Matter SDK Coverage Report
Current view: top level - wifipaf - WiFiPAFEndPoint.cpp (source / functions) Coverage Total Hit
Test: SHA:86e1daf06eb16a317f3cae3ccfe0d408f1f26696 Lines: 82.3 % 451 371
Test Date: 2025-04-03 07:08:25 Functions: 92.5 % 40 37

            Line data    Source code
       1              : /*
       2              :  *
       3              :  *    Copyright (c) 2025 Project CHIP Authors
       4              :  *
       5              :  *    Licensed under the Apache License, Version 2.0 (the "License");
       6              :  *    you may not use this file except in compliance with the License.
       7              :  *    You may obtain a copy of the License at
       8              :  *
       9              :  *        http://www.apache.org/licenses/LICENSE-2.0
      10              :  *
      11              :  *    Unless required by applicable law or agreed to in writing, software
      12              :  *    distributed under the License is distributed on an "AS IS" BASIS,
      13              :  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
      14              :  *    See the License for the specific language governing permissions and
      15              :  *    limitations under the License.
      16              :  */
      17              : 
      18              : /**
      19              :  *    @file
      20              :  *      This file implements a WiFiPAF endpoint abstraction for CHIP over WiFiPAF (CHIPoPAF)
      21              :  *      Public Action Frame Transport Protocol (PAFTP).
      22              :  *
      23              :  */
      24              : 
      25              : #include "WiFiPAFEndPoint.h"
      26              : 
      27              : #include <cstdint>
      28              : #include <cstring>
      29              : #include <utility>
      30              : 
      31              : #include <lib/support/BitFlags.h>
      32              : #include <lib/support/BufferReader.h>
      33              : #include <lib/support/CodeUtils.h>
      34              : #include <lib/support/logging/CHIPLogging.h>
      35              : #include <system/SystemClock.h>
      36              : #include <system/SystemLayer.h>
      37              : #include <system/SystemPacketBuffer.h>
      38              : 
      39              : #include "WiFiPAFConfig.h"
      40              : #include "WiFiPAFError.h"
      41              : #include "WiFiPAFLayer.h"
      42              : #include "WiFiPAFTP.h"
      43              : 
      44              : // Define below to enable extremely verbose, WiFiPAF end point-specific debug logging.
      45              : #undef CHIP_WIFIPAF_END_POINT_DEBUG_LOGGING_ENABLED
      46              : #define CHIP_WIFIPAF_END_POINT_DEBUG_LOGGING_LEVEL 0
      47              : 
      48              : #ifdef CHIP_WIFIPAF_END_POINT_DEBUG_LOGGING_ENABLED
      49              : #define ChipLogDebugWiFiPAFEndPoint_L0(MOD, MSG, ...) ChipLogDetail(MOD, MSG, ##__VA_ARGS__)
      50              : #if (CHIP_WIFIPAF_END_POINT_DEBUG_LOGGING_LEVEL == 0)
      51              : #define ChipLogDebugWiFiPAFEndPoint(MOD, MSG, ...)
      52              : #else
      53              : #define ChipLogDebugWiFiPAFEndPoint(MOD, MSG, ...) ChipLogDetail(MOD, MSG, ##__VA_ARGS__)
      54              : #endif // CHIP_WIFIPAF_END_POINT_DEBUG_LOGGING_LEVEL
      55              : #define ChipLogDebugBufferWiFiPAFEndPoint(MOD, BUF)                                                                                \
      56              :     ChipLogByteSpan(MOD, ByteSpan((BUF)->Start(), ((BUF)->DataLength() < 8 ? (BUF)->DataLength() : 8u)))
      57              : #else
      58              : #define ChipLogDebugWiFiPAFEndPoint(MOD, MSG, ...)
      59              : #define ChipLogDebugBufferWiFiPAFEndPoint(MOD, BUF)
      60              : #endif
      61              : 
      62              : /**
      63              :  *  @def WIFIPAF_CONFIG_IMMEDIATE_ACK_WINDOW_THRESHOLD
      64              :  *
      65              :  *  @brief
      66              :  *    If an end point's receive window drops equal to or below this value, it will send an immediate acknowledgement
      67              :  *    packet to re-open its window instead of waiting for the send-ack timer to expire.
      68              :  *
      69              :  */
      70              : #define WIFIPAF_CONFIG_IMMEDIATE_ACK_WINDOW_THRESHOLD 1
      71              : 
      72              : #define WIFIPAF_ACK_SEND_TIMEOUT_MS 2500
      73              : 
      74              : /**
      75              :  *  @def WIFIPAF_WINDOW_NO_ACK_SEND_THRESHOLD
      76              :  *
      77              :  *  @brief
      78              :  *    Data fragments may only be sent without piggybacked acks if receiver's window size is above this threshold.
      79              :  *
      80              :  */
      81              : #define WIFIPAF_WINDOW_NO_ACK_SEND_THRESHOLD 1
      82              : 
      83              : namespace chip {
      84              : namespace WiFiPAF {
      85              : 
      86            1 : CHIP_ERROR WiFiPAFEndPoint::StartConnect()
      87              : {
      88            1 :     CHIP_ERROR err = CHIP_NO_ERROR;
      89              :     PAFTransportCapabilitiesRequestMessage req;
      90            1 :     PacketBufferHandle buf;
      91            1 :     constexpr uint8_t numVersions =
      92              :         CHIP_PAF_TRANSPORT_PROTOCOL_MAX_SUPPORTED_VERSION - CHIP_PAF_TRANSPORT_PROTOCOL_MIN_SUPPORTED_VERSION + 1;
      93              :     static_assert(numVersions <= NUM_PAFTP_SUPPORTED_PROTOCOL_VERSIONS, "Incompatibly protocol versions");
      94              : 
      95              :     // Ensure we're in the correct state.
      96            1 :     VerifyOrExit(mState == kState_Ready, err = CHIP_ERROR_INCORRECT_STATE);
      97            1 :     mState = kState_Connecting;
      98              : 
      99              :     // Build PAF transport protocol capabilities request.
     100            1 :     buf = System::PacketBufferHandle::New(System::PacketBuffer::kMaxSize);
     101            1 :     VerifyOrExit(!buf.IsNull(), err = CHIP_ERROR_NO_MEMORY);
     102              : 
     103              :     // Zero-initialize PAF transport capabilities request.
     104            1 :     memset(&req, 0, sizeof(req));
     105            1 :     req.mMtu        = CHIP_PAF_DEFAULT_MTU;
     106            1 :     req.mWindowSize = PAF_MAX_RECEIVE_WINDOW_SIZE;
     107              : 
     108              :     // Populate request with highest supported protocol versions
     109            2 :     for (uint8_t i = 0; i < numVersions; i++)
     110              :     {
     111            1 :         req.SetSupportedProtocolVersion(i, static_cast<uint8_t>(CHIP_PAF_TRANSPORT_PROTOCOL_MAX_SUPPORTED_VERSION - i));
     112              :     }
     113              : 
     114            1 :     err = req.Encode(buf);
     115            1 :     SuccessOrExit(err);
     116              : 
     117              :     // Start connect timer. Canceled when end point freed or connection established.
     118            1 :     err = StartConnectTimer();
     119            1 :     SuccessOrExit(err);
     120              : 
     121              :     // Send PAF transport capabilities request to peripheral.
     122              :     // Add reference to message fragment. CHIP retains partial ownership of message fragment's packet buffer,
     123              :     // since this is the same buffer as that of the whole message, just with a fragmenter-modified payload offset
     124              :     // and data length, by a Retain() on the handle when calling this function.
     125            1 :     err = SendWrite(buf.Retain());
     126            1 :     SuccessOrExit(err);
     127              :     // Free request buffer on write confirmation. Stash a reference to it in mSendQueue, which we don't use anyway
     128              :     // until the connection has been set up.
     129            1 :     QueueTx(std::move(buf), kType_Data);
     130              : 
     131            1 : exit:
     132              :     // If we failed to initiate the connection, close the end point.
     133            1 :     if (err != CHIP_NO_ERROR)
     134              :     {
     135            0 :         StopConnectTimer();
     136            0 :         DoClose(kWiFiPAFCloseFlag_AbortTransmission, err);
     137              :     }
     138              : 
     139            1 :     return err;
     140            1 : }
     141              : 
     142            2 : CHIP_ERROR WiFiPAFEndPoint::HandleConnectComplete()
     143              : {
     144            2 :     CHIP_ERROR err = CHIP_NO_ERROR;
     145              : 
     146            2 :     mState = kState_Connected;
     147              :     // Cancel the connect timer.
     148            2 :     StopConnectTimer();
     149              : 
     150              :     // We've successfully completed the PAF transport protocol handshake, so let the application know we're open for business.
     151            2 :     if (mWiFiPafLayer != nullptr)
     152              :     {
     153              :         // Indicate connect complete to next-higher layer.
     154            2 :         mWiFiPafLayer->OnEndPointConnectComplete(this, CHIP_NO_ERROR);
     155              :     }
     156              :     else
     157              :     {
     158              :         // If no connect complete callback has been set up, close the end point.
     159            0 :         err = WIFIPAF_ERROR_NO_CONNECT_COMPLETE_CALLBACK;
     160              :     }
     161            2 :     return err;
     162              : }
     163              : 
     164           11 : bool WiFiPAFEndPoint::IsConnected(uint8_t state) const
     165              : {
     166           11 :     return (state == kState_Connected || state == kState_Closing);
     167              : }
     168              : 
     169            2 : void WiFiPAFEndPoint::DoClose(uint8_t flags, CHIP_ERROR err)
     170              : {
     171            2 :     uint8_t oldState = mState;
     172              : 
     173              :     // If end point is not closed or closing, OR end point was closing gracefully, but tx abort has been specified...
     174            2 :     if ((mState != kState_Closed && mState != kState_Closing) ||
     175            0 :         (mState == kState_Closing && (flags & kWiFiPAFCloseFlag_AbortTransmission)))
     176              :     {
     177              :         // Cancel Connect and ReceiveConnect timers if they are running.
     178              :         // Check role first to avoid needless iteration over timer pool.
     179            2 :         if (mRole == kWiFiPafRole_Subscriber)
     180              :         {
     181            1 :             StopConnectTimer();
     182              :         }
     183              : 
     184              :         // Free the packets in re-order queue if ones exist
     185           14 :         for (uint8_t qidx = 0; qidx < PAFTP_REORDER_QUEUE_SIZE; qidx++)
     186              :         {
     187           12 :             if (ReorderQueue[qidx] != nullptr)
     188              :             {
     189            0 :                 ReorderQueue[qidx] = nullptr;
     190            0 :                 ItemsInReorderQueue--;
     191              :             }
     192              :         }
     193              : 
     194              :         // If transmit buffer is empty or a transmission abort was specified...
     195            2 :         if (mPafTP.TxState() == WiFiPAFTP::kState_Idle || (flags & kWiFiPAFCloseFlag_AbortTransmission))
     196              :         {
     197            2 :             FinalizeClose(oldState, flags, err);
     198              :         }
     199              :         else
     200              :         {
     201              :             // Wait for send queue and fragmenter's tx buffer to become empty, to ensure all pending messages have been
     202              :             // sent. Only free end point and tell platform it can throw away the underlying connection once all
     203              :             // pending messages have been sent and acknowledged by the remote CHIPoPAF stack, or once the remote stack
     204              :             // closes the CHIPoPAF connection.
     205              :             //
     206              :             // In so doing, WiFiPAFEndPoint attempts to emulate the level of reliability afforded by TCPEndPoint and TCP
     207              :             // sockets in general with a typical default SO_LINGER option. That said, there is no hard guarantee that
     208              :             // pending messages will be sent once (Do)Close() is called, so developers should use application-level
     209              :             // messages to confirm the receipt of all data sent prior to a Close() call.
     210            0 :             mState = kState_Closing;
     211              : 
     212            0 :             if ((flags & kWiFiPAFCloseFlag_SuppressCallback) == 0)
     213              :             {
     214            0 :                 DoCloseCallback(oldState, flags, err);
     215              :             }
     216              :         }
     217              :     }
     218            2 : }
     219              : 
     220            2 : void WiFiPAFEndPoint::FinalizeClose(uint8_t oldState, uint8_t flags, CHIP_ERROR err)
     221              : {
     222            2 :     mState = kState_Closed;
     223              : 
     224              :     // Ensure transmit queue is empty and set to NULL.
     225            2 :     mSendQueue = nullptr;
     226              :     // Clear the session information
     227            2 :     ChipLogProgress(WiFiPAF, "Shutdown PAF session (%u, %u)", mSessionInfo.id, mSessionInfo.role);
     228            2 :     mWiFiPafLayer->mWiFiPAFTransport->WiFiPAFCloseSession(mSessionInfo);
     229            2 :     memset(&mSessionInfo, 0, sizeof(mSessionInfo));
     230              :     // Fire application's close callback if we haven't already, and it's not suppressed.
     231            2 :     if (oldState != kState_Closing && (flags & kWiFiPAFCloseFlag_SuppressCallback) == 0)
     232              :     {
     233            2 :         DoCloseCallback(oldState, flags, err);
     234              :     }
     235              : 
     236              :     // If underlying WiFiPAF connection has closed, connection object is invalid, so just free the end point and return.
     237            2 :     if (err == WIFIPAF_ERROR_REMOTE_DEVICE_DISCONNECTED || err == WIFIPAF_ERROR_APP_CLOSED_CONNECTION)
     238              :     {
     239            2 :         Free();
     240              :     }
     241              :     else // Otherwise, try to signal close to remote device before end point releases WiFiPAF connection and frees itself.
     242              :     {
     243            0 :         if (mRole == kWiFiPafRole_Subscriber)
     244              :         {
     245              :             // Cancel send and receive-ack timers, if running.
     246            0 :             StopAckReceivedTimer();
     247            0 :             StopSendAckTimer();
     248            0 :             mConnStateFlags.Set(ConnectionStateFlag::kOperationInFlight);
     249              :         }
     250              :         else
     251              :         {
     252            0 :             Free();
     253              :         }
     254              :     }
     255            2 :     ClearAll();
     256            2 : }
     257              : 
     258            2 : void WiFiPAFEndPoint::DoCloseCallback(uint8_t state, uint8_t flags, CHIP_ERROR err)
     259              : {
     260              :     // Callback fires once per end point lifetime.
     261            2 :     mOnPafSubscribeComplete = nullptr;
     262            2 :     mOnPafSubscribeError    = nullptr;
     263            2 :     OnConnectionClosed      = nullptr;
     264            2 : }
     265              : 
     266            2 : void WiFiPAFEndPoint::Free()
     267              : {
     268              :     // Clear fragmentation and reassembly engine's Tx and Rx buffers. Counters will be reset by next engine init.
     269            2 :     FreePAFtpEngine();
     270              : 
     271              :     // Clear pending ack buffer, if any.
     272            2 :     mAckToSend = nullptr;
     273              : 
     274              :     // Cancel all timers.
     275            2 :     StopConnectTimer();
     276            2 :     StopAckReceivedTimer();
     277            2 :     StopSendAckTimer();
     278              : 
     279              :     // Clear callbacks.
     280            2 :     mOnPafSubscribeComplete = nullptr;
     281            2 :     mOnPafSubscribeError    = nullptr;
     282            2 :     OnMessageReceived       = nullptr;
     283            2 :     OnConnectionClosed      = nullptr;
     284            2 : }
     285              : 
     286            2 : void WiFiPAFEndPoint::FreePAFtpEngine()
     287              : {
     288              :     // Free transmit disassembly buffer
     289            2 :     mPafTP.ClearTxPacket();
     290              : 
     291              :     // Free receive reassembly buffer
     292            2 :     mPafTP.ClearRxPacket();
     293            2 : }
     294              : 
     295            2 : CHIP_ERROR WiFiPAFEndPoint::Init(WiFiPAFLayer * WiFiPafLayer, WiFiPAFSession & SessionInfo)
     296              : {
     297              :     // Fail if already initialized.
     298            2 :     VerifyOrReturnError(mWiFiPafLayer == nullptr, CHIP_ERROR_INCORRECT_STATE);
     299              : 
     300              :     // Validate args.
     301            2 :     VerifyOrReturnError(WiFiPafLayer != nullptr, CHIP_ERROR_INVALID_ARGUMENT);
     302              : 
     303              :     // If end point plays subscriber role, expect ack as last step of PAFTP handshake.
     304              :     // If being publisher, subscriber's handshake indication 'ack's write sent by publisher to kick off the PAFTP handshake.
     305            2 :     bool expectInitialAck = (SessionInfo.role == kWiFiPafRole_Publisher);
     306              : 
     307            2 :     CHIP_ERROR err = mPafTP.Init(this, expectInitialAck);
     308            2 :     if (err != CHIP_NO_ERROR)
     309              :     {
     310            0 :         ChipLogError(WiFiPAF, "WiFiPAFTP init failed");
     311            0 :         return err;
     312              :     }
     313              : 
     314            2 :     mWiFiPafLayer = WiFiPafLayer;
     315              : 
     316              :     // WiFiPAF EndPoint data members:
     317            2 :     memcpy(&mSessionInfo, &SessionInfo, sizeof(mSessionInfo));
     318            2 :     mRole = SessionInfo.role;
     319            2 :     mTimerStateFlags.ClearAll();
     320            2 :     mLocalReceiveWindowSize  = 0;
     321            2 :     mRemoteReceiveWindowSize = 0;
     322            2 :     mReceiveWindowMaxSize    = 0;
     323            2 :     mSendQueue               = nullptr;
     324            2 :     mAckToSend               = nullptr;
     325              : 
     326              :     ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "initialized local rx window, size = %u", mLocalReceiveWindowSize);
     327              : 
     328              :     // End point is ready.
     329            2 :     mState = kState_Ready;
     330              : 
     331            2 :     return CHIP_NO_ERROR;
     332              : }
     333              : 
     334            8 : CHIP_ERROR WiFiPAFEndPoint::SendCharacteristic(PacketBufferHandle && buf)
     335              : {
     336            8 :     CHIP_ERROR err = CHIP_NO_ERROR;
     337              : 
     338            8 :     SuccessOrExit(err = SendWrite(std::move(buf)));
     339              :     // Write succeeded, so shrink remote receive window counter by 1.
     340            8 :     mRemoteReceiveWindowSize = static_cast<SequenceNumber_t>(mRemoteReceiveWindowSize - 1);
     341              :     ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "decremented remote rx window, new size = %u", mRemoteReceiveWindowSize);
     342            8 : exit:
     343            8 :     return err;
     344              : }
     345              : 
     346              : /*
     347              :  *  Routine to queue the Tx packet with a packet type
     348              :  *  kType_Data(0)       - data packet
     349              :  *  kType_Control(1)    - control packet
     350              :  */
     351            8 : void WiFiPAFEndPoint::QueueTx(PacketBufferHandle && data, PacketType_t type)
     352              : {
     353            8 :     if (mSendQueue.IsNull())
     354              :     {
     355            6 :         mSendQueue = std::move(data);
     356              :         ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "%s: Set data as new mSendQueue %p, type %d", __FUNCTION__, mSendQueue->Start(), type);
     357              :     }
     358              :     else
     359              :     {
     360            2 :         mSendQueue->AddToEnd(std::move(data));
     361              :         ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "%s: Append data to mSendQueue %p, type %d", __FUNCTION__, mSendQueue->Start(), type);
     362              :     }
     363            8 : }
     364              : 
     365            6 : CHIP_ERROR WiFiPAFEndPoint::Send(PacketBufferHandle && data)
     366              : {
     367            6 :     CHIP_ERROR err = CHIP_NO_ERROR;
     368              : 
     369            6 :     VerifyOrExit(!data.IsNull(), err = CHIP_ERROR_INVALID_ARGUMENT);
     370            6 :     VerifyOrExit(IsConnected(mState), err = CHIP_ERROR_INCORRECT_STATE);
     371              : 
     372              :     // Ensure outgoing message fits in a single contiguous packet buffer, as currently required by the
     373              :     // message fragmentation and reassembly engine.
     374            6 :     if (data->HasChainedBuffer())
     375              :     {
     376            1 :         data->CompactHead();
     377              : 
     378            1 :         if (data->HasChainedBuffer())
     379              :         {
     380            0 :             err = CHIP_ERROR_OUTBOUND_MESSAGE_TOO_BIG;
     381            0 :             ExitNow();
     382              :         }
     383              :     }
     384              : 
     385              :     // Add new message to send queue.
     386            6 :     QueueTx(std::move(data), kType_Data);
     387              : 
     388              :     // Send first fragment of new message, if we can.
     389            6 :     err = DriveSending();
     390            6 :     SuccessOrExit(err);
     391            6 : exit:
     392            6 :     if (err != CHIP_NO_ERROR)
     393              :     {
     394            0 :         DoClose(kWiFiPAFCloseFlag_AbortTransmission, err);
     395              :     }
     396              : 
     397            6 :     return err;
     398              : }
     399              : 
     400            7 : bool WiFiPAFEndPoint::PrepareNextFragment(PacketBufferHandle && data, bool & sentAck)
     401              : {
     402              :     // If we have a pending fragment acknowledgement to send, piggyback it on the fragment we're about to transmit.
     403            7 :     if (mTimerStateFlags.Has(TimerStateFlag::kSendAckTimerRunning))
     404              :     {
     405              :         // Reset local receive window counter.
     406            2 :         mLocalReceiveWindowSize = mReceiveWindowMaxSize;
     407              :         ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "reset local rx window on piggyback ack tx, size = %u", mLocalReceiveWindowSize);
     408              : 
     409              :         // Tell caller AND fragmenter we have an ack to piggyback.
     410            2 :         sentAck = true;
     411              :     }
     412              :     else
     413              :     {
     414              :         // No ack to piggyback.
     415            5 :         sentAck = false;
     416              :     }
     417              : 
     418            7 :     return mPafTP.HandleCharacteristicSend(std::move(data), sentAck);
     419              : }
     420              : 
     421            6 : CHIP_ERROR WiFiPAFEndPoint::SendNextMessage()
     422              : {
     423              :     // Get the first queued packet to send
     424            6 :     PacketBufferHandle data = mSendQueue.PopHead();
     425              : 
     426              :     // Hand whole message payload to the fragmenter.
     427              :     bool sentAck;
     428            6 :     VerifyOrReturnError(PrepareNextFragment(std::move(data), sentAck), WIFIPAF_ERROR_CHIPPAF_PROTOCOL_ABORT);
     429              : 
     430            6 :     ReturnErrorOnFailure(SendCharacteristic(mPafTP.BorrowTxPacket()));
     431              : 
     432            6 :     if (sentAck)
     433              :     {
     434              :         // If sent piggybacked ack, stop send-ack timer.
     435            2 :         StopSendAckTimer();
     436              :     }
     437              : 
     438              :     // Start ack received timer, if it's not already running.
     439            6 :     return StartAckReceivedTimer();
     440            6 : }
     441              : 
     442            1 : CHIP_ERROR WiFiPAFEndPoint::ContinueMessageSend()
     443              : {
     444              :     bool sentAck;
     445              : 
     446            1 :     if (!PrepareNextFragment(nullptr, sentAck))
     447              :     {
     448              :         // Log PAFTP error
     449            0 :         ChipLogError(WiFiPAF, "paftp fragmenter error on send!");
     450            0 :         mPafTP.LogState();
     451              : 
     452            0 :         return WIFIPAF_ERROR_CHIPPAF_PROTOCOL_ABORT;
     453              :     }
     454              : 
     455            1 :     ReturnErrorOnFailure(SendCharacteristic(mPafTP.BorrowTxPacket()));
     456              : 
     457            1 :     if (sentAck)
     458              :     {
     459              :         // If sent piggybacked ack, stop send-ack timer.
     460            0 :         StopSendAckTimer();
     461              :     }
     462              : 
     463              :     // Start ack received timer, if it's not already running.
     464            1 :     return StartAckReceivedTimer();
     465              : }
     466              : 
     467            2 : CHIP_ERROR WiFiPAFEndPoint::HandleHandshakeConfirmationReceived()
     468              : {
     469              :     // Free capabilities request/response payload.
     470            2 :     mSendQueue.FreeHead();
     471              : 
     472            2 :     return CHIP_NO_ERROR;
     473              : }
     474              : 
     475            5 : CHIP_ERROR WiFiPAFEndPoint::HandleFragmentConfirmationReceived(bool result)
     476              : {
     477            5 :     CHIP_ERROR err = CHIP_NO_ERROR;
     478              :     // Ensure we're in correct state to receive confirmation of non-handshake GATT send.
     479            5 :     VerifyOrExit(IsConnected(mState), err = CHIP_ERROR_INCORRECT_STATE);
     480              : 
     481            5 :     if (mConnStateFlags.Has(ConnectionStateFlag::kStandAloneAckInFlight))
     482              :     {
     483              :         // If confirmation was received for stand-alone ack, free its tx buffer.
     484            0 :         mAckToSend = nullptr;
     485            0 :         mConnStateFlags.Clear(ConnectionStateFlag::kStandAloneAckInFlight);
     486              :     }
     487              : 
     488            5 :     if (result != true)
     489              :     {
     490              :         // Something wrong in writing packets
     491            0 :         ChipLogError(WiFiPAF, "Failed to send PAF packet");
     492            0 :         err = CHIP_ERROR_SENDING_BLOCKED;
     493            0 :         StopAckReceivedTimer();
     494            0 :         SuccessOrExit(err);
     495              :     }
     496              : 
     497              :     // If local receive window size has shrunk to or below immediate ack threshold, AND a message fragment is not
     498              :     // pending on which to piggyback an ack, send immediate stand-alone ack.
     499              :     //
     500              :     // This check covers the case where the local receive window has shrunk between transmission and confirmation of
     501              :     // the stand-alone ack, and also the case where a window size < the immediate ack threshold was detected in
     502              :     // Receive(), but the stand-alone ack was deferred due to a pending outbound message fragment.
     503            5 :     if (mLocalReceiveWindowSize <= WIFIPAF_CONFIG_IMMEDIATE_ACK_WINDOW_THRESHOLD && mSendQueue.IsNull() &&
     504            0 :         mPafTP.TxState() != WiFiPAFTP::kState_InProgress)
     505              :     {
     506            0 :         err = DriveStandAloneAck(); // Encode stand-alone ack and drive sending.
     507            0 :         SuccessOrExit(err);
     508              :     }
     509              :     else
     510              :     {
     511            5 :         err = DriveSending();
     512            5 :         SuccessOrExit(err);
     513              :     }
     514              : 
     515            5 : exit:
     516            5 :     if (err != CHIP_NO_ERROR)
     517              :     {
     518            0 :         DoClose(kWiFiPAFCloseFlag_AbortTransmission, err);
     519              :     }
     520              : 
     521            5 :     return err;
     522              : }
     523              : 
     524            7 : CHIP_ERROR WiFiPAFEndPoint::HandleSendConfirmationReceived(bool result)
     525              : {
     526              :     // Mark outstanding operation as finished.
     527            7 :     mConnStateFlags.Clear(ConnectionStateFlag::kOperationInFlight);
     528              : 
     529              :     // If confirmation was for outbound portion of PAFTP connect handshake...
     530            7 :     if (!mConnStateFlags.Has(ConnectionStateFlag::kCapabilitiesConfReceived))
     531              :     {
     532            2 :         mConnStateFlags.Set(ConnectionStateFlag::kCapabilitiesConfReceived);
     533            2 :         return HandleHandshakeConfirmationReceived();
     534              :     }
     535              : 
     536            5 :     return HandleFragmentConfirmationReceived(result);
     537              : }
     538              : 
     539            1 : CHIP_ERROR WiFiPAFEndPoint::DriveStandAloneAck()
     540              : {
     541              :     // Stop send-ack timer if running.
     542            1 :     StopSendAckTimer();
     543              : 
     544              :     // If stand-alone ack not already pending, allocate new payload buffer here.
     545            1 :     if (mAckToSend.IsNull())
     546              :     {
     547            1 :         mAckToSend = System::PacketBufferHandle::New(kTransferProtocolStandaloneAckHeaderSize);
     548            1 :         VerifyOrReturnError(!mAckToSend.IsNull(), CHIP_ERROR_NO_MEMORY);
     549              :     }
     550              : 
     551              :     // Attempt to send stand-alone ack.
     552            1 :     return DriveSending();
     553              : }
     554              : 
     555            1 : CHIP_ERROR WiFiPAFEndPoint::DoSendStandAloneAck()
     556              : {
     557              :     ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "sending stand-alone ack");
     558              : 
     559              :     // Encode and transmit stand-alone ack.
     560            1 :     mPafTP.EncodeStandAloneAck(mAckToSend);
     561            1 :     ReturnErrorOnFailure(SendCharacteristic(mAckToSend.Retain()));
     562              : 
     563              :     // Reset local receive window counter.
     564            1 :     mLocalReceiveWindowSize = mReceiveWindowMaxSize;
     565              :     ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "reset local rx window on stand-alone ack tx, size = %u", mLocalReceiveWindowSize);
     566              : 
     567            1 :     mConnStateFlags.Set(ConnectionStateFlag::kStandAloneAckInFlight);
     568              : 
     569              :     // Start ack received timer, if it's not already running.
     570            1 :     return StartAckReceivedTimer();
     571              : }
     572              : 
     573           16 : CHIP_ERROR WiFiPAFEndPoint::DriveSending()
     574              : {
     575              :     // If receiver's window is almost closed and we don't have an ack to send, OR we do have an ack to send but
     576              :     // receiver's window is completely empty, OR another operation is in flight, awaiting confirmation...
     577           33 :     if ((mRemoteReceiveWindowSize <= WIFIPAF_WINDOW_NO_ACK_SEND_THRESHOLD &&
     578            1 :          !mTimerStateFlags.Has(TimerStateFlag::kSendAckTimerRunning) && mAckToSend.IsNull()) ||
     579           17 :         (mRemoteReceiveWindowSize == 0) || (mConnStateFlags.Has(ConnectionStateFlag::kOperationInFlight)))
     580              :     {
     581            4 :         if (mRemoteReceiveWindowSize <= WIFIPAF_WINDOW_NO_ACK_SEND_THRESHOLD &&
     582            3 :             !mTimerStateFlags.Has(TimerStateFlag::kSendAckTimerRunning) && mAckToSend.IsNull())
     583              :         {
     584              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "NO SEND: receive window almost closed, and no ack to send");
     585              :         }
     586              : 
     587            3 :         if (mRemoteReceiveWindowSize == 0)
     588              :         {
     589              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "NO SEND: remote receive window closed");
     590              :         }
     591              : 
     592            3 :         if (mConnStateFlags.Has(ConnectionStateFlag::kOperationInFlight))
     593              :         {
     594              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "NO SEND: Operation in flight");
     595              :         }
     596              :         // Can't send anything.
     597            3 :         return CHIP_NO_ERROR;
     598              :     }
     599              : 
     600              :     // Otherwise, let's see what we can send.
     601           13 :     if ((!mAckToSend.IsNull()) && !mConnStateFlags.Has(ConnectionStateFlag::kStandAloneAckInFlight))
     602              :     {
     603              :         // If immediate, stand-alone ack is pending, send it.
     604            0 :         ChipLogProgress(WiFiPAF, "Send the pending stand-alone ack");
     605            0 :         ReturnErrorOnFailure(DoSendStandAloneAck());
     606              :     }
     607           13 :     else if (mPafTP.TxState() == WiFiPAFTP::kState_Idle) // Else send next message fragment, if any.
     608              :     {
     609              :         // Fragmenter's idle, let's see what's in the send queue...
     610            8 :         if (!mSendQueue.IsNull())
     611              :         {
     612              :             // Transmit first fragment of next whole message in send queue.
     613            5 :             ReturnErrorOnFailure(SendNextMessage());
     614              :         }
     615              :         else
     616              :         {
     617              :             // Nothing to send!
     618              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "=> No pending packets, nothing to send!");
     619              :         }
     620              :     }
     621            5 :     else if (mPafTP.TxState() == WiFiPAFTP::kState_InProgress)
     622              :     {
     623              :         // Send next fragment of message currently held by fragmenter.
     624              :         ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "Send the next fragment");
     625            1 :         ReturnErrorOnFailure(ContinueMessageSend());
     626              :     }
     627            4 :     else if (mPafTP.TxState() == WiFiPAFTP::kState_Complete)
     628              :     {
     629              :         // Clear fragmenter's pointer to sent message buffer and reset its Tx state.
     630              :         // Buffer will be freed at scope exit.
     631            4 :         PacketBufferHandle sentBuf = mPafTP.TakeTxPacket();
     632              : 
     633            4 :         if (!mSendQueue.IsNull())
     634              :         {
     635              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "Send the next pkt");
     636              :             // Transmit first fragment of next whole message in send queue.
     637            1 :             ReturnErrorOnFailure(SendNextMessage());
     638              :         }
     639            3 :         else if (mState == kState_Closing && !mPafTP.ExpectingAck()) // and mSendQueue is NULL, per above...
     640              :         {
     641              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "Closing and no expect ack!");
     642              :             // If end point closing, got last ack, and got out-of-order confirmation for last send, finalize close.
     643            0 :             FinalizeClose(mState, kWiFiPAFCloseFlag_SuppressCallback, CHIP_NO_ERROR);
     644              :         }
     645              :         else
     646              :         {
     647              :             // Nothing to send!
     648              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "No more packets to send");
     649              :         }
     650            4 :     }
     651              :     else
     652              :     {
     653            0 :         ChipLogError(WiFiPAF, "Unknown TxState: %u", mPafTP.TxState());
     654              :     }
     655           13 :     return CHIP_NO_ERROR;
     656              : }
     657              : 
     658            1 : CHIP_ERROR WiFiPAFEndPoint::HandleCapabilitiesRequestReceived(PacketBufferHandle && data)
     659              : {
     660              :     PAFTransportCapabilitiesRequestMessage req;
     661              :     PAFTransportCapabilitiesResponseMessage resp;
     662              :     uint16_t mtu;
     663              : 
     664            1 :     VerifyOrReturnError(!data.IsNull(), CHIP_ERROR_INVALID_ARGUMENT);
     665              : 
     666            1 :     mState = kState_Connecting;
     667              : 
     668              :     // Decode PAFTP capabilities request.
     669            1 :     ReturnErrorOnFailure(PAFTransportCapabilitiesRequestMessage::Decode(data, req));
     670              : 
     671            1 :     PacketBufferHandle responseBuf = System::PacketBufferHandle::New(kCapabilitiesResponseLength);
     672            1 :     VerifyOrReturnError(!responseBuf.IsNull(), CHIP_ERROR_NO_MEMORY);
     673              : 
     674            1 :     if (req.mMtu > 0) // If MTU was observed and provided by central...
     675              :     {
     676            1 :         mtu = req.mMtu; // Accept central's observation of the MTU.
     677              :     }
     678              :     else
     679              :     {
     680            0 :         mtu = CHIP_PAF_DEFAULT_MTU;
     681              :     }
     682              : 
     683              :     // Select fragment size for connection based on MTU.
     684            1 :     resp.mFragmentSize = std::min(static_cast<uint16_t>(mtu), WiFiPAFTP::sMaxFragmentSize);
     685              : 
     686              :     // Select local and remote max receive window size based on local resources available for both incoming writes
     687            1 :     mRemoteReceiveWindowSize = mLocalReceiveWindowSize = mReceiveWindowMaxSize =
     688            1 :         std::min(req.mWindowSize, static_cast<uint8_t>(PAF_MAX_RECEIVE_WINDOW_SIZE));
     689            1 :     resp.mWindowSize = mReceiveWindowMaxSize;
     690            1 :     ChipLogProgress(WiFiPAF, "local and remote recv window sizes = %u", resp.mWindowSize);
     691              : 
     692              :     // Select PAF transport protocol version from those supported by central, or none if no supported version found.
     693            1 :     resp.mSelectedProtocolVersion = WiFiPAFLayer::GetHighestSupportedProtocolVersion(req);
     694            1 :     ChipLogProgress(WiFiPAF, "selected PAFTP version %d", resp.mSelectedProtocolVersion);
     695              : 
     696            1 :     if (resp.mSelectedProtocolVersion == kWiFiPAFTransportProtocolVersion_None)
     697              :     {
     698              :         // If WiFiPAF transport protocol versions incompatible, prepare to close connection after capabilities response
     699              :         // has been sent.
     700            0 :         ChipLogError(WiFiPAF, "incompatible PAFTP versions; peripheral expected between %d and %d",
     701              :                      CHIP_PAF_TRANSPORT_PROTOCOL_MIN_SUPPORTED_VERSION, CHIP_PAF_TRANSPORT_PROTOCOL_MAX_SUPPORTED_VERSION);
     702            0 :         mState = kState_Aborting;
     703              :     }
     704              :     else
     705              :     {
     706              :         // Set Rx and Tx fragment sizes to the same value
     707            1 :         mPafTP.SetRxFragmentSize(resp.mFragmentSize);
     708            1 :         mPafTP.SetTxFragmentSize(resp.mFragmentSize);
     709              :     }
     710              : 
     711            1 :     ChipLogProgress(WiFiPAF, "using PAFTP fragment sizes rx %d / tx %d.", mPafTP.GetRxFragmentSize(), mPafTP.GetTxFragmentSize());
     712            1 :     ReturnErrorOnFailure(resp.Encode(responseBuf));
     713              : 
     714              :     CHIP_ERROR err;
     715            1 :     err = SendWrite(responseBuf.Retain());
     716            1 :     SuccessOrExit(err);
     717              : 
     718              :     // Stash capabilities response payload
     719            1 :     QueueTx(std::move(responseBuf), kType_Data);
     720              : 
     721              :     // Response has been sent
     722            1 :     return HandleConnectComplete();
     723            0 : exit:
     724            0 :     return err;
     725            1 : }
     726              : 
     727            1 : CHIP_ERROR WiFiPAFEndPoint::HandleCapabilitiesResponseReceived(PacketBufferHandle && data)
     728              : {
     729              :     PAFTransportCapabilitiesResponseMessage resp;
     730              : 
     731            1 :     VerifyOrReturnError(!data.IsNull(), CHIP_ERROR_INVALID_ARGUMENT);
     732              : 
     733              :     // Decode PAFTP capabilities response.
     734            1 :     ReturnErrorOnFailure(PAFTransportCapabilitiesResponseMessage::Decode(data, resp));
     735              : 
     736            1 :     VerifyOrReturnError(resp.mFragmentSize > 0, WIFIPAF_ERROR_INVALID_FRAGMENT_SIZE);
     737              : 
     738            1 :     ChipLogProgress(WiFiPAF, "Publisher chose PAFTP version %d; subscriber expected between %d and %d",
     739              :                     resp.mSelectedProtocolVersion, CHIP_PAF_TRANSPORT_PROTOCOL_MIN_SUPPORTED_VERSION,
     740              :                     CHIP_PAF_TRANSPORT_PROTOCOL_MAX_SUPPORTED_VERSION);
     741              : 
     742            1 :     if ((resp.mSelectedProtocolVersion < CHIP_PAF_TRANSPORT_PROTOCOL_MIN_SUPPORTED_VERSION) ||
     743            1 :         (resp.mSelectedProtocolVersion > CHIP_PAF_TRANSPORT_PROTOCOL_MAX_SUPPORTED_VERSION))
     744              :     {
     745            0 :         return WIFIPAF_ERROR_INCOMPATIBLE_PROTOCOL_VERSIONS;
     746              :     }
     747              : 
     748              :     // Set fragment size as minimum of (reported ATT MTU, BTP characteristic size)
     749            1 :     resp.mFragmentSize = std::min(resp.mFragmentSize, WiFiPAFTP::sMaxFragmentSize);
     750              : 
     751            1 :     mPafTP.SetRxFragmentSize(resp.mFragmentSize);
     752            1 :     mPafTP.SetTxFragmentSize(resp.mFragmentSize);
     753              : 
     754            1 :     ChipLogProgress(WiFiPAF, "using PAFTP fragment sizes rx %d / tx %d.", mPafTP.GetRxFragmentSize(), mPafTP.GetTxFragmentSize());
     755              : 
     756              :     // Select local and remote max receive window size based on local resources available for both incoming indications
     757            1 :     mRemoteReceiveWindowSize = mLocalReceiveWindowSize = mReceiveWindowMaxSize = resp.mWindowSize;
     758              : 
     759            1 :     ChipLogProgress(WiFiPAF, "local and remote recv window size = %u", resp.mWindowSize);
     760              : 
     761              :     // Shrink local receive window counter by 1, since connect handshake indication requires acknowledgement.
     762            1 :     mLocalReceiveWindowSize = static_cast<SequenceNumber_t>(mLocalReceiveWindowSize - 1);
     763              :     ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "decremented local rx window, new size = %u", mLocalReceiveWindowSize);
     764              : 
     765              :     // Send ack for connection handshake indication when timer expires. Sequence numbers always start at 0,
     766              :     // and the reassembler's "last received seq num" is initialized to 0 and updated when new fragments are
     767              :     // received from the peripheral, so we don't need to explicitly mark the ack num to send here.
     768            1 :     ReturnErrorOnFailure(StartSendAckTimer());
     769              : 
     770              :     // We've sent a capabilities request write and received a compatible response, so the connect
     771              :     // operation has completed successfully.
     772            1 :     return HandleConnectComplete();
     773              : }
     774              : 
     775              : // Returns number of open slots in remote receive window given the input values.
     776            4 : SequenceNumber_t WiFiPAFEndPoint::AdjustRemoteReceiveWindow(SequenceNumber_t lastReceivedAck, SequenceNumber_t maxRemoteWindowSize,
     777              :                                                             SequenceNumber_t newestUnackedSentSeqNum)
     778              : {
     779              :     // Assumption: SequenceNumber_t is uint8_t.
     780              :     // Assumption: Maximum possible sequence number value is UINT8_MAX.
     781              :     // Assumption: Sequence numbers incremented past maximum value wrap to 0.
     782              :     // Assumption: newest unacked sent sequence number never exceeds current (and by extension, new and un-wrapped)
     783              :     //             window boundary, so it never wraps relative to last received ack, if new window boundary would not
     784              :     //             also wrap.
     785              : 
     786              :     // Define new window boundary (inclusive) as uint16_t, so its value can temporarily exceed UINT8_MAX.
     787            4 :     uint16_t newRemoteWindowBoundary = static_cast<uint16_t>(lastReceivedAck + maxRemoteWindowSize);
     788              : 
     789            4 :     if (newRemoteWindowBoundary > UINT8_MAX && newestUnackedSentSeqNum < lastReceivedAck)
     790              :     {
     791              :         // New window boundary WOULD wrap, and latest unacked seq num already HAS wrapped, so add offset to difference.
     792            0 :         return static_cast<uint8_t>(newRemoteWindowBoundary - (newestUnackedSentSeqNum + UINT8_MAX));
     793              :     }
     794              : 
     795              :     // Neither values would or have wrapped, OR new boundary WOULD wrap but latest unacked seq num does not, so no
     796              :     // offset required.
     797            4 :     return static_cast<uint8_t>(newRemoteWindowBoundary - newestUnackedSentSeqNum);
     798              : }
     799              : 
     800            7 : CHIP_ERROR WiFiPAFEndPoint::GetPktSn(Encoding::LittleEndian::Reader & reader, uint8_t * pHead, SequenceNumber_t & seqNum)
     801              : {
     802              :     CHIP_ERROR err;
     803            7 :     BitFlags<WiFiPAFTP::HeaderFlags> rx_flags;
     804            7 :     uint8_t SnOffset = 0;
     805              :     SequenceNumber_t * pSn;
     806            7 :     err = reader.Read8(rx_flags.RawStorage()).StatusCode();
     807            7 :     if (rx_flags.Has(WiFiPAFTP::HeaderFlags::kHankshake))
     808              :     {
     809              :         // Handkshake message => No ack/sn
     810            2 :         return CHIP_ERROR_INTERNAL;
     811              :     }
     812              :     // Always has header flag
     813            5 :     SnOffset += kTransferProtocolHeaderFlagsSize;
     814            5 :     if (rx_flags.Has(WiFiPAFTP::HeaderFlags::kManagementOpcode)) // Has Mgmt_Op
     815              :     {
     816            0 :         SnOffset += kTransferProtocolMgmtOpSize;
     817              :     }
     818            5 :     if (rx_flags.Has(WiFiPAFTP::HeaderFlags::kFragmentAck)) // Has ack
     819              :     {
     820            5 :         SnOffset += kTransferProtocolAckSize;
     821              :     }
     822            5 :     pSn    = pHead + SnOffset;
     823            5 :     seqNum = *pSn;
     824              : 
     825            5 :     return CHIP_NO_ERROR;
     826              : }
     827              : 
     828           16 : CHIP_ERROR WiFiPAFEndPoint::DebugPktAckSn(const PktDirect_t PktDirect, Encoding::LittleEndian::Reader & reader, uint8_t * pHead)
     829              : {
     830              : #ifdef CHIP_WIFIPAF_END_POINT_DEBUG_LOGGING_ENABLED
     831              :     BitFlags<WiFiPAFTP::HeaderFlags> rx_flags;
     832              :     CHIP_ERROR err;
     833              :     uint8_t * pAct = nullptr;
     834              :     char AckBuff[4];
     835              :     uint8_t * pSn;
     836              :     uint8_t SnOffset = 0;
     837              : 
     838              :     err = reader.Read8(rx_flags.RawStorage()).StatusCode();
     839              :     SuccessOrExit(err);
     840              :     if (rx_flags.Has(WiFiPAFTP::HeaderFlags::kHankshake))
     841              :     {
     842              :         // Handkshake message => No ack/sn
     843              :         return CHIP_NO_ERROR;
     844              :     }
     845              :     // Always has header flag
     846              :     SnOffset += kTransferProtocolHeaderFlagsSize;
     847              :     if (rx_flags.Has(WiFiPAFTP::HeaderFlags::kManagementOpcode)) // Has Mgmt_Op
     848              :     {
     849              :         SnOffset += kTransferProtocolMgmtOpSize;
     850              :     }
     851              :     if (rx_flags.Has(WiFiPAFTP::HeaderFlags::kFragmentAck)) // Has ack
     852              :     {
     853              :         pAct = pHead + kTransferProtocolHeaderFlagsSize;
     854              :         SnOffset += kTransferProtocolAckSize;
     855              :     }
     856              :     pSn = pHead + SnOffset;
     857              :     if (pAct == nullptr)
     858              :     {
     859              :         strcpy(AckBuff, "  ");
     860              :     }
     861              :     else
     862              :     {
     863              :         snprintf(AckBuff, sizeof(AckBuff), "%02hhu", *pAct);
     864              :     }
     865              :     if (PktDirect == PktDirect_t::kTx)
     866              :     {
     867              :         ChipLogDebugWiFiPAFEndPoint_L0(WiFiPAF, "==>[tx] [Sn, Ack] = [   %02u, -- %s]", *pSn, AckBuff);
     868              :     }
     869              :     else if (PktDirect == PktDirect_t::kRx)
     870              :     {
     871              :         ChipLogDebugWiFiPAFEndPoint_L0(WiFiPAF, "<==[rx] [Ack, Sn] = [-- %s,    %02u]", AckBuff, *pSn);
     872              :     }
     873              : exit:
     874              :     return err;
     875              : #else
     876           16 :     return CHIP_NO_ERROR;
     877              : #endif
     878              : }
     879              : 
     880            7 : CHIP_ERROR WiFiPAFEndPoint::Receive(PacketBufferHandle && data)
     881              : {
     882            7 :     SequenceNumber_t ExpRxNextSeqNum = mPafTP.GetRxNextSeqNum();
     883              :     SequenceNumber_t seqNum;
     884            7 :     Encoding::LittleEndian::Reader reader(data->Start(), data->DataLength());
     885            7 :     CHIP_ERROR err = CHIP_NO_ERROR;
     886              : 
     887            7 :     err = GetPktSn(reader, data->Start(), seqNum);
     888            7 :     if (err != CHIP_NO_ERROR)
     889              :     {
     890              :         // Failed to get SeqNum. => Pass down to PAFTP engine directly
     891            2 :         return RxPacketProcess(std::move(data));
     892              :     }
     893              :     /*
     894              :         If reorder-queue is not empty => Need to queue the packet whose SeqNum is the next one at
     895              :         offset 0 to fill the hole.
     896              :     */
     897            5 :     if ((ExpRxNextSeqNum == seqNum) && (ItemsInReorderQueue == 0))
     898            2 :         return RxPacketProcess(std::move(data));
     899              : 
     900            3 :     ChipLogError(WiFiPAF, "Reorder the packet: [%u, %u]", ExpRxNextSeqNum, seqNum);
     901              :     // Start reordering packets
     902            3 :     SequenceNumber_t offset = OffsetSeqNum(seqNum, ExpRxNextSeqNum);
     903            3 :     if (offset >= PAFTP_REORDER_QUEUE_SIZE)
     904              :     {
     905              :         // Offset is too big
     906              :         // => It may be the unexpected packet or duplicate packet => drop it
     907            1 :         ChipLogError(WiFiPAF, "Offset (%u) is too big => drop the packet", offset);
     908              :         ChipLogDebugBufferWiFiPAFEndPoint(WiFiPAF, data);
     909            1 :         return CHIP_NO_ERROR;
     910              :     }
     911              : 
     912              :     // Save the packet to the reorder-queue
     913            2 :     if (ReorderQueue[offset] == nullptr)
     914              :     {
     915            2 :         ReorderQueue[offset] = std::move(data).UnsafeRelease();
     916            2 :         ItemsInReorderQueue++;
     917              :     }
     918              : 
     919              :     // Consume the packets in the reorder queue if no hole exists
     920            2 :     if (ReorderQueue[0] == nullptr)
     921              :     {
     922              :         // The hole still exists => Can't continue
     923            1 :         ChipLogError(WiFiPAF, "The hole still exists. Packets in reorder-queue: %u", ItemsInReorderQueue);
     924            1 :         return CHIP_NO_ERROR;
     925              :     }
     926              :     uint8_t qidx;
     927            3 :     for (qidx = 0; qidx < PAFTP_REORDER_QUEUE_SIZE; qidx++)
     928              :     {
     929              :         // The head slots should have been filled. => Do rx processing
     930            3 :         if (ReorderQueue[qidx] == nullptr)
     931              :         {
     932              :             // Stop consuming packets until the hole or no packets
     933            1 :             break;
     934              :         }
     935              :         // Consume the saved packets
     936            2 :         ChipLogProgress(WiFiPAF, "Rx processing from the re-order queue [%u]", qidx);
     937            2 :         err                = RxPacketProcess(System::PacketBufferHandle::Adopt(ReorderQueue[qidx]));
     938            2 :         ReorderQueue[qidx] = nullptr;
     939            2 :         ItemsInReorderQueue--;
     940              :     }
     941              :     // Has reached the 1st hole in the queue => move the rest items forward
     942              :     // Note: It's to continue => No need to reinit "i"
     943            5 :     for (uint8_t newId = 0; qidx < PAFTP_REORDER_QUEUE_SIZE; qidx++, newId++)
     944              :     {
     945            4 :         if (ReorderQueue[qidx] != nullptr)
     946              :         {
     947            0 :             ReorderQueue[newId] = ReorderQueue[qidx];
     948            0 :             ReorderQueue[qidx]  = nullptr;
     949              :         }
     950              :     }
     951            1 :     return err;
     952              : }
     953              : 
     954            6 : CHIP_ERROR WiFiPAFEndPoint::RxPacketProcess(PacketBufferHandle && data)
     955              : {
     956              :     ChipLogDebugBufferWiFiPAFEndPoint(WiFiPAF, data);
     957              : 
     958            6 :     CHIP_ERROR err               = CHIP_NO_ERROR;
     959            6 :     SequenceNumber_t receivedAck = 0;
     960            6 :     uint8_t closeFlags           = kWiFiPAFCloseFlag_AbortTransmission;
     961            6 :     bool didReceiveAck           = false;
     962            6 :     BitFlags<WiFiPAFTP::HeaderFlags> rx_flags;
     963            6 :     Encoding::LittleEndian::Reader reader(data->Start(), data->DataLength());
     964            6 :     DebugPktAckSn(PktDirect_t::kRx, reader, data->Start());
     965              : 
     966              :     { // This is a special handling on the first CHIPoPAF data packet, the CapabilitiesRequest.
     967              :         // If we're receiving the first inbound packet of a PAF transport connection handshake...
     968            6 :         if (!mConnStateFlags.Has(ConnectionStateFlag::kCapabilitiesMsgReceived))
     969              :         {
     970            2 :             if (mRole == kWiFiPafRole_Subscriber) // If we're a central receiving a capabilities response indication...
     971              :             {
     972              :                 // Ensure end point's in the right state before continuing.
     973            1 :                 VerifyOrExit(mState == kState_Connecting, err = CHIP_ERROR_INCORRECT_STATE);
     974            1 :                 mConnStateFlags.Set(ConnectionStateFlag::kCapabilitiesMsgReceived);
     975            1 :                 err = HandleCapabilitiesResponseReceived(std::move(data));
     976            1 :                 SuccessOrExit(err);
     977              :             }
     978              :             else // Or, a peripheral receiving a capabilities request write...
     979              :             {
     980              :                 // Ensure end point's in the right state before continuing.
     981            1 :                 VerifyOrExit(mState == kState_Ready, err = CHIP_ERROR_INCORRECT_STATE);
     982            1 :                 mConnStateFlags.Set(ConnectionStateFlag::kCapabilitiesMsgReceived);
     983            1 :                 err = HandleCapabilitiesRequestReceived(std::move(data));
     984            1 :                 if (err != CHIP_NO_ERROR)
     985              :                 {
     986              :                     // If an error occurred decoding and handling the capabilities request, release the BLE connection.
     987              :                     // Central's connect attempt will time out if peripheral's application decides to keep the BLE
     988              :                     // connection open, or fail immediately if the application closes the connection.
     989            0 :                     closeFlags = closeFlags | kWiFiPAFCloseFlag_SuppressCallback;
     990            0 :                     ExitNow();
     991              :                 }
     992              :             }
     993              :             // If received data was handshake packet, don't feed it to message reassembler.
     994            2 :             ExitNow();
     995              :         }
     996              :     } // End handling the CapabilitiesRequest
     997              : 
     998            4 :     err = reader.Read8(rx_flags.RawStorage()).StatusCode();
     999            4 :     SuccessOrExit(err);
    1000            4 :     if (rx_flags.Has(WiFiPAFTP::HeaderFlags::kHankshake))
    1001              :     {
    1002              :         ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "Unexpected handshake packet => drop");
    1003            0 :         ExitNow();
    1004              :     }
    1005              : 
    1006              :     ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "PAFTP about to rx characteristic, state before:");
    1007            4 :     mPafTP.LogStateDebug();
    1008              : 
    1009              :     // Pass received packet into PAFTP protocol engine.
    1010            4 :     err = mPafTP.HandleCharacteristicReceived(std::move(data), receivedAck, didReceiveAck);
    1011              : 
    1012              :     ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "PAFTP rx'd characteristic, state after:");
    1013            4 :     mPafTP.LogStateDebug();
    1014            4 :     SuccessOrExit(err);
    1015              : 
    1016              :     // Protocol engine accepted the fragment, so shrink local receive window counter by 1.
    1017            4 :     mLocalReceiveWindowSize = static_cast<SequenceNumber_t>(mLocalReceiveWindowSize - 1);
    1018              :     ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "decremented local rx window, new size = %u", mLocalReceiveWindowSize);
    1019              : 
    1020              :     // Respond to received ack, if any.
    1021            4 :     if (didReceiveAck)
    1022              :     {
    1023              :         ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "got paftp ack = %u", receivedAck);
    1024              : 
    1025              :         // If ack was rx'd for newest unacked sent fragment, stop ack received timer.
    1026            4 :         if (!mPafTP.ExpectingAck())
    1027              :         {
    1028              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "got ack for last outstanding fragment");
    1029            1 :             StopAckReceivedTimer();
    1030              : 
    1031            1 :             if (mState == kState_Closing && mSendQueue.IsNull() && mPafTP.TxState() == WiFiPAFTP::kState_Idle)
    1032              :             {
    1033              :                 // If end point closing, got confirmation for last send, and waiting for last ack, finalize close.
    1034            0 :                 FinalizeClose(mState, kWiFiPAFCloseFlag_SuppressCallback, CHIP_NO_ERROR);
    1035            0 :                 ExitNow();
    1036              :             }
    1037              :         }
    1038              :         else // Else there are still sent fragments for which acks are expected, so restart ack received timer.
    1039              :         {
    1040              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "still expecting ack(s), restarting timer...");
    1041            3 :             err = RestartAckReceivedTimer();
    1042            3 :             SuccessOrExit(err);
    1043              :         }
    1044              : 
    1045              :         ChipLogDebugWiFiPAFEndPoint(
    1046              :             WiFiPAF, "about to adjust remote rx window; got ack num = %u, newest unacked sent seq num = %u, \
    1047              :                 old window size = %u, max window size = %u",
    1048              :             receivedAck, mPafTP.GetNewestUnackedSentSequenceNumber(), mRemoteReceiveWindowSize, mReceiveWindowMaxSize);
    1049              : 
    1050              :         // Open remote device's receive window according to sequence number it just acknowledged.
    1051            4 :         mRemoteReceiveWindowSize =
    1052            4 :             AdjustRemoteReceiveWindow(receivedAck, mReceiveWindowMaxSize, mPafTP.GetNewestUnackedSentSequenceNumber());
    1053              : 
    1054              :         ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "adjusted remote rx window, new size = %u", mRemoteReceiveWindowSize);
    1055              : 
    1056              :         // Restart message transmission if it was previously paused due to window exhaustion.
    1057            4 :         err = DriveSending();
    1058            4 :         SuccessOrExit(err);
    1059              :     }
    1060              : 
    1061              :     // The previous DriveSending() might have generated a piggyback acknowledgement if there was
    1062              :     // previously un-acked data.  Otherwise, prepare to send acknowledgement for newly received fragment.
    1063              :     //
    1064              :     // If local receive window is below immediate ack threshold, AND there is no previous stand-alone ack in
    1065              :     // flight, AND there is no pending outbound message fragment on which the ack can and will be piggybacked,
    1066              :     // send immediate stand-alone ack to reopen window for sender.
    1067              :     //
    1068              :     // The "operation in flight" check below covers "pending outbound message fragment" by extension, as when
    1069              :     // a message has been passed to the end point via Send(), its next outbound fragment must either be in flight
    1070              :     // itself, or awaiting the completion of another in-flight operation.
    1071              :     //
    1072              :     // If any operation is in flight that is NOT a stand-alone ack, the window size will be checked against
    1073              :     // this threshold again when the operation is confirmed.
    1074            4 :     if (mPafTP.HasUnackedData())
    1075              :     {
    1076            4 :         if (mLocalReceiveWindowSize <= WIFIPAF_CONFIG_IMMEDIATE_ACK_WINDOW_THRESHOLD &&
    1077            0 :             !mConnStateFlags.Has(ConnectionStateFlag::kOperationInFlight))
    1078              :         {
    1079              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "sending immediate ack");
    1080            0 :             err = DriveStandAloneAck();
    1081            0 :             SuccessOrExit(err);
    1082              :         }
    1083              :         else
    1084              :         {
    1085              :             ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "starting send-ack timer");
    1086              : 
    1087              :             // Send ack when timer expires.
    1088            4 :             err = StartSendAckTimer();
    1089            4 :             SuccessOrExit(err);
    1090              :         }
    1091              :     }
    1092              : 
    1093              :     // If we've reassembled a whole message...
    1094            4 :     if (mPafTP.RxState() == WiFiPAFTP::kState_Complete)
    1095              :     {
    1096              :         // Take ownership of message buffer
    1097            2 :         System::PacketBufferHandle full_packet = mPafTP.TakeRxPacket();
    1098              : 
    1099              :         ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "reassembled whole msg, len = %u", static_cast<unsigned>(full_packet->DataLength()));
    1100              : 
    1101              :         // If we have a message received callback, and end point is not closing...
    1102            2 :         if (mWiFiPafLayer != nullptr && mState != kState_Closing)
    1103              :         {
    1104              :             // Pass received message up the stack.
    1105            2 :             err = mWiFiPafLayer->OnWiFiPAFMsgRxComplete(mSessionInfo, std::move(full_packet));
    1106              :         }
    1107            2 :     }
    1108              : 
    1109            2 : exit:
    1110            6 :     if (err != CHIP_NO_ERROR)
    1111              :     {
    1112            0 :         DoClose(closeFlags, err);
    1113              :     }
    1114              : 
    1115            6 :     return err;
    1116              : }
    1117              : 
    1118           10 : CHIP_ERROR WiFiPAFEndPoint::SendWrite(PacketBufferHandle && buf)
    1119              : {
    1120           10 :     mConnStateFlags.Set(ConnectionStateFlag::kOperationInFlight);
    1121              : 
    1122              :     ChipLogDebugBufferWiFiPAFEndPoint(WiFiPAF, buf);
    1123           10 :     Encoding::LittleEndian::Reader reader(buf->Start(), buf->DataLength());
    1124           10 :     DebugPktAckSn(PktDirect_t::kTx, reader, buf->Start());
    1125           10 :     mWiFiPafLayer->mWiFiPAFTransport->WiFiPAFMessageSend(mSessionInfo, std::move(buf));
    1126              : 
    1127           10 :     return CHIP_NO_ERROR;
    1128              : }
    1129              : 
    1130            1 : CHIP_ERROR WiFiPAFEndPoint::StartConnectTimer()
    1131              : {
    1132            1 :     const CHIP_ERROR timerErr = mWiFiPafLayer->mSystemLayer->StartTimer(System::Clock::Milliseconds32(PAFTP_CONN_RSP_TIMEOUT_MS),
    1133              :                                                                         HandleConnectTimeout, this);
    1134            1 :     ReturnErrorOnFailure(timerErr);
    1135            1 :     mTimerStateFlags.Set(TimerStateFlag::kConnectTimerRunning);
    1136              : 
    1137            1 :     return CHIP_NO_ERROR;
    1138              : }
    1139              : 
    1140           11 : CHIP_ERROR WiFiPAFEndPoint::StartAckReceivedTimer()
    1141              : {
    1142           11 :     if (!mTimerStateFlags.Has(TimerStateFlag::kAckReceivedTimerRunning))
    1143              :     {
    1144            6 :         const CHIP_ERROR timerErr = mWiFiPafLayer->mSystemLayer->StartTimer(System::Clock::Milliseconds32(PAFTP_ACK_TIMEOUT_MS),
    1145              :                                                                             HandleAckReceivedTimeout, this);
    1146            6 :         ReturnErrorOnFailure(timerErr);
    1147              : 
    1148            6 :         mTimerStateFlags.Set(TimerStateFlag::kAckReceivedTimerRunning);
    1149              :     }
    1150              : 
    1151           11 :     return CHIP_NO_ERROR;
    1152              : }
    1153              : 
    1154            3 : CHIP_ERROR WiFiPAFEndPoint::RestartAckReceivedTimer()
    1155              : {
    1156            3 :     VerifyOrReturnError(mTimerStateFlags.Has(TimerStateFlag::kAckReceivedTimerRunning), CHIP_ERROR_INCORRECT_STATE);
    1157              : 
    1158            3 :     StopAckReceivedTimer();
    1159              : 
    1160            3 :     return StartAckReceivedTimer();
    1161              : }
    1162              : 
    1163            5 : CHIP_ERROR WiFiPAFEndPoint::StartSendAckTimer()
    1164              : {
    1165            5 :     if (!mTimerStateFlags.Has(TimerStateFlag::kSendAckTimerRunning))
    1166              :     {
    1167              :         ChipLogDebugWiFiPAFEndPoint(WiFiPAF, "starting new SendAckTimer");
    1168            3 :         const CHIP_ERROR timerErr = mWiFiPafLayer->mSystemLayer->StartTimer(
    1169            3 :             System::Clock::Milliseconds32(WIFIPAF_ACK_SEND_TIMEOUT_MS), HandleSendAckTimeout, this);
    1170            3 :         ReturnErrorOnFailure(timerErr);
    1171              : 
    1172            3 :         mTimerStateFlags.Set(TimerStateFlag::kSendAckTimerRunning);
    1173              :     }
    1174              : 
    1175            5 :     return CHIP_NO_ERROR;
    1176              : }
    1177              : 
    1178            5 : void WiFiPAFEndPoint::StopConnectTimer()
    1179              : {
    1180              :     // Cancel any existing connect timer.
    1181            5 :     mWiFiPafLayer->mSystemLayer->CancelTimer(HandleConnectTimeout, this);
    1182            5 :     mTimerStateFlags.Clear(TimerStateFlag::kConnectTimerRunning);
    1183            5 : }
    1184              : 
    1185            6 : void WiFiPAFEndPoint::StopAckReceivedTimer()
    1186              : {
    1187              :     // Cancel any existing ack-received timer.
    1188            6 :     mWiFiPafLayer->mSystemLayer->CancelTimer(HandleAckReceivedTimeout, this);
    1189            6 :     mTimerStateFlags.Clear(TimerStateFlag::kAckReceivedTimerRunning);
    1190            6 : }
    1191              : 
    1192            5 : void WiFiPAFEndPoint::StopSendAckTimer()
    1193              : {
    1194              :     // Cancel any existing send-ack timer.
    1195            5 :     mWiFiPafLayer->mSystemLayer->CancelTimer(HandleSendAckTimeout, this);
    1196            5 :     mTimerStateFlags.Clear(TimerStateFlag::kSendAckTimerRunning);
    1197            5 : }
    1198              : 
    1199            0 : void WiFiPAFEndPoint::HandleConnectTimeout(chip::System::Layer * systemLayer, void * appState)
    1200              : {
    1201            0 :     WiFiPAFEndPoint * ep = static_cast<WiFiPAFEndPoint *>(appState);
    1202              : 
    1203              :     // Check for event-based timer race condition.
    1204            0 :     if (ep->mTimerStateFlags.Has(TimerStateFlag::kConnectTimerRunning))
    1205              :     {
    1206            0 :         ChipLogError(WiFiPAF, "connect handshake timed out, closing ep %p", ep);
    1207            0 :         ep->mTimerStateFlags.Clear(TimerStateFlag::kConnectTimerRunning);
    1208            0 :         ep->DoClose(kWiFiPAFCloseFlag_AbortTransmission, WIFIPAF_ERROR_CONNECT_TIMED_OUT);
    1209              :     }
    1210            0 : }
    1211              : 
    1212            0 : void WiFiPAFEndPoint::HandleAckReceivedTimeout(chip::System::Layer * systemLayer, void * appState)
    1213              : {
    1214            0 :     WiFiPAFEndPoint * ep = static_cast<WiFiPAFEndPoint *>(appState);
    1215              : 
    1216              :     // Check for event-based timer race condition.
    1217            0 :     if (ep->mTimerStateFlags.Has(TimerStateFlag::kAckReceivedTimerRunning))
    1218              :     {
    1219            0 :         ChipLogError(WiFiPAF, "ack recv timeout, closing ep %p", ep);
    1220            0 :         ep->mPafTP.LogStateDebug();
    1221            0 :         ep->mTimerStateFlags.Clear(TimerStateFlag::kAckReceivedTimerRunning);
    1222            0 :         ep->DoClose(kWiFiPAFCloseFlag_AbortTransmission, WIFIPAF_ERROR_FRAGMENT_ACK_TIMED_OUT);
    1223              :     }
    1224            0 : }
    1225              : 
    1226            0 : void WiFiPAFEndPoint::HandleSendAckTimeout(chip::System::Layer * systemLayer, void * appState)
    1227              : {
    1228            0 :     WiFiPAFEndPoint * ep = static_cast<WiFiPAFEndPoint *>(appState);
    1229              : 
    1230              :     // Check for event-based timer race condition.
    1231            0 :     if (ep->mTimerStateFlags.Has(TimerStateFlag::kSendAckTimerRunning))
    1232              :     {
    1233            0 :         ep->mTimerStateFlags.Clear(TimerStateFlag::kSendAckTimerRunning);
    1234              : 
    1235              :         // If previous stand-alone ack isn't still in flight...
    1236            0 :         if (!ep->mConnStateFlags.Has(ConnectionStateFlag::kStandAloneAckInFlight))
    1237              :         {
    1238            0 :             CHIP_ERROR sendErr = ep->DriveStandAloneAck();
    1239              : 
    1240            0 :             if (sendErr != CHIP_NO_ERROR)
    1241              :             {
    1242            0 :                 ep->DoClose(kWiFiPAFCloseFlag_AbortTransmission, sendErr);
    1243              :             }
    1244              :         }
    1245              :     }
    1246            0 : }
    1247              : 
    1248            2 : void WiFiPAFEndPoint::ClearAll()
    1249              : {
    1250            2 :     memset(reinterpret_cast<uint8_t *>(this), 0, sizeof(WiFiPAFEndPoint));
    1251            2 :     return;
    1252              : }
    1253              : 
    1254              : } /* namespace WiFiPAF */
    1255              : } /* namespace chip */
        

Generated by: LCOV version 2.0-1