buffer, so we can blit the unsigned value into place
      74          368 :     memset(raw_integer_out.data(), 0, raw_integer_out.size());
      75              : 
      76              :     // Check for pseudo-zero to mark unsigned value
      77              :     // This means we have too large an integer (should be at most 1 byte too large), it's invalid
      78          368 :     VerifyOrReturnError(integer_len <= (raw_integer_out.size() + 1), CHIP_ERROR_INVALID_ARGUMENT);
      79              : 
      80          368 :     if (integer_len == (raw_integer_out.size() + 1u))
      81              :     {
      82              :         // Means we had a 0x00 byte stuffed due to MSB being high in original integer
      83          209 :         ReturnErrorOnFailure(reader.Read8(&cur_byte).StatusCode());
      84              : 
      85              :         // The extra byte must be a leading zero
      86          209 :         VerifyOrReturnError(cur_byte == 0, CHIP_ERROR_INVALID_ARGUMENT);
      87          209 :         --integer_len;
      88              :     }
      89              : 
      90              :     // We now have the rest of the tag that is a "minimal length" unsigned integer.
      91              :     // Blit it at the correct offset, since the order we use is MSB first for
      92              :     // both ASN.1 and EC curve raw points.
      93          368 :     size_t offset = raw_integer_out.size() - integer_len;
      94          368 :     return reader.ReadBytes(raw_integer_out.data() + offset, integer_len).StatusCode();
      95              : }
      96              : 
      97          221 : CHIP_ERROR ConvertIntegerRawToDerInternal(const ByteSpan & raw_integer, MutableByteSpan & out_der_integer,
      98              :                                           bool include_tag_and_length)
      99              : {
     100          221 :     if (raw_integer.empty() || out_der_integer.empty())
     101              :     {
     102            2 :         return CHIP_ERROR_INVALID_ARGUMENT;
     103              :     }
     104              : 
     105          219 :     Reader reader(raw_integer);
     106          219 :     BufferWriter writer(out_der_integer);
     107              : 
     108          219 :     bool needs_leading_zero_byte = false;
     109              : 
     110          219 :     uint8_t cur_byte = 0;
     111          403 :     while ((reader.Remaining() > 0) && (reader.Read8(&cur_byte).StatusCode() == CHIP_NO_ERROR) && (cur_byte == 0))
     112              :     {
     113              :         // Omit all leading zeros
     114              :     }
     115              : 
     116          219 :     if ((cur_byte & 0x80u) != 0)
     117              :     {
     118              :         // If overall MSB (from leftmost byte) is set, we will need to push out a zero to avoid it being
     119              :         // considered a negative number.
     120          105 :         needs_leading_zero_byte = true;
     121              :     }
     122              : 
     123              :     // The + 1 is to account for the last consumed byte of the loop to skip leading zeros
     124          219 :     size_t length = reader.Remaining() + 1 + (needs_leading_zero_byte ? 1 : 0);
     125              : 
     126          219 :     if (length > 127)
     127              :     {
     128              :         // We do not support length over more than 1 bytes.
     129            0 :         return CHIP_ERROR_INVALID_ARGUMENT;
     130              :     }
     131              : 
     132          219 :     if (include_tag_and_length)
     133              :     {
     134              :         // Put INTEGER tag
     135           24 :         writer.Put(kIntegerTag);
     136              : 
     137              :         // Put length over 1 byte (i.e. MSB clear)
     138           24 :         writer.Put(static_cast<uint8_t>(length));
     139              :     }
     140              : 
     141              :     // If leading zero or no more bytes remaining, must ensure we start with at least a zero byte
     142          219 :     if (needs_leading_zero_byte)
     143              :     {
     144          105 :         writer.Put(static_cast<uint8_t>(0u));
     145              :     }
     146              : 
     147              :     // Put first consumed byte from last read iteration of leading zero suppression
     148          219 :     writer.Put(cur_byte);
     149              : 
     150              :     // Fill the rest from the input in order
     151         6360 :     while (reader.Read8(&cur_byte).StatusCode() == CHIP_NO_ERROR)
     152              :     {
     153              :         // Emit all other bytes as-is
     154         6141 :         writer.Put(cur_byte);
     155              :     }
     156              : 
     157          219 :     size_t actually_written = 0;
     158          219 :     if (!writer.Fit(actually_written))
     159              :     {
     160            7 :         return CHIP_ERROR_BUFFER_TOO_SMALL;
     161              :     }
     162              : 
     163          212 :     out_der_integer = out_der_integer.SubSpan(0, actually_written);
     164              : 
     165          212 :     return CHIP_NO_ERROR;
     166              : }
     167              : 
     168              : /**
     169              :  * @brief Find a 4 uppercase hex digit hex value after a prefix string. Used to implement
     170              :  *        fallback CN VID/PID encoding for PAA/PAI/DAC.
     171              :  *
     172              :  * @param[in] buffer - buffer in which to find the substring.
     173              :  * @param[in] prefix - prefix to match, which must be followed by 4 uppercase hex characters
     174              :  * @param[out] out_hex_value - on CHIP_NO_ERROR return, this will be the 16-bit hex value decoded.
     175              :  * @return CHIP_NO_ERROR on success, CHIP_ERROR_NOT_FOUND if not detected and
     176              :  *         CHIP_ERROR_WRONG_CERT_DN if we saw the prefix but no valid hex string.
     177              :  */
     178          679 : CHIP_ERROR Find16BitUpperCaseHexAfterPrefix(const ByteSpan & buffer, const char * prefix, uint16_t & out_hex_value)
     179              : {
     180          679 :     chip::CharSpan prefix_span = chip::CharSpan::fromCharString(prefix);
     181              : 
     182          679 :     bool found_prefix_at_least_once = false;
     183              : 
     184              :     // Scan string from left to right, to find the desired full matching substring.
     185              :     //
     186              :     // IMPORTANT NOTE: We are trying to find the equivalent of prefix + [0-9A-F]{4}.
     187              :     // The appearance of the full prefix, but not followed by the hex value, must
     188              :     // be detected, as it is illegal if there isn't a valid prefix within the string.
     189              :     // This is why we first check for the prefix and then maybe check for the hex
     190              :     // value, rather than doing a single check of making sure there is enough space
     191              :     // for both.
     192         9852 :     for (size_t start_idx = 0; start_idx < buffer.size(); start_idx++)
     193              :     {
     194         9852 :         const uint8_t * cursor = buffer.data() + start_idx;
     195         9852 :         size_t remaining       = buffer.size() - start_idx;
     196              : 
     197         9852 :         if (remaining < prefix_span.size())
     198              :         {
     199              :             // We can't possibly match prefix if not enough bytes left.
     200          607 :             break;
     201              :         }
     202              : 
     203              :         // Try to match the prefix at current position.
     204         9248 :         if (memcmp(cursor, prefix_span.data(), prefix_span.size()) != 0)
     205              :         {
     206              :             // Did not find prefix, move to next position.
     207         9154 :             continue;
     208              :         }
     209              : 
     210              :         // Otherwise, found prefix, skip to possible hex value.
     211           94 :         found_prefix_at_least_once = true;
     212           94 :         cursor += prefix_span.size();
     213           94 :         remaining -= prefix_span.size();
     214              : 
     215           94 :         constexpr size_t expected_hex_len = HEX_ENCODED_LENGTH(sizeof(uint16_t));
     216           94 :         if (remaining < expected_hex_len)
     217              :         {
     218              :             // We can't possibly match the hex values if not enough bytes left.
     219            3 :             break;
     220              :         }
     221              : 
     222              :         char hex_buf[expected_hex_len];
     223           91 :         memcpy(&hex_buf[0], cursor, sizeof(hex_buf));
     224              : 
     225           91 :         if (Encoding::UppercaseHexToUint16(&hex_buf[0], sizeof(hex_buf), out_hex_value) != 0)
     226              :         {
     227              :             // Found first full valid match, return success, out_hex_value already updated.
     228           72 :             return CHIP_NO_ERROR;
     229              :         }
     230              : 
     231              :         // Otherwise, did not find what we were looking for, try next position until exhausted.
     232              :     }
     233              : 
     234          607 :     return found_prefix_at_least_once ? CHIP_ERROR_WRONG_CERT_DN : CHIP_ERROR_NOT_FOUND;
     235              : }
     236              : 
     237              : } // namespace
     238              : 
     239              : using HKDF_sha_crypto = HKDF_sha;
     240              : 
     241          328 : CHIP_ERROR Spake2p::InternalHash(const uint8_t * in, size_t in_len)
     242              : {
     243          328 :     const uint64_t u64_len = in_len;
     244              : 
     245              :     uint8_t lb[8];
     246          328 :     lb[0] = static_cast<uint8_t>((u64_len >> 0) & 0xff);
     247          328 :     lb[1] = static_cast<uint8_t>((u64_len >> 8) & 0xff);
     248          328 :     lb[2] = static_cast<uint8_t>((u64_len >> 16) & 0xff);
     249          328 :     lb[3] = static_cast<uint8_t>((u64_len >> 24) & 0xff);
     250          328 :     lb[4] = static_cast<uint8_t>((u64_len >> 32) & 0xff);
     251          328 :     lb[5] = static_cast<uint8_t>((u64_len >> 40) & 0xff);
     252          328 :     lb[6] = static_cast<uint8_t>((u64_len >> 48) & 0xff);
     253          328 :     lb[7] = static_cast<uint8_t>((u64_len >> 56) & 0xff);
     254              : 
     255          328 :     ReturnErrorOnFailure(Hash(lb, sizeof(lb)));
     256          328 :     if (in != nullptr)
     257              :     {
     258          179 :         ReturnErrorOnFailure(Hash(in, in_len));
     259              :     }
     260              : 
     261          328 :     return CHIP_NO_ERROR;
     262              : }
     263              : 
     264          150 : Spake2p::Spake2p(size_t _fe_size, size_t _point_size, size_t _hash_size)
     265              : {
     266          150 :     fe_size    = _fe_size;
     267          150 :     point_size = _point_size;
     268          150 :     hash_size  = _hash_size;
     269              : 
     270          150 :     Kca = &Kcab[0];
     271          150 :     Kcb = &Kcab[hash_size / 2];
     272          150 :     Ka  = &Kae[0];
     273          150 :     Ke  = &Kae[hash_size / 2];
     274              : 
     275          150 :     M  = nullptr;
     276          150 :     N  = nullptr;
     277          150 :     G  = nullptr;
     278          150 :     X  = nullptr;
     279          150 :     Y  = nullptr;
     280          150 :     L  = nullptr;
     281          150 :     Z  = nullptr;
     282          150 :     V  = nullptr;
     283          150 :     w0 = nullptr;
     284          150 :     w1 = nullptr;
     285          150 :     xy = nullptr;
     286              : 
     287          150 :     order  = nullptr;
     288          150 :     tempbn = nullptr;
     289          150 : }
     290              : 
     291          148 : CHIP_ERROR Spake2p::Init(const uint8_t * context, size_t context_len)
     292              : {
     293          148 :     if (state != CHIP_SPAKE2P_STATE::PREINIT)
     294              :     {
     295            1 :         Clear();
     296              :     }
     297              : 
     298          148 :     ReturnErrorOnFailure(InitImpl());
     299          148 :     ReturnErrorOnFailure(PointLoad(spake2p_M_p256, sizeof(spake2p_M_p256), M));
     300          148 :     ReturnErrorOnFailure(PointLoad(spake2p_N_p256, sizeof(spake2p_N_p256), N));
     301          148 :     ReturnErrorOnFailure(InternalHash(context, context_len));
     302              : 
     303          148 :     state = CHIP_SPAKE2P_STATE::INIT;
     304          148 :     return CHIP_NO_ERROR;
     305              : }
     306              : 
     307           20 : CHIP_ERROR Spake2p::WriteMN()
     308              : {
     309           20 :     ReturnErrorOnFailure(InternalHash(spake2p_M_p256, sizeof(spake2p_M_p256)));
     310           20 :     ReturnErrorOnFailure(InternalHash(spake2p_N_p256, sizeof(spake2p_N_p256)));
     311              : 
     312           20 :     return CHIP_NO_ERROR;
     313              : }
     314              : 
     315           10 : CHIP_ERROR Spake2p::BeginVerifier(const uint8_t * my_identity, size_t my_identity_len, const uint8_t * peer_identity,
     316              :                                   size_t peer_identity_len, const uint8_t * w0in, size_t w0in_len, const uint8_t * Lin,
     317              :                                   size_t Lin_len)
     318              : {
     319           10 :     VerifyOrReturnError(state == CHIP_SPAKE2P_STATE::INIT, CHIP_ERROR_INTERNAL);
     320              : 
     321           10 :     ReturnErrorOnFailure(InternalHash(peer_identity, peer_identity_len));
     322           10 :     ReturnErrorOnFailure(InternalHash(my_identity, my_identity_len));
     323           10 :     ReturnErrorOnFailure(WriteMN());
     324           10 :     ReturnErrorOnFailure(FELoad(w0in, w0in_len, w0));
     325           10 :     ReturnErrorOnFailure(PointLoad(Lin, Lin_len, L));
     326              : 
     327           10 :     state = CHIP_SPAKE2P_STATE::STARTED;
     328           10 :     role  = CHIP_SPAKE2P_ROLE::VERIFIER;
     329           10 :     return CHIP_NO_ERROR;
     330              : }
     331              : 
     332           10 : CHIP_ERROR Spake2p::BeginProver(const uint8_t * my_identity, size_t my_identity_len, const uint8_t * peer_identity,
     333              :                                 size_t peer_identity_len, const uint8_t * w0sin, size_t w0sin_len, const uint8_t * w1sin,
     334              :                                 size_t w1sin_len)
     335              : {
     336           10 :     VerifyOrReturnError(state == CHIP_SPAKE2P_STATE::INIT, CHIP_ERROR_INTERNAL);
     337              : 
     338           10 :     ReturnErrorOnFailure(InternalHash(my_identity, my_identity_len));
     339           10 :     ReturnErrorOnFailure(InternalHash(peer_identity, peer_identity_len));
     340           10 :     ReturnErrorOnFailure(WriteMN());
     341           10 :     ReturnErrorOnFailure(FELoad(w0sin, w0sin_len, w0));
     342           10 :     ReturnErrorOnFailure(FELoad(w1sin, w1sin_len, w1));
     343              : 
     344           10 :     state = CHIP_SPAKE2P_STATE::STARTED;
     345           10 :     role  = CHIP_SPAKE2P_ROLE::PROVER;
     346           10 :     return CHIP_NO_ERROR;
     347              : }
     348              : 
     349           20 : CHIP_ERROR Spake2p::ComputeRoundOne(const uint8_t * pab, size_t pab_len, uint8_t * out, size_t * out_len)
     350              : {
     351           20 :     CHIP_ERROR error = CHIP_ERROR_INTERNAL;
     352           20 :     void * MN        = nullptr; // Choose M if a prover, N if a verifier
     353           20 :     void * XY        = nullptr; // Choose X if a prover, Y if a verifier
     354              : 
     355           20 :     VerifyOrExit(state == CHIP_SPAKE2P_STATE::STARTED, error = CHIP_ERROR_INTERNAL);
     356           20 :     VerifyOrExit(*out_len >= point_size, error = CHIP_ERROR_INTERNAL);
     357              : 
     358           20 :     ReturnErrorOnFailure(FEGenerate(xy));
     359              : 
     360           20 :     if (role == CHIP_SPAKE2P_ROLE::PROVER)
     361              :     {
     362           10 :         MN = M;
     363           10 :         XY = X;
     364              :     }
     365           10 :     else if (role == CHIP_SPAKE2P_ROLE::VERIFIER)
     366              :     {
     367           10 :         MN = N;
     368           10 :         XY = Y;
     369              :     }
     370           20 :     VerifyOrExit(MN != nullptr, error = CHIP_ERROR_INTERNAL);
     371           20 :     VerifyOrExit(XY != nullptr, error = CHIP_ERROR_INTERNAL);
     372              : 
     373           20 :     SuccessOrExit(error = PointAddMul(XY, G, xy, MN, w0));
     374           20 :     SuccessOrExit(error = PointWrite(XY, out, *out_len));
     375              : 
     376           20 :     state = CHIP_SPAKE2P_STATE::R1;
     377           20 :     error = CHIP_NO_ERROR;
     378           20 : exit:
     379           20 :     *out_len = point_size;
     380           20 :     return error;
     381              : }
     382              : 
     383           20 : CHIP_ERROR Spake2p::ComputeRoundTwo(const uint8_t * in, size_t in_len, uint8_t * out, size_t * out_len)
     384              : {
     385           20 :     CHIP_ERROR error = CHIP_ERROR_INTERNAL;
     386           20 :     MutableByteSpan out_span{ out, *out_len };
     387              :     uint8_t point_buffer[kMAX_Point_Length];
     388           20 :     void * MN        = nullptr; // Choose N if a prover, M if a verifier
     389           20 :     void * XY        = nullptr; // Choose Y if a prover, X if a verifier
     390           20 :     uint8_t * Kcaorb = nullptr; // Choose Kca if a prover, Kcb if a verifier
     391              : 
     392           20 :     VerifyOrExit(*out_len >= hash_size, error = CHIP_ERROR_INTERNAL);
     393           20 :     VerifyOrExit(state == CHIP_SPAKE2P_STATE::R1, error = CHIP_ERROR_INTERNAL);
     394           20 :     VerifyOrExit(in_len == point_size, error = CHIP_ERROR_INTERNAL);
     395              : 
     396           20 :     if (role == CHIP_SPAKE2P_ROLE::PROVER)
     397              :     {
     398           10 :         SuccessOrExit(error = PointWrite(X, point_buffer, point_size));
     399           10 :         SuccessOrExit(error = InternalHash(point_buffer, point_size));
     400           10 :         SuccessOrExit(error = InternalHash(in, in_len));
     401              : 
     402           10 :         MN     = N;
     403           10 :         XY     = Y;
     404           10 :         Kcaorb = Kca;
     405              :     }
     406           10 :     else if (role == CHIP_SPAKE2P_ROLE::VERIFIER)
     407              :     {
     408           10 :         SuccessOrExit(error = InternalHash(in, in_len));
     409           10 :         SuccessOrExit(error = PointWrite(Y, point_buffer, point_size));
     410           10 :         SuccessOrExit(error = InternalHash(point_buffer, point_size));
     411              : 
     412           10 :         MN     = M;
     413           10 :         XY     = X;
     414           10 :         Kcaorb = Kcb;
     415              :     }
     416           20 :     VerifyOrExit(MN != nullptr, error = CHIP_ERROR_INTERNAL);
     417           20 :     VerifyOrExit(XY != nullptr, error = CHIP_ERROR_INTERNAL);
     418              : 
     419           20 :     SuccessOrExit(error = PointLoad(in, in_len, XY));
     420           20 :     SuccessOrExit(error = PointIsValid(XY));
     421           20 :     SuccessOrExit(error = FEMul(tempbn, xy, w0));
     422           20 :     SuccessOrExit(error = PointInvert(MN));
     423           20 :     SuccessOrExit(error = PointAddMul(Z, XY, xy, MN, tempbn));
     424           20 :     SuccessOrExit(error = PointCofactorMul(Z));
     425              : 
     426           20 :     if (role == CHIP_SPAKE2P_ROLE::PROVER)
     427              :     {
     428           10 :         SuccessOrExit(error = FEMul(tempbn, w1, w0));
     429           10 :         SuccessOrExit(error = PointAddMul(V, XY, w1, MN, tempbn));
     430              :     }
     431           10 :     else if (role == CHIP_SPAKE2P_ROLE::VERIFIER)
     432              :     {
     433           10 :         SuccessOrExit(error = PointMul(V, L, xy));
     434              :     }
     435              : 
     436           20 :     SuccessOrExit(error = PointCofactorMul(V));
     437           20 :     SuccessOrExit(error = PointWrite(Z, point_buffer, point_size));
     438           20 :     SuccessOrExit(error = InternalHash(point_buffer, point_size));
     439              : 
     440           20 :     SuccessOrExit(error = PointWrite(V, point_buffer, point_size));
     441           20 :     SuccessOrExit(error = InternalHash(point_buffer, point_size));
     442              : 
     443           20 :     SuccessOrExit(error = FEWrite(w0, point_buffer, fe_size));
     444           20 :     SuccessOrExit(error = InternalHash(point_buffer, fe_size));
     445              : 
     446           20 :     SuccessOrExit(error = GenerateKeys());
     447              : 
     448           20 :     SuccessOrExit(error = Mac(Kcaorb, hash_size / 2, in, in_len, out_span));
     449           20 :     VerifyOrExit(out_span.size() == hash_size, error = CHIP_ERROR_INTERNAL);
     450              : 
     451           20 :     state = CHIP_SPAKE2P_STATE::R2;
     452           20 :     error = CHIP_NO_ERROR;
     453           20 : exit:
     454           20 :     *out_len = hash_size;
     455           20 :     return error;
     456              : }
     457              : 
     458           20 : CHIP_ERROR Spake2p::GenerateKeys()
     459              : {
     460              :     static const uint8_t info_keyconfirm[16] = { 'C', 'o', 'n', 'f', 'i', 'r', 'm', 'a', 't', 'i', 'o', 'n', 'K', 'e', 'y', 's' };
     461              : 
     462           20 :     MutableByteSpan Kae_span{ &Kae[0], sizeof(Kae) };
     463              : 
     464           20 :     ReturnErrorOnFailure(HashFinalize(Kae_span));
     465           20 :     ReturnErrorOnFailure(KDF(Ka, hash_size / 2, nullptr, 0, info_keyconfirm, sizeof(info_keyconfirm), Kcab, hash_size));
     466              : 
     467           20 :     return CHIP_NO_ERROR;
     468              : }
     469              : 
     470           19 : CHIP_ERROR Spake2p::KeyConfirm(const uint8_t * in, size_t in_len)
     471              : {
     472              :     uint8_t point_buffer[kP256_Point_Length];
     473           19 :     void * XY        = nullptr; // Choose X if a prover, Y if a verifier
     474           19 :     uint8_t * Kcaorb = nullptr; // Choose Kcb if a prover, Kca if a verifier
     475              : 
     476           19 :     VerifyOrReturnError(state == CHIP_SPAKE2P_STATE::R2, CHIP_ERROR_INTERNAL);
     477              : 
     478           19 :     if (role == CHIP_SPAKE2P_ROLE::PROVER)
     479              :     {
     480           10 :         XY     = X;
     481           10 :         Kcaorb = Kcb;
     482              :     }
     483            9 :     else if (role == CHIP_SPAKE2P_ROLE::VERIFIER)
     484              :     {
     485            9 :         XY     = Y;
     486            9 :         Kcaorb = Kca;
     487              :     }
     488           19 :     VerifyOrReturnError(XY != nullptr, CHIP_ERROR_INTERNAL);
     489           19 :     VerifyOrReturnError(Kcaorb != nullptr, CHIP_ERROR_INTERNAL);
     490              : 
     491           19 :     ReturnErrorOnFailure(PointWrite(XY, point_buffer, point_size));
     492              : 
     493           19 :     CHIP_ERROR err = MacVerify(Kcaorb, hash_size / 2, in, in_len, point_buffer, point_size);
     494           19 :     if (err == CHIP_ERROR_INTERNAL)
     495              :     {
     496            1 :         ChipLogError(SecureChannel, "Failed to verify peer's MAC. This can happen when setup code is incorrect.");
     497              :     }
     498           19 :     ReturnErrorOnFailure(err);
     499              : 
     500           18 :     state = CHIP_SPAKE2P_STATE::KC;
     501           18 :     return CHIP_NO_ERROR;
     502              : }
     503              : 
     504           18 : CHIP_ERROR Spake2p::GetKeys(SessionKeystore & keystore, HkdfKeyHandle & key)
     505              : {
     506           18 :     VerifyOrReturnError(state == CHIP_SPAKE2P_STATE::KC, CHIP_ERROR_INTERNAL);
     507              : 
     508           18 :     return keystore.CreateKey(ByteSpan(Ke, hash_size / 2), key);
     509              : }
     510              : 
     511          148 : CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::InitImpl()
     512              : {
     513          148 :     ReturnErrorOnFailure(sha256_hash_ctx.Begin());
     514          148 :     ReturnErrorOnFailure(InitInternal());
     515          148 :     return CHIP_NO_ERROR;
     516              : }
     517              : 
     518          507 : CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::Hash(const uint8_t * in, size_t in_len)
     519              : {
     520          507 :     ReturnErrorOnFailure(sha256_hash_ctx.AddData(ByteSpan{ in, in_len }));
     521          507 :     return CHIP_NO_ERROR;
     522              : }
     523              : 
     524           20 : CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::HashFinalize(MutableByteSpan & out_span)
     525              : {
     526           20 :     ReturnErrorOnFailure(sha256_hash_ctx.Finish(out_span));
     527           20 :     return CHIP_NO_ERROR;
     528              : }
     529              : 
     530           20 : CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::KDF(const uint8_t * ikm, const size_t ikm_len, const uint8_t * salt,
     531              :                                               const size_t salt_len, const uint8_t * info, const size_t info_len, uint8_t * out,
     532              :                                               size_t out_len)
     533              : {
     534           20 :     HKDF_sha_crypto mHKDF;
     535              : 
     536           20 :     ReturnErrorOnFailure(mHKDF.HKDF_SHA256(ikm, ikm_len, salt, salt_len, info, info_len, out, out_len));
     537              : 
     538           20 :     return CHIP_NO_ERROR;
     539           20 : }
     540              : 
     541            3 : CHIP_ERROR Spake2p_P256_SHA256_HKDF_HMAC::ComputeW0(uint8_t * w0out, size_t * w0_len, const uint8_t * w0sin, size_t w0sin_len)
     542              : {
     543            3 :     ReturnErrorOnFailure(FELoad(w0sin, w0sin_len, w0));
     544            3 :     ReturnErrorOnFailure(FEWrite(w0, w0out, *w0_len));
     545              : 
     546            3 :     return CHIP_NO_ERROR;
     547              : }
     548              : 
     549            2 : CHIP_ERROR Spake2pVerifier::Serialize(MutableByteSpan & outSerialized) const
     550              : {
     551            2 :     VerifyOrReturnError(outSerialized.size() >= kSpake2p_VerifierSerialized_Length, CHIP_ERROR_INVALID_ARGUMENT);
     552              : 
     553            2 :     memcpy(&outSerialized.data()[0], mW0, sizeof(mW0));
     554            2 :     memcpy(&outSerialized.data()[sizeof(mW0)], mL, sizeof(mL));
     555              : 
     556            2 :     outSerialized.reduce_size(kSpake2p_VerifierSerialized_Length);
     557              : 
     558            2 :     return CHIP_NO_ERROR;
     559              : }
     560              : 
     561            9 : CHIP_ERROR Spake2pVerifier::Deserialize(const ByteSpan & inSerialized)
     562              : {
     563            9 :     VerifyOrReturnError(inSerialized.size() >= kSpake2p_VerifierSerialized_Length, CHIP_ERROR_INVALID_ARGUMENT);
     564              : 
     565            8 :     memcpy(mW0, &inSerialized.data()[0], sizeof(mW0));
     566            8 :     memcpy(mL, &inSerialized.data()[sizeof(mW0)], sizeof(mL));
     567              : 
     568            8 :     return CHIP_NO_ERROR;
     569              : }
     570              : 
     571            3 : CHIP_ERROR Spake2pVerifier::Generate(uint32_t pbkdf2IterCount, const ByteSpan & salt, uint32_t setupPin)
     572              : {
     573            3 :     uint8_t serializedWS[kSpake2p_WS_Length * 2] = { 0 };
     574            3 :     ReturnErrorOnFailure(ComputeWS(pbkdf2IterCount, salt, setupPin, serializedWS, sizeof(serializedWS)));
     575              : 
     576            3 :     CHIP_ERROR err = CHIP_NO_ERROR;
     577              :     size_t len;
     578              : 
     579              :     // Create local Spake2+ object for w0 and L computations.
     580            3 :     Spake2p_P256_SHA256_HKDF_HMAC spake2p;
     581            3 :     uint8_t context[kSHA256_Hash_Length] = { 0 };
     582            3 :     SuccessOrExit(err = spake2p.Init(context, sizeof(context)));
     583              : 
     584              :     // Compute w0
     585            3 :     len = sizeof(mW0);
     586            3 :     SuccessOrExit(err = spake2p.ComputeW0(mW0, &len, &serializedWS[0], kSpake2p_WS_Length));
     587            3 :     VerifyOrExit(len == sizeof(mW0), err = CHIP_ERROR_INTERNAL);
     588              : 
     589              :     // Compute L
     590            3 :     len = sizeof(mL);
     591            3 :     SuccessOrExit(err = spake2p.ComputeL(mL, &len, &serializedWS[kSpake2p_WS_Length], kSpake2p_WS_Length));
     592            3 :     VerifyOrExit(len == sizeof(mL), err = CHIP_ERROR_INTERNAL);
     593              : 
     594            3 : exit:
     595            3 :     spake2p.Clear();
     596            3 :     return err;
     597            3 : }
     598              : 
     599            9 : CHIP_ERROR Spake2pVerifier::ComputeWS(uint32_t pbkdf2IterCount, const ByteSpan & salt, uint32_t setupPin, uint8_t * ws,
     600              :                                       uint32_t ws_len)
     601              : {
     602            9 :     PBKDF2_sha256 pbkdf2;
     603              :     uint8_t littleEndianSetupPINCode[sizeof(uint32_t)];
     604            9 :     Encoding::LittleEndian::Put32(littleEndianSetupPINCode, setupPin);
     605              : 
     606            9 :     VerifyOrReturnError(salt.size() >= kSpake2p_Min_PBKDF_Salt_Length && salt.size() <= kSpake2p_Max_PBKDF_Salt_Length,
     607              :                         CHIP_ERROR_INVALID_ARGUMENT);
     608            9 :     VerifyOrReturnError(pbkdf2IterCount >= kSpake2p_Min_PBKDF_Iterations && pbkdf2IterCount <= kSpake2p_Max_PBKDF_Iterations,
     609              :                         CHIP_ERROR_INVALID_ARGUMENT);
     610              : 
     611            9 :     return pbkdf2.pbkdf2_sha256(littleEndianSetupPINCode, sizeof(littleEndianSetupPINCode), salt.data(), salt.size(),
     612            9 :                                 pbkdf2IterCount, ws_len, ws);
     613            9 : }
     614              : 
     615          615 : CHIP_ERROR ReadDerLength(Reader & reader, size_t & length)
     616              : {
     617          615 :     length = 0;
     618              : 
     619          615 :     uint8_t cur_byte = 0;
     620          615 :     ReturnErrorOnFailure(reader.Read8(&cur_byte).StatusCode());
     621              : 
     622          614 :     if ((cur_byte & (1u << 7)) == 0)
     623              :     {
     624              :         // 7 bit length, the rest of the byte is the length.
     625          553 :         length = cur_byte & 0x7Fu;
     626          553 :         return CHIP_NO_ERROR;
     627              :     }
     628              : 
     629           61 :     CHIP_ERROR err = CHIP_ERROR_INVALID_ARGUMENT;
     630              : 
     631              :     // Did not early return: > 7 bit length, the number of bytes of the length is provided next.
     632           61 :     uint8_t length_bytes = cur_byte & 0x7Fu;
     633           61 :     VerifyOrReturnError((length_bytes >= 1) && (length_bytes <= sizeof(size_t)), CHIP_ERROR_INVALID_ARGUMENT);
     634           60 :     VerifyOrReturnError(reader.HasAtLeast(length_bytes), CHIP_ERROR_BUFFER_TOO_SMALL);
     635              : 
     636          128 :     for (uint8_t i = 0; i < length_bytes; i++)
     637              :     {
     638           73 :         uint8_t cur_length_byte = 0;
     639           73 :         err                     = reader.Read8(&cur_length_byte).StatusCode();
     640           73 :         if (err != CHIP_NO_ERROR)
     641            0 :             break;
     642              : 
     643              :         // Cannot have zero padding on multi-byte lengths in DER, so first
     644              :         // byte must always be > 0.
     645           73 :         if ((i == 0) && (cur_length_byte == 0))
     646              :         {
     647            2 :             return CHIP_ERROR_INVALID_ARGUMENT;
     648              :         }
     649              : 
     650           71 :         length <<= 8;
     651           71 :         length |= cur_length_byte;
     652              :     }
     653              : 
     654              :     // Single-byte long length cannot be < 128: DER always encodes on smallest size
     655              :     // possible, so length zero should have been a single byte short length.
     656           55 :     if ((length_bytes == 1) && (length < 128))
     657              :     {
     658            1 :         return CHIP_ERROR_INVALID_ARGUMENT;
     659              :     }
     660              : 
     661           54 :     return CHIP_NO_ERROR;
     662              : }
     663              : 
     664          197 : CHIP_ERROR ConvertIntegerRawToDerWithoutTag(const ByteSpan & raw_integer, MutableByteSpan & out_der_integer)
     665              : {
     666          197 :     return ConvertIntegerRawToDerInternal(raw_integer, out_der_integer, /* include_tag_and_length = */ false);
     667              : }
     668              : 
     669           24 : CHIP_ERROR ConvertIntegerRawToDer(const ByteSpan & raw_integer, MutableByteSpan & out_der_integer)
     670              : {
     671           24 :     return ConvertIntegerRawToDerInternal(raw_integer, out_der_integer, /* include_tag_and_length = */ true);
     672              : }
     673              : 
     674            5 : CHIP_ERROR EcdsaRawSignatureToAsn1(size_t fe_length_bytes, const ByteSpan & raw_sig, MutableByteSpan & out_asn1_sig)
     675              : {
     676            5 :     VerifyOrReturnError(fe_length_bytes > 0, CHIP_ERROR_INVALID_ARGUMENT);
     677            5 :     VerifyOrReturnError(raw_sig.size() == (2u * fe_length_bytes), CHIP_ERROR_INVALID_ARGUMENT);
     678            5 :     VerifyOrReturnError(out_asn1_sig.size() >= (raw_sig.size() + kMax_ECDSA_X9Dot62_Asn1_Overhead), CHIP_ERROR_BUFFER_TOO_SMALL);
     679              : 
     680              :     // Write both R an S integers past the overhead, we will shift them back later if we only needed 2 size bytes.
     681            5 :     uint8_t * cursor = out_asn1_sig.data() + kMinSequenceOverhead;
     682            5 :     size_t remaining = out_asn1_sig.size() - kMinSequenceOverhead;
     683              : 
     684            5 :     size_t integers_length = 0;
     685              : 
     686              :     // Write R (first `fe_length_bytes` block of raw signature)
     687              :     {
     688            5 :         MutableByteSpan out_der_integer(cursor, remaining);
     689            5 :         ReturnErrorOnFailure(ConvertIntegerRawToDer(raw_sig.SubSpan(0, fe_length_bytes), out_der_integer));
     690            5 :         VerifyOrReturnError(out_der_integer.size() <= remaining, CHIP_ERROR_INTERNAL);
     691              : 
     692            5 :         integers_length += out_der_integer.size();
     693            5 :         remaining -= out_der_integer.size();
     694            5 :         cursor += out_der_integer.size();
     695              :     }
     696              : 
     697              :     // Write S (second `fe_length_bytes` block of raw signature)
     698              :     {
     699            5 :         MutableByteSpan out_der_integer(cursor, remaining);
     700            5 :         ReturnErrorOnFailure(ConvertIntegerRawToDer(raw_sig.SubSpan(fe_length_bytes, fe_length_bytes), out_der_integer));
     701            5 :         VerifyOrReturnError(out_der_integer.size() <= remaining, CHIP_ERROR_INTERNAL);
     702            5 :         integers_length += out_der_integer.size();
     703              :     }
     704              : 
     705              :     // We only support outputs that would use 1 or 2 bytes of DER length after the SEQUENCE tag
     706            5 :     VerifyOrReturnError(integers_length <= UINT8_MAX, CHIP_ERROR_INVALID_ARGUMENT);
     707              : 
     708              :     // We now know the length of both variable sized integers in the sequence, so we
     709              :     // can write the tag and length.
     710            5 :     BufferWriter writer(out_asn1_sig);
     711              : 
     712              :     // Put SEQUENCE tag
     713            5 :     writer.Put(kSeqTag);
     714              : 
     715              :     // Put the length over 1 or two bytes depending on case
     716            5 :     constexpr uint8_t kExtendedLengthMarker = 0x80u;
     717            5 :     if (integers_length > 127u)
     718              :     {
     719            1 :         writer.Put(static_cast<uint8_t>(kExtendedLengthMarker | 1)); // Length is extended length, over 1 subsequent byte
     720            1 :         writer.Put(static_cast<uint8_t>(integers_length));
     721              :     }
     722              :     else
     723              :     {
     724              :         // Length is directly in the first byte with MSB clear if <= 127.
     725            4 :         writer.Put(static_cast<uint8_t>(integers_length));
     726              :     }
     727              : 
     728              :     // Put the contents of the integers previously serialized in the buffer.
     729              :     // The writer.Put is memmove-safe, so the shifting will happen from the read
     730              :     // of the same buffer where the write is taking place.
     731            5 :     writer.Put(out_asn1_sig.data() + kMinSequenceOverhead, integers_length);
     732              : 
     733            5 :     size_t actually_written = 0;
     734            5 :     VerifyOrReturnError(writer.Fit(actually_written), CHIP_ERROR_BUFFER_TOO_SMALL);
     735              : 
     736            5 :     out_asn1_sig = out_asn1_sig.SubSpan(0, actually_written);
     737            5 :     return CHIP_NO_ERROR;
     738              : }
     739              : 
     740          184 : CHIP_ERROR EcdsaAsn1SignatureToRaw(size_t fe_length_bytes, const ByteSpan & asn1_sig, MutableByteSpan & out_raw_sig)
     741              : {
     742          184 :     VerifyOrReturnError(fe_length_bytes > 0, CHIP_ERROR_INVALID_ARGUMENT);
     743          184 :     VerifyOrReturnError(asn1_sig.size() > kMinSequenceOverhead, CHIP_ERROR_BUFFER_TOO_SMALL);
     744              : 
     745              :     // Output raw signature is <r,s> both of which are of fe_length_bytes (see SEC1).
     746          184 :     VerifyOrReturnError(out_raw_sig.size() >= (2u * fe_length_bytes), CHIP_ERROR_BUFFER_TOO_SMALL);
     747              : 
     748          184 :     Reader reader(asn1_sig);
     749              : 
     750              :     // Make sure we have a starting Sequence
     751          184 :     uint8_t tag = 0;
     752          184 :     ReturnErrorOnFailure(reader.Read8(&tag).StatusCode());
     753          184 :     VerifyOrReturnError(tag == kSeqTag, CHIP_ERROR_INVALID_ARGUMENT);
     754              : 
     755              :     // Read length of sequence
     756          184 :     size_t tag_len = 0;
     757          184 :     ReturnErrorOnFailure(ReadDerLength(reader, tag_len));
     758              : 
     759              :     // Length of sequence must match what is left of signature
     760          184 :     VerifyOrReturnError(tag_len == reader.Remaining(), CHIP_ERROR_INVALID_ARGUMENT);
     761              : 
     762              :     // Can now clear raw signature integers r,s one by one
     763          184 :     uint8_t * raw_cursor = out_raw_sig.data();
     764              : 
     765              :     // Read R
     766          184 :     ReturnErrorOnFailure(ReadDerUnsignedIntegerIntoRaw(reader, MutableByteSpan{ raw_cursor, fe_length_bytes }));
     767              : 
     768          184 :     raw_cursor += fe_length_bytes;
     769              : 
     770              :     // Read S
     771          184 :     ReturnErrorOnFailure(ReadDerUnsignedIntegerIntoRaw(reader, MutableByteSpan{ raw_cursor, fe_length_bytes }));
     772              : 
     773          184 :     out_raw_sig = out_raw_sig.SubSpan(0, (2u * fe_length_bytes));
     774              : 
     775          184 :     return CHIP_NO_ERROR;
     776              : }
     777              : 
     778           10 : CHIP_ERROR AES_CTR_crypt(const uint8_t * input, size_t input_length, const Aes128KeyHandle & key, const uint8_t * nonce,
     779              :                          size_t nonce_length, uint8_t * output)
     780              : {
     781              :     // Discard tag portion of CCM to apply only CTR mode encryption/decryption.
     782           10 :     constexpr size_t kTagLen = Crypto::kAES_CCM128_Tag_Length;
     783              :     uint8_t tag[kTagLen];
     784              : 
     785           10 :     return AES_CCM_encrypt(input, input_length, nullptr, 0, key, nonce, nonce_length, output, tag, kTagLen);
     786              : }
     787              : 
     788          756 : CHIP_ERROR GenerateCompressedFabricId(const Crypto::P256PublicKey & root_public_key, uint64_t fabric_id,
     789              :                                       MutableByteSpan & out_compressed_fabric_id)
     790              : {
     791          756 :     VerifyOrReturnError(root_public_key.IsUncompressed(), CHIP_ERROR_INVALID_ARGUMENT);
     792          755 :     VerifyOrReturnError(out_compressed_fabric_id.size() >= kCompressedFabricIdentifierSize, CHIP_ERROR_BUFFER_TOO_SMALL);
     793              : 
     794              :     // Ensure proper endianness for Fabric ID (i.e. big-endian as it appears in certificates)
     795              :     uint8_t fabric_id_as_big_endian_salt[kCompressedFabricIdentifierSize];
     796          754 :     chip::Encoding::BigEndian::Put64(&fabric_id_as_big_endian_salt[0], fabric_id);
     797              : 
     798              :     // Compute Compressed fabric reference per spec pseudocode
     799              :     //   CompressedFabricIdentifier =
     800              :     //     CHIP_Crypto_KDF(
     801              :     //       inputKey := TargetOperationalRootPublicKey,
     802              :     //       salt:= TargetOperationalFabricID,
     803              :     //       info := CompressedFabricInfo,
     804              :     //       len := 64)
     805              :     //
     806              :     // NOTE: len=64 bits is implied by output buffer size when calling HKDF_sha::HKDF_SHA256.
     807              : 
     808          754 :     constexpr uint8_t kCompressedFabricInfo[16] = /* "CompressedFabric" */
     809              :         { 0x43, 0x6f, 0x6d, 0x70, 0x72, 0x65, 0x73, 0x73, 0x65, 0x64, 0x46, 0x61, 0x62, 0x72, 0x69, 0x63 };
     810          754 :     HKDF_sha hkdf;
     811              : 
     812              :     // Must drop uncompressed point form format specifier (first byte), per spec method
     813          754 :     ByteSpan input_key_span(root_public_key.ConstBytes() + 1, root_public_key.Length() - 1);
     814              : 
     815          754 :     CHIP_ERROR status = hkdf.HKDF_SHA256(
     816              :         input_key_span.data(), input_key_span.size(), &fabric_id_as_big_endian_salt[0], sizeof(fabric_id_as_big_endian_salt),
     817              :         &kCompressedFabricInfo[0], sizeof(kCompressedFabricInfo), out_compressed_fabric_id.data(), kCompressedFabricIdentifierSize);
     818              : 
     819              :     // Resize output to final bounds on success
     820          754 :     if (status == CHIP_NO_ERROR)
     821              :     {
     822          754 :         out_compressed_fabric_id = out_compressed_fabric_id.SubSpan(0, kCompressedFabricIdentifierSize);
     823              :     }
     824              : 
     825          754 :     return status;
     826          754 : }
     827              : 
     828           11 : CHIP_ERROR GenerateCompressedFabricId(const Crypto::P256PublicKey & rootPublicKey, uint64_t fabricId, uint64_t & compressedFabricId)
     829              : {
     830              :     uint8_t allocated[sizeof(fabricId)];
     831           11 :     MutableByteSpan span(allocated);
     832           11 :     ReturnErrorOnFailure(GenerateCompressedFabricId(rootPublicKey, fabricId, span));
     833              :     // Decode compressed fabric ID accounting for endianness, as GenerateCompressedFabricId()
     834              :     // returns a binary buffer and is agnostic of usage of the output as an integer type.
     835           11 :     compressedFabricId = Encoding::BigEndian::Get64(allocated);
     836           11 :     return CHIP_NO_ERROR;
     837              : }
     838              : 
     839              : /* Operational Group Key Group, Security Info: "GroupKey v1.0" */
     840              : static const uint8_t kGroupSecurityInfo[] = { 0x47, 0x72, 0x6f, 0x75, 0x70, 0x4b, 0x65, 0x79, 0x20, 0x76, 0x31, 0x2e, 0x30 };
     841              : 
     842              : /* Group Key Derivation Function, Info: "GroupKeyHash" ” */
     843              : static const uint8_t kGroupKeyHashInfo[]  = { 0x47, 0x72, 0x6f, 0x75, 0x70, 0x4b, 0x65, 0x79, 0x48, 0x61, 0x73, 0x68 };
     844              : static const uint8_t kGroupKeyHashSalt[0] = {};
     845              : 
     846              : /*
     847              :     OperationalGroupKey =
     848              :         Crypto_KDF
     849              :         (
     850              :             InputKey = Epoch Key,
     851              :             Salt = CompressedFabricIdentifier,
     852              :             Info = "GroupKey v1.0",
     853              :             Length = CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
     854              :         )
     855              : */
     856          191 : CHIP_ERROR DeriveGroupOperationalKey(const ByteSpan & epoch_key, const ByteSpan & compressed_fabric_id, MutableByteSpan & out_key)
     857              : {
     858          191 :     VerifyOrReturnError(Crypto::CHIP_CRYPTO_SYMMETRIC_KEY_LENGTH_BYTES == epoch_key.size(), CHIP_ERROR_INVALID_ARGUMENT);
     859          190 :     VerifyOrReturnError(Crypto::CHIP_CRYPTO_SYMMETRIC_KEY_LENGTH_BYTES <= out_key.size(), CHIP_ERROR_INVALID_ARGUMENT);
     860              : 
     861          190 :     Crypto::HKDF_sha crypto;
     862          190 :     return crypto.HKDF_SHA256(epoch_key.data(), epoch_key.size(), compressed_fabric_id.data(), compressed_fabric_id.size(),
     863              :                               kGroupSecurityInfo, sizeof(kGroupSecurityInfo), out_key.data(),
     864          190 :                               Crypto::CHIP_CRYPTO_SYMMETRIC_KEY_LENGTH_BYTES);
     865          190 : }
     866              : 
     867              : /*
     868              :     GKH = Crypto_KDF (
     869              :         InputKey = OperationalGroupKey,
     870              :         Salt = [],
     871              :         Info = "GroupKeyHash",
     872              :         Length = 16)
     873              : */
     874          190 : CHIP_ERROR DeriveGroupSessionId(const ByteSpan & operational_key, uint16_t & session_id)
     875              : {
     876          190 :     VerifyOrReturnError(Crypto::CHIP_CRYPTO_SYMMETRIC_KEY_LENGTH_BYTES == operational_key.size(), CHIP_ERROR_INVALID_ARGUMENT);
     877          189 :     Crypto::HKDF_sha crypto;
     878              :     uint8_t out_key[sizeof(uint16_t)];
     879              : 
     880          189 :     ReturnErrorOnFailure(crypto.HKDF_SHA256(operational_key.data(), operational_key.size(), kGroupKeyHashSalt,
     881              :                                             sizeof(kGroupKeyHashSalt), kGroupKeyHashInfo, sizeof(kGroupKeyHashInfo), out_key,
     882              :                                             sizeof(out_key)));
     883          189 :     session_id = Encoding::BigEndian::Get16(out_key);
     884          189 :     return CHIP_NO_ERROR;
     885          189 : }
     886              : 
     887              : /* Operational Group Key Group, PrivacyKey Info: "PrivacyKey" */
     888              : static const uint8_t kGroupPrivacyInfo[] = { 'P', 'r', 'i', 'v', 'a', 'c', 'y', 'K', 'e', 'y' };
     889              : 
     890              : /*
     891              :     PrivacyKey =
     892              :          Crypto_KDF
     893              :          (
     894              :             InputKey = EncryptionKey,
     895              :             Salt = [],
     896              :             Info = "PrivacyKey",
     897              :             Length = CRYPTO_SYMMETRIC_KEY_LENGTH_BITS
     898              :          )
     899              : */
     900         1028 : CHIP_ERROR DeriveGroupPrivacyKey(const ByteSpan & encryption_key, MutableByteSpan & out_key)
     901              : {
     902         1028 :     VerifyOrReturnError(Crypto::CHIP_CRYPTO_SYMMETRIC_KEY_LENGTH_BYTES == encryption_key.size(), CHIP_ERROR_INVALID_ARGUMENT);
     903         1027 :     VerifyOrReturnError(Crypto::CHIP_CRYPTO_SYMMETRIC_KEY_LENGTH_BYTES <= out_key.size(), CHIP_ERROR_INVALID_ARGUMENT);
     904              : 
     905         1027 :     constexpr ByteSpan null_span = ByteSpan();
     906              : 
     907         1027 :     Crypto::HKDF_sha crypto;
     908         1027 :     return crypto.HKDF_SHA256(encryption_key.data(), encryption_key.size(), null_span.data(), null_span.size(), kGroupPrivacyInfo,
     909         1027 :                               sizeof(kGroupPrivacyInfo), out_key.data(), Crypto::CHIP_CRYPTO_SYMMETRIC_KEY_LENGTH_BYTES);
     910         1027 : }
     911              : 
     912          187 : CHIP_ERROR DeriveGroupOperationalCredentials(const ByteSpan & epoch_key, const ByteSpan & compressed_fabric_id,
     913              :                                              GroupOperationalCredentials & operational_credentials)
     914              : {
     915          187 :     MutableByteSpan encryption_key(operational_credentials.encryption_key);
     916          187 :     MutableByteSpan privacy_key(operational_credentials.privacy_key);
     917              : 
     918          187 :     ReturnErrorOnFailure(Crypto::DeriveGroupOperationalKey(epoch_key, compressed_fabric_id, encryption_key));
     919          187 :     ReturnErrorOnFailure(Crypto::DeriveGroupSessionId(encryption_key, operational_credentials.hash));
     920          187 :     ReturnErrorOnFailure(Crypto::DeriveGroupPrivacyKey(encryption_key, privacy_key));
     921              : 
     922          187 :     return CHIP_NO_ERROR;
     923              : }
     924              : 
     925          825 : CHIP_ERROR ExtractVIDPIDFromAttributeString(DNAttrType attrType, const ByteSpan & attr,
     926              :                                             AttestationCertVidPid & vidpidFromMatterAttr, AttestationCertVidPid & vidpidFromCNAttr)
     927              : {
     928          825 :     VerifyOrReturnError(attrType != DNAttrType::kUnspecified, CHIP_NO_ERROR);
     929          824 :     VerifyOrReturnError(!attr.empty(), CHIP_ERROR_INVALID_ARGUMENT);
     930              : 
     931          823 :     if (attrType == DNAttrType::kMatterVID || attrType == DNAttrType::kMatterPID)
     932              :     {
     933              :         uint16_t matterAttr;
     934          482 :         VerifyOrReturnError(attr.size() == kVIDandPIDHexLength, CHIP_ERROR_WRONG_CERT_DN);
     935          472 :         VerifyOrReturnError(Encoding::UppercaseHexToUint16(reinterpret_cast<const char *>(attr.data()), attr.size(), matterAttr) ==
     936              :                                 sizeof(matterAttr),
     937              :                             CHIP_ERROR_WRONG_CERT_DN);
     938              : 
     939          468 :         if (attrType == DNAttrType::kMatterVID)
     940              :         {
     941              :             // Not more than one VID attribute can be present.
     942          291 :             VerifyOrReturnError(!vidpidFromMatterAttr.mVendorId.HasValue(), CHIP_ERROR_WRONG_CERT_DN);
     943          291 :             vidpidFromMatterAttr.mVendorId.SetValue(static_cast<VendorId>(matterAttr));
     944              :         }
     945              :         else
     946              :         {
     947              :             // Not more than one PID attribute can be present.
     948          177 :             VerifyOrReturnError(!vidpidFromMatterAttr.mProductId.HasValue(), CHIP_ERROR_WRONG_CERT_DN);
     949          177 :             vidpidFromMatterAttr.mProductId.SetValue(matterAttr);
     950              :         }
     951          468 :     }
     952              :     // Otherwise, it is a CommonName attribute.
     953          345 :     else if (!vidpidFromCNAttr.Initialized())
     954              :     {
     955          345 :         ByteSpan attr_source_span{ attr };
     956          345 :         if (attr_source_span.size() > chip::Crypto::kMax_CommonNameAttr_Length)
     957              :         {
     958            0 :             attr_source_span.reduce_size(chip::Crypto::kMax_CommonNameAttr_Length);
     959              :         }
     960              : 
     961              :         // Try to find a valid Vendor ID encoded in fallback method.
     962          345 :         uint16_t vid   = 0;
     963          345 :         CHIP_ERROR err = Find16BitUpperCaseHexAfterPrefix(attr_source_span, kVIDPrefixForCNEncoding, vid);
     964          345 :         if (err == CHIP_NO_ERROR)
     965              :         {
     966           41 :             vidpidFromCNAttr.mVendorId.SetValue(static_cast<VendorId>(vid));
     967              :         }
     968          304 :         else if (err != CHIP_ERROR_NOT_FOUND)
     969              :         {
     970              :             // This indicates a bad/ambiguous format.
     971           20 :             return err;
     972              :         }
     973              : 
     974              :         // Try to find a valid Product ID encoded in fallback method.
     975          334 :         uint16_t pid = 0;
     976          334 :         err          = Find16BitUpperCaseHexAfterPrefix(attr_source_span, kPIDPrefixForCNEncoding, pid);
     977          334 :         if (err == CHIP_NO_ERROR)
     978              :         {
     979           31 :             vidpidFromCNAttr.mProductId.SetValue(pid);
     980              :         }
     981          303 :         else if (err != CHIP_ERROR_NOT_FOUND)
     982              :         {
     983              :             // This indicates a bad/ambiguous format.
     984            9 :             return err;
     985              :         }
     986              :     }
     987              : 
     988          793 :     return CHIP_NO_ERROR;
     989              : }
     990              : 
     991              : // Generates the to-be-signed portion of a PKCS#10 CSR (`CertificationRequestInformation`)
     992              : // that contains the
     993            2 : static CHIP_ERROR GenerateCertificationRequestInformation(ASN1Writer & writer, const Crypto::P256PublicKey & pubkey)
     994              : {
     995            2 :     CHIP_ERROR err = CHIP_NO_ERROR;
     996              :     /**
     997              :      *
     998              :      *  CertificationRequestInfo ::=
     999              :      *     SEQUENCE {
    1000              :      *        version       INTEGER { v1(0) } (v1,...),
    1001              :      *        subject       Name,
    1002              :      *        subjectPKInfo SubjectPublicKeyInfo{{ PKInfoAlgorithms }},
    1003              :      *        attributes    [0] Attributes{{ CRIAttributes }}
    1004              :      * }
    1005              :      */
    1006            2 :     ASN1_START_SEQUENCE
    1007              :     {
    1008            2 :         ASN1_ENCODE_INTEGER(0); // version INTEGER { v1(0) }
    1009              : 
    1010              :         // subject Name
    1011            2 :         ASN1_START_SEQUENCE
    1012              :         {
    1013            2 :             ASN1_START_SET
    1014              :             {
    1015            2 :                 ASN1_START_SEQUENCE
    1016              :                 {
    1017              :                     // Any subject, placeholder is good, since this
    1018              :                     // is going to usually be ignored
    1019            2 :                     ASN1_ENCODE_OBJECT_ID(kOID_AttributeType_OrganizationalUnitName);
    1020            2 :                     ASN1_ENCODE_STRING(kASN1UniversalTag_UTF8String, "CSA", static_cast<uint16_t>(strlen("CSA")));
    1021              :                 }
    1022            2 :                 ASN1_END_SEQUENCE;
    1023              :             }
    1024            2 :             ASN1_END_SET;
    1025              :         }
    1026            2 :         ASN1_END_SEQUENCE;
    1027              : 
    1028              :         // subjectPKInfo
    1029            2 :         ASN1_START_SEQUENCE
    1030              :         {
    1031            2 :             ASN1_START_SEQUENCE
    1032              :             {
    1033            2 :                 ASN1_ENCODE_OBJECT_ID(kOID_PubKeyAlgo_ECPublicKey);
    1034            2 :                 ASN1_ENCODE_OBJECT_ID(kOID_EllipticCurve_prime256v1);
    1035              :             }
    1036            2 :             ASN1_END_SEQUENCE;
    1037            2 :             ReturnErrorOnFailure(writer.PutBitString(0, pubkey, static_cast<uint8_t>(pubkey.Length())));
    1038              :         }
    1039            2 :         ASN1_END_SEQUENCE;
    1040              : 
    1041              :         // attributes [0]
    1042            2 :         ASN1_START_CONSTRUCTED(kASN1TagClass_ContextSpecific, 0)
    1043              :         {
    1044              :             // Using a plain empty attributes request
    1045            2 :             ASN1_START_SEQUENCE
    1046              :             {
    1047            2 :                 ASN1_ENCODE_OBJECT_ID(kOID_Extension_CSRRequest);
    1048            2 :                 ASN1_START_SET
    1049              :                 {
    1050            2 :                     ASN1_START_SEQUENCE {}
    1051            2 :                     ASN1_END_SEQUENCE;
    1052              :                 }
    1053            2 :                 ASN1_END_SET;
    1054              :             }
    1055            2 :             ASN1_END_SEQUENCE;
    1056              :         }
    1057            2 :         ASN1_END_CONSTRUCTED;
    1058              :     }
    1059            2 :     ASN1_END_SEQUENCE;
    1060            2 : exit:
    1061            2 :     return err;
    1062              : }
    1063              : 
    1064            3 : CHIP_ERROR GenerateCertificateSigningRequest(const P256Keypair * keypair, MutableByteSpan & csr_span)
    1065              : {
    1066            3 :     VerifyOrReturnError(keypair != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
    1067            2 :     VerifyOrReturnError(csr_span.size() >= kMIN_CSR_Buffer_Size, CHIP_ERROR_BUFFER_TOO_SMALL);
    1068              : 
    1069              :     // First pass: Generate the CertificatioRequestInformation inner
    1070              :     // encoding one time, to sign it, before re-generating it within the
    1071              :     // full ASN1 writer later, since it's easier than trying to
    1072              :     // figure-out the span we need to sign of the overall object.
    1073            1 :     P256ECDSASignature signature;
    1074              : 
    1075              :     {
    1076              :         // The first pass will just generate a signature, so we can use the
    1077              :         // output buffer as scratch to avoid needing more stack space. There
    1078              :         // are no secrets here and the contents is not reused since all we
    1079              :         // need is the signature which is already separately stored.
    1080              :         ASN1Writer toBeSignedWriter;
    1081            1 :         toBeSignedWriter.Init(csr_span);
    1082            1 :         CHIP_ERROR err = GenerateCertificationRequestInformation(toBeSignedWriter, keypair->Pubkey());
    1083            1 :         ReturnErrorOnFailure(err);
    1084              : 
    1085            1 :         size_t encodedLen = (uint16_t) toBeSignedWriter.GetLengthWritten();
    1086              :         // This should not/will not happen
    1087            1 :         if (encodedLen > csr_span.size())
    1088              :         {
    1089            0 :             return CHIP_ERROR_INTERNAL;
    1090              :         }
    1091              : 
    1092            1 :         err = keypair->ECDSA_sign_msg(csr_span.data(), encodedLen, signature);
    1093            1 :         ReturnErrorOnFailure(err);
    1094              :     }
    1095              : 
    1096              :     // Second pass: Generate the entire CSR body, restarting a new write
    1097              :     // of the CertificationRequestInformation (cheap) and adding the
    1098              :     // signature.
    1099              :     //
    1100              :     // See RFC2986 for ASN.1 module, repeated here in snippets
    1101            1 :     CHIP_ERROR err = CHIP_NO_ERROR;
    1102              : 
    1103              :     ASN1Writer writer;
    1104            1 :     writer.Init(csr_span);
    1105              : 
    1106            1 :     ASN1_START_SEQUENCE
    1107              :     {
    1108              : 
    1109              :         /*  CertificationRequestInfo ::=
    1110              :          *     SEQUENCE {
    1111              :          *        version       INTEGER { v1(0) } (v1,...),
    1112              :          *        subject       Name,
    1113              :          *        subjectPKInfo SubjectPublicKeyInfo{{ PKInfoAlgorithms }},
    1114              :          *        attributes    [0] Attributes{{ CRIAttributes }}
    1115              :          *     }
    1116              :          */
    1117            1 :         GenerateCertificationRequestInformation(writer, keypair->Pubkey());
    1118              : 
    1119              :         // algorithm  AlgorithmIdentifier
    1120            1 :         ASN1_START_SEQUENCE
    1121              :         {
    1122              :             // See RFC5480 sec 2.1
    1123            1 :             ASN1_ENCODE_OBJECT_ID(kOID_SigAlgo_ECDSAWithSHA256);
    1124              :         }
    1125            1 :         ASN1_END_SEQUENCE;
    1126              : 
    1127              :         // signature  BIT STRING --> ECDSA-with-SHA256 signature with P256 key with R,S integers format
    1128              :         // (see RFC3279 sec 2.2.3 ECDSA Signature Algorithm)
    1129            1 :         ASN1_START_BIT_STRING_ENCAPSULATED
    1130              :         {
    1131              :             // Convert raw signature to embedded signature
    1132            1 :             FixedByteSpan<Crypto::kP256_ECDSA_Signature_Length_Raw> rawSig(signature.Bytes());
    1133              : 
    1134              :             uint8_t derInt[kP256_FE_Length + kEmitDerIntegerWithoutTagOverhead];
    1135              : 
    1136              :             // Ecdsa-Sig-Value ::= SEQUENCE
    1137            1 :             ASN1_START_SEQUENCE
    1138              :             {
    1139              :                 using P256IntegerSpan = FixedByteSpan<Crypto::kP256_FE_Length>;
    1140              :                 // r INTEGER
    1141              :                 {
    1142            1 :                     MutableByteSpan derIntSpan(derInt, sizeof(derInt));
    1143            1 :                     ReturnErrorOnFailure(ConvertIntegerRawToDerWithoutTag(P256IntegerSpan(rawSig.data()), derIntSpan));
    1144            1 :                     ReturnErrorOnFailure(writer.PutValue(kASN1TagClass_Universal, kASN1UniversalTag_Integer, false,
    1145              :                                                          derIntSpan.data(), static_cast<uint16_t>(derIntSpan.size())));
    1146              :                 }
    1147              : 
    1148              :                 // s INTEGER
    1149              :                 {
    1150            1 :                     MutableByteSpan derIntSpan(derInt, sizeof(derInt));
    1151            1 :                     ReturnErrorOnFailure(
    1152              :                         ConvertIntegerRawToDerWithoutTag(P256IntegerSpan(rawSig.data() + kP256_FE_Length), derIntSpan));
    1153            1 :                     ReturnErrorOnFailure(writer.PutValue(kASN1TagClass_Universal, kASN1UniversalTag_Integer, false,
    1154              :                                                          derIntSpan.data(), static_cast<uint16_t>(derIntSpan.size())));
    1155              :                 }
    1156              :             }
    1157            1 :             ASN1_END_SEQUENCE;
    1158              :         }
    1159            1 :         ASN1_END_ENCAPSULATED;
    1160              :     }
    1161            1 :     ASN1_END_SEQUENCE;
    1162              : 
    1163            1 : exit:
    1164              :     // Update size of output buffer on success
    1165            1 :     if (err == CHIP_NO_ERROR)
    1166              :     {
    1167            1 :         csr_span.reduce_size(writer.GetLengthWritten());
    1168              :     }
    1169            1 :     return err;
    1170            1 : }
    1171              : 
    1172           50 : CHIP_ERROR VerifyCertificateSigningRequestFormat(const uint8_t * csr, size_t csr_length)
    1173              : {
    1174              :     // Ensure we have enough size to validate header, and that our assumptions are met
    1175              :     // for some tag computations below. A csr_length > 65535 would never be seen in
    1176              :     // practice.
    1177           50 :     VerifyOrReturnError((csr_length >= 16) && (csr_length <= 65535), CHIP_ERROR_UNSUPPORTED_CERT_FORMAT);
    1178              : 
    1179           48 :     Reader reader(csr, csr_length);
    1180              : 
    1181              :     // Ensure we have an outermost SEQUENCE
    1182           48 :     uint8_t seq_header = 0;
    1183           48 :     ReturnErrorOnFailure(reader.Read8(&seq_header).StatusCode());
    1184           48 :     VerifyOrReturnError(seq_header == kSeqTag, CHIP_ERROR_UNSUPPORTED_CERT_FORMAT);
    1185              : 
    1186           46 :     size_t seq_length = 0;
    1187           46 :     VerifyOrReturnError(ReadDerLength(reader, seq_length) == CHIP_NO_ERROR, CHIP_ERROR_UNSUPPORTED_CERT_FORMAT);
    1188              :     // Ensure that outer length matches sequence length + tag overhead, otherwise
    1189              :     // we have trailing garbage
    1190           46 :     size_t header_overhead = (seq_length <= 127) ? 2 : ((seq_length <= 255) ? 3 : 4);
    1191           46 :     VerifyOrReturnError(csr_length == (seq_length + header_overhead), CHIP_ERROR_UNSUPPORTED_CERT_FORMAT);
    1192              : 
    1193           42 :     return CHIP_NO_ERROR;
    1194              : }
    1195              : 
    1196              : } // namespace Crypto
    1197              : } // namespace chip
        

Generated by: LCOV version 2.0-1